1
|
Mounish BSC, Muthubharathi BC, Gowripriya T, Emmanuvel Rajan K, Balamurugan K. Coupled dopamine and insulin signaling mediated transgenerational and multigenerational inheritance of adaptive traits in Caenorhabditis elegans upon parental training with Salmonella enterica Serovar Typhi. Microbiol Spectr 2025:e0257524. [PMID: 40401953 DOI: 10.1128/spectrum.02575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/12/2025] [Indexed: 05/23/2025] Open
Abstract
The nervous system's ability to perceive and learn about the environment can help organisms evolve and acquire traits, potentially generating adaptive responses. However, its potential to produce heritable modulations is a scientific lacuna, which is under-explored. Here, with the help of Caenorhabditis elegans, which has a well-established neuronal networking, we found that on training the worms on a candidate pathogenic bacterium Salmonella enterica Serovar Typhi, the worms could exhibit a characteristic transgenerational pathogenic avoidance up to three subsequent generations to the otherwise attractive pathogen. Our further analyses suggested that dopamine signaling is essential for the learning and transmission of the learned traits across generations and that inhibiting or mutating the expression of DAT-1 involved in dopamine transportation eliminated the inheritance patterns. Also, the offspring generations showed enhanced survival resistance against S. Typhi, which was coupled with the higher levels of C-type lectins suggesting priming of the offspring's immune system to generate resistance against S. Typhi upon re-exposure. Enhanced DAF-2/DAF-16-mediated insulin signaling pathway was observed, suggesting that the inherited immune response could be mediated through insulin/IGF-1 signaling (IIS). Furthermore, mutigenerational training on S. Typhi for three continuous generations induced preferential adaptation and better survivability toward S. Typhi. Taken together, the present study indicates that S. Typhi infection could generate transgenerational heritable dopaminergic modulations, which could possibly be the key signaling player in determining the decision-making ability of the host and also generate adaptive survival response, which could be mediated by the insulin-signaling pathway.IMPORTANCEAdaptation is a phenomenon by which an organism learns and develops a mechanism to respond to dynamic and challenging conditions. It provides animals with an advantage to exhibit phenotypic as well as genotypic plasticity, enabling better survivability. The current study helps in understanding how animals respond to environmental stresses such as bacterial infections and the possible mechanism by which the information of the experience is being transmitted across future generations. Neuronal signaling promotes the brain's ability to learn and generate memory, thereby reorganizing the response of the organism. The study also tries to understand how neuronal signaling could be essential for transmitting the information of parental experiences transgenerationally. Collectively, the study helps us understand the evolutionary adaptations exhibited across generations, which will also help us understand the long-term effects of pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | |
Collapse
|
2
|
Wu YC, Beets I, Fox BW, Fajardo Palomino D, Chen L, Liao CP, Vandewyer E, Lin LY, He CW, Chen LT, Lin CT, Schroeder FC, Pan CL. Intercellular sphingolipid signaling mediates aversive learning in C. elegans. Curr Biol 2025; 35:2323-2336.e9. [PMID: 40252647 DOI: 10.1016/j.cub.2025.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Physiological stress in non-neural tissues drives aversive learning for sensory cues associated with stress. However, the identities of signals derived from non-neural tissues and the mechanisms by which these signals mediate aversive learning remain elusive. Here, we show that intercellular sphingolipid signaling contributes to aversive learning under mitochondrial stress in C. elegans. We found that stress-induced aversive learning requires sphingosine kinase, SPHK-1, the enzyme that produces sphingosine-1-phosphate (S1P). Genetic and biochemical studies revealed an intercellular signaling pathway in which intestinal or hypodermal SPHK-1 signals through the neuronal G protein-coupled receptor, SPHR-1, and modulates responses of the octopaminergic RIC neuron to promote aversive learning. We further show that SPHK-1-mediated sphingolipid signaling is required for learned aversion of Chryseobacterium indologenes, a bacterial pathogen found in the natural habitats of C. elegans, which causes mitochondrial stress. Taken together, our work reveals a sphingolipid signaling pathway that communicates from intestinal or hypodermal tissues to neurons to promote aversive learning in response to mitochondrial stress and pathogen infection.
Collapse
Affiliation(s)
- Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Li Chen
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59 - Box 2465, Isabel Beets, Leuven, Belgium
| | - Liang-Yi Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Tzu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chih-Ta Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, 533 Tower Road, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
3
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Wang J, Guo C, Wei X, Pu X, Zhao Y, Xu C, Wang W. GPCR Sense Communication Among Interaction Nematodes with Other Organisms. Int J Mol Sci 2025; 26:2822. [PMID: 40141464 PMCID: PMC11943259 DOI: 10.3390/ijms26062822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Interactions between species give rise to chemical pathways of communication that regulate the interactions of transboundary species. The communication between nematodes and other species primarily occurs through the regulation of chemicals, with key species including plants, insects, bacteria, and nematode-trapping fungi that are closely associated with nematodes. G protein-coupled receptors (GPCRs) play a crucial role in interspecies communication. Certain flp genes, which function as GPCRs, exert varying degrees of influence on how nematodes interact with other species. These receptors facilitate the transmission of corresponding signals, thereby completing the interactions between species. This paper introduces the interactions between nematodes and other species and discusses the role of GPCRs in these organisms, contributing to a deeper understanding of the impact and significance of GPCRs in cross-border regulation between nematodes and other species. Furthermore, it is essential to leverage GPCRs in efforts to control pests.
Collapse
Affiliation(s)
- Jie Wang
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Changying Guo
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
| | - Xiaoli Wei
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Xiaojian Pu
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Yuanyuan Zhao
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Chengti Xu
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| | - Wei Wang
- Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China; (J.W.); (C.G.); (X.W.); (X.P.); (Y.Z.)
- Key Laboratory of Northwest Cultivated Land Conservation and Marginal Land Improvement Enterprises, Ministry of Agriculture and Rural Affairs, Delingha 817000, China
| |
Collapse
|
5
|
Pender CL, Dishart JG, Gildea HK, Nauta KM, Page EM, Siddiqi TF, Cheung SS, Joe L, Burton NO, Dillin A. Perception of a pathogenic signature initiates intergenerational protection. Cell 2025; 188:594-605.e10. [PMID: 39721586 DOI: 10.1016/j.cell.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Transmission of immune responses from one generation to the next represents a powerful adaptive mechanism to protect an organism's descendants. Parental infection by the natural C. elegans pathogen Pseudomonas vranovensis induces a protective response in progeny, but the bacterial cues and intergenerational signal driving this response were previously unknown. Here, we find that animals activate a protective stress response program upon exposure to P. vranovensis-derived cyanide and that a metabolic byproduct of cyanide detoxification, β-cyanoalanine, acts as an intergenerational signal to protect progeny from infection. Remarkably, this mechanism does not require direct parental infection; rather, exposure to pathogen-derived volatiles is sufficient to enhance the survival of the next generation, indicating that parental surveillance of environmental cues can activate a protective intergenerational response. Therefore, the mere perception of a pathogen-derived toxin, in this case cyanide, can protect an animal's progeny from future pathogenic challenges.
Collapse
Affiliation(s)
- Corinne L Pender
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julian G Dishart
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Holly K Gildea
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kelsie M Nauta
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Emily M Page
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Talha F Siddiqi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon S Cheung
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Larry Joe
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas O Burton
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Wang Z, Zhang Q, Jiang Y, Zhou J, Tian Y. ASI-RIM neuronal axis regulates systemic mitochondrial stress response via TGF-β signaling cascade. Nat Commun 2024; 15:8997. [PMID: 39426950 PMCID: PMC11490647 DOI: 10.1038/s41467-024-53093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yayun Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100093, Beijing, China.
| |
Collapse
|
7
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. Nat Commun 2024; 15:8129. [PMID: 39285192 PMCID: PMC11405893 DOI: 10.1038/s41467-024-52233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defenses capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals interesting insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival.
Collapse
Affiliation(s)
- Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandy A Weathers
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
10
|
Dhakal A, Salim C, Skelly M, Amichan Y, Lamm AT, Hundley HA. ADARs regulate cuticle collagen expression and promote survival to pathogen infection. BMC Biol 2024; 22:37. [PMID: 38360623 PMCID: PMC10870475 DOI: 10.1186/s12915-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND In all organisms, the innate immune system defends against pathogens through basal expression of molecules that provide critical barriers to invasion and inducible expression of effectors that combat infection. The adenosine deaminase that act on RNA (ADAR) family of RNA-binding proteins has been reported to influence innate immunity in metazoans. However, studies on the susceptibility of ADAR mutant animals to infection are largely lacking. RESULTS Here, by analyzing adr-1 and adr-2 null mutants in well-established slow-killing assays, we find that both Caenorhabditis elegans ADARs are important for organismal survival to gram-negative and gram-positive bacteria, all of which are pathogenic to humans. Furthermore, our high-throughput sequencing and genetic analysis reveal that ADR-1 and ADR-2 function in the same pathway to regulate collagen expression. Consistent with this finding, our scanning electron microscopy studies indicate adr-1;adr-2 mutant animals also have altered cuticle morphology prior to pathogen exposure. CONCLUSIONS Our data uncover a critical role of the C. elegans ADAR family of RNA-binding proteins in promoting cuticular collagen expression, which represents a new post-transcriptional regulatory node that influences the extracellular matrix. In addition, we provide the first evidence that ADAR mutant animals have altered susceptibility to infection with several opportunistic human pathogens, suggesting a broader role of ADARs in altering physical barriers to infection to influence innate immunity.
Collapse
Affiliation(s)
- Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Chinnu Salim
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Mary Skelly
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Yarden Amichan
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Ayelet T Lamm
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
11
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579755. [PMID: 38405962 PMCID: PMC10888766 DOI: 10.1101/2024.02.10.579755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defense capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals new insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival. KEY POINTS Identify an apathy-like behavioral response for pathogens resulting from the constitutive activation of the cytoprotective transcription factor SKN-1.Uncover the obligate role for serotonin synthesis in both neuronal and non-neuronal cells for the apathy-like state and ability of serotonin treatment to restore normal behaviors.Characterize the timing and tissue specificity of SKN-1 nuclear localization in neurons and intestinal cells in response to pathogen exposure.Define the unique and context-specific transcriptional signatures of animals with constitutive SKN-1 activation when exposed to pathogenic environments.Reveal necessity for both neuronal and non-neuronal serotonin signaling in host survival from pathogen infection.
Collapse
|
12
|
Hao X, Chen J, Li Y, Liu X, Li Y, Wang B, Cao J, Gu Y, Ma W, Ma L. Molecular Defense Response of Bursaphelenchus xylophilus to the Nematophagous Fungus Arthrobotrys robusta. Cells 2023; 12:cells12040543. [PMID: 36831210 PMCID: PMC9953903 DOI: 10.3390/cells12040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Bursaphelenchus xylophilus causes pine wilt disease, which poses a serious threat to forestry ecology around the world. Microorganisms are environmentally friendly alternatives to the use of chemical nematicides to control B. xylophilus in a sustainable way. In this study, we isolated a nematophagous fungus-Arthrobotrys robusta-from the xylem of diseased Pinus massoniana. The nematophagous activity of A. robusta against the PWNs was observed after just 6 h. We found that B. xylophilus entered the trap of A. robusta at 24 h, and the nervous system and immunological response of B. xylophilus were stimulated by metabolites that A. robusta produced. At 30 h of exposure to A. robusta, B. xylophilus exhibited significant constriction, and we were able to identify xenobiotics. Bursaphelenchus xylophilus activated xenobiotic metabolism, which expelled the xenobiotics from their bodies, by providing energy through lipid metabolism. When PWNs were exposed to A. robusta for 36 h, lysosomal and autophagy-related genes were activated, and the bodies of the nematodes underwent disintegration. Moreover, a gene co-expression pattern network was constructed by WGCNA and Cytoscape. The gene co-expression pattern network suggested that metabolic processes, developmental processes, detoxification, biological regulation, and signaling were influential when the B. xylophilus specimens were exposed to A. robusta. Additionally, bZIP transcription factors, ankyrin, ATPases, innexin, major facilitator, and cytochrome P450 played critical roles in the network. This study proposes a model in which mobility improved whenever B. xylophilus entered the traps of A. robusta. The model will provide a solid foundation with which to understand the molecular and evolutionary mechanisms underlying interactions between nematodes and nematophagous fungi. Taken together, these findings contribute in several ways to our understanding of B. xylophilus exposed to microorganisms and provide a basis for establishing an environmentally friendly prevention and control strategy.
Collapse
Affiliation(s)
- Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Xuefeng Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Hangzhou 310028, China
| | - Jingxin Cao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yaru Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
13
|
Gang SS, Grover M, Reddy KC, Raman D, Chang YT, Ekiert DC, Barkoulas M, Troemel ER. A pals-25 gain-of-function allele triggers systemic resistance against natural pathogens of C. elegans. PLoS Genet 2022; 18:e1010314. [PMID: 36191002 PMCID: PMC9560605 DOI: 10.1371/journal.pgen.1010314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Regulation of immunity throughout an organism is critical for host defense. Previous studies in the nematode Caenorhabditis elegans have described an "ON/OFF" immune switch comprised of the antagonistic paralogs PALS-25 and PALS-22, which regulate resistance against intestinal and epidermal pathogens. Here, we identify and characterize a PALS-25 gain-of-function mutant protein with a premature stop (Q293*), which we find is freed from physical repression by its negative regulator, the PALS-22 protein. PALS-25(Q293*) activates two related gene expression programs, the Oomycete Recognition Response (ORR) against natural pathogens of the epidermis, and the Intracellular Pathogen Response (IPR) against natural intracellular pathogens of the intestine. A subset of ORR/IPR genes is upregulated in pals-25(Q293*) mutants, and they are resistant to oomycete infection in the epidermis, and microsporidia and virus infection in the intestine, but without compromising growth. Surprisingly, we find that activation of PALS-25 seems to primarily stimulate the downstream bZIP transcription factor ZIP-1 in the epidermis, with upregulation of gene expression in both the epidermis and in the intestine. Interestingly, we find that PALS-22/25-regulated epidermal-to-intestinal signaling promotes resistance to the N. parisii intestinal pathogen, demonstrating cross-tissue protective immune induction from one epithelial tissue to another in C. elegans.
Collapse
Affiliation(s)
- Spencer S. Gang
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Kirthi C. Reddy
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Deevya Raman
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ya-Ting Chang
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Xie K, Liu Y, Li X, Zhang H, Zhang S, Mak HY, Liu P. Dietary S. maltophilia induces supersized lipid droplets by enhancing lipogenesis and ER-LD contacts in C. elegans. Gut Microbes 2022; 14:2013762. [PMID: 35112996 PMCID: PMC8816401 DOI: 10.1080/19490976.2021.2013762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dietary and symbiotic bacteria can exert powerful influence on metazoan lipid metabolism. Recent studies have emerged that microbiota have a role in animal obesity and related health disorders, but the mechanisms by which bacteria influence lipid storage in their host are unknown. To reduce the complexity of the relationship between gut microbiota and the host, Caenorhabditis elegans (C. elegans) has been chosen as a model organism to study interspecies interaction. Here, we demonstrate that feeding C. elegans with an opportunistic pathogenic bacterium Stenotrophomonas maltophilia (S. maltophilia) retards growth and promotes excessive neutral lipid storage. Gene expression analysis reveals that dietary S. maltophilia induces a lipogenic transcriptional response that includes the SREBP ortholog SBP-1, and fatty acid desaturases FAT-6 and FAT-7. Live imaging and ultrastructural analysis suggest that excess neutral lipid is stored in greatly expanded lipid droplets (LDs), as a result of enhanced endoplasmic reticulum (ER)-LD interaction. We also report that loss of function mutations in dpy-9 in C. elegans confers resistance to S. maltophilia. Dietary S. maltophilia induces supersized LDs by enhancing lipogenesis and ER-LD contacts in C. elegans. This work delineates a new model for understanding microbial regulation of metazoan physiology.
Collapse
Affiliation(s)
- Kang Xie
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yangli Liu
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xixia Li
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Pingsheng Liu National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
15
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
16
|
Pujol N, Ewbank JJ. C. elegans: out on an evolutionary limb. Immunogenetics 2021; 74:63-73. [PMID: 34761293 DOI: 10.1007/s00251-021-01231-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The natural environment of the free-living nematode Caenorhabditis elegans is rich in pathogenic microbes. There is now ample evidence to indicate that these pathogens exert a strong selection pressure on C. elegans, and have shaped its genome, physiology, and behaviour. In this short review, we concentrate on how C. elegans stands out from other animals in terms of its immune repertoire and innate immune signalling pathways. We discuss how C. elegans often detects pathogens because of their effects on essential cellular processes, or organelle integrity, in addition to direct microbial recognition. We illustrate the extensive molecular plasticity that is characteristic of immune defences in C. elegans and highlight some remarkable instances of lineage-specific innovation in innate immune mechanisms.
Collapse
Affiliation(s)
- Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France.
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
17
|
An integrated view of innate immune mechanisms in C. elegans. Biochem Soc Trans 2021; 49:2307-2317. [PMID: 34623403 DOI: 10.1042/bst20210399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The simple notion 'infection causes an immune response' is being progressively refined as it becomes clear that immune mechanisms cannot be understood in isolation, but need to be considered in a more global context with other cellular and physiological processes. In part, this reflects the deployment by pathogens of virulence factors that target diverse cellular processes, such as translation or mitochondrial respiration, often with great molecular specificity. It also reflects molecular cross-talk between a broad range of host signalling pathways. Studies with the model animal C. elegans have uncovered a range of examples wherein innate immune responses are intimately connected with different homeostatic mechanisms, and can influence reproduction, ageing and neurodegeneration, as well as various other aspects of its biology. Here we provide a short overview of a number of such connections, highlighting recent discoveries that further the construction of a fully integrated view of innate immunity.
Collapse
|
18
|
Grover M, Fasseas MK, Essmann C, Liu K, Braendle C, Félix MA, Glockling SL, Barkoulas M. Infection of C. elegans by Haptoglossa Species Reveals Shared Features in the Host Response to Oomycete Detection. Front Cell Infect Microbiol 2021; 11:733094. [PMID: 34722333 PMCID: PMC8552708 DOI: 10.3389/fcimb.2021.733094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oomycetes are a group of eukaryotic organisms that includes many important pathogens of animals and plants. Within this group, the Haptoglossa genus is characterised by the presence of specialised gun cells carrying a harpoon-like infection apparatus. While several Haptoglossa pathogens have been morphologically described, there are currently no host systems developed to study the infection process or host responses in the lab. In this study, we report that Haptoglossa species are potent natural pathogens of Caenorhabditis nematodes. Using electron microscopy, we characterise the infection process in C. elegans and demonstrate that the oomycete causes excessive tissue degradation upon entry in the body cavity, whilst leaving the host cuticle intact. We also report that the host transcriptional response to Haptoglossa infection shares similarities with the response against the oomycete Myzocytiopsis humicola, a key example of which is the induction of chitinase-like (chil) genes in the hypodermis. We demonstrate that this shared feature of the host response can be mounted by pathogen detection without any infection, as previously shown for M. humicola. These results highlight similarities in the nematode immune response to natural infection by phylogenetically distinct oomycetes.
Collapse
Affiliation(s)
- Manish Grover
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Michael K Fasseas
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Clara Essmann
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Kenneth Liu
- Department of Life Sciences, Imperial College, London, United Kingdom
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | | | | |
Collapse
|
19
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
20
|
Ronan EA, Xiao R, Shawn Xu XZ. TRP channels: Intestinal bloating TRiPs up pathogen avoidance. Cell Calcium 2021; 98:102446. [PMID: 34303264 DOI: 10.1016/j.ceca.2021.102446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
Transient receptor potential (TRP) channels are expressed in many nonneural tissues where their functions are not well known. Using C. elegans as a model, a new study demonstrated that colonization of the Gram-positive pathogenic bacteria E. faecalis in the intestine causes intestinal distention. Two TRPM channels sense such intestinal distension to trigger fast pathogen avoidance behavior, thereby limiting pathogen infection. This work signifies the novel role of TRP channels in gut physiology and pathogen defense.
Collapse
Affiliation(s)
- Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, United States
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States.
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor 48109, United States.
| |
Collapse
|
21
|
Filipowicz A, Lalsiamthara J, Aballay A. TRPM channels mediate learned pathogen avoidance following intestinal distention. eLife 2021; 10:65935. [PMID: 34032213 PMCID: PMC8177887 DOI: 10.7554/elife.65935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Upon exposure to harmful microorganisms, hosts engage in protective molecular and behavioral immune responses, both of which are ultimately regulated by the nervous system. Using the nematode Caenorhabditis elegans, we show that ingestion of Enterococcus faecalis leads to a fast pathogen avoidance behavior that results in aversive learning. We have identified multiple sensory mechanisms involved in the regulation of avoidance of E. faecalis. The G-protein coupled receptor NPR-1-dependent oxygen-sensing pathway opposes this avoidance behavior, while an ASE neuron-dependent pathway and an AWB and AWC neuron-dependent pathway are directly required for avoidance. Colonization of the anterior part of the intestine by E. faecalis leads to AWB and AWC mediated olfactory aversive learning. Finally, two transient receptor potential melastatin (TRPM) channels, GON-2 and GTL-2, mediate this newly described rapid pathogen avoidance. These results suggest a mechanism by which TRPM channels may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance and aversive learning by detecting changes in host physiology.
Collapse
Affiliation(s)
- Adam Filipowicz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
22
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
23
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
24
|
Fasseas MK, Grover M, Drury F, Essmann CL, Kaulich E, Schafer WR, Barkoulas M. Chemosensory Neurons Modulate the Response to Oomycete Recognition in Caenorhabditis elegans. Cell Rep 2021; 34:108604. [PMID: 33440164 PMCID: PMC7809619 DOI: 10.1016/j.celrep.2020.108604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Understanding how animals detect and respond to pathogen threats is central to dissecting mechanisms of host immunity. The oomycetes represent a diverse eukaryotic group infecting various hosts from nematodes to humans. We have previously shown that Caenorhabditis elegans mounts a defense response consisting of the induction of chitinase-like (chil) genes in the epidermis to combat infection by its natural oomycete pathogen Myzocytiopsis humicola. We provide here evidence that C. elegans can sense the oomycete by detecting an innocuous extract derived from animals infected with M. humicola. The oomycete recognition response (ORR) leads to changes in the cuticle and reduction in pathogen attachment, thereby increasing animal survival. We also show that TAX-2/TAX-4 function in chemosensory neurons is required for the induction of chil-27 in the epidermis in response to extract exposure. Our findings highlight that neuron-to-epidermis communication may shape responses to oomycete recognition in animal hosts. C. elegans senses its natural oomycete pathogen M. humicola without infection Exposure to a pathogen extract triggers an oomycete recognition response Upon pathogen detection, C. elegans resists infection through changes in the cuticle The response involves signaling between sensory neurons and the epidermis
Collapse
Affiliation(s)
| | - Manish Grover
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Florence Drury
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Clara L Essmann
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Eva Kaulich
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | |
Collapse
|
25
|
Goswamy D, Irazoqui JE. A unifying hypothesis on the central role of reactive oxygen species in bacterial pathogenesis and host defense in C. elegans. Curr Opin Immunol 2020; 68:9-20. [PMID: 32898751 DOI: 10.1016/j.coi.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023]
Abstract
During intestinal infection, microbes induce ROS by various mechanisms in C. elegans. ROS can have beneficial roles, acting as antimicrobials and as signaling molecules that activate cytoprotective pathways. Failure to maintain appropriate levels of ROS causes oxidative stress and cellular damage. This review uses the Damage Response Framework to interpret several recent observations on the relationships between infection, host response, and host damage, with a focus on mechanisms mediated by ROS. We propose a unifying hypothesis that ROS drive a collapse in proteostasis in infected C. elegans, which results in death during unresolved infection. Because the signaling pathways highlighted here are conserved in mammals, the mentioned and future studies can provide new tools of hypothesis generation in human health and disease.
Collapse
Affiliation(s)
- Debanjan Goswamy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States; Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Javier E Irazoqui
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States; Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
26
|
Singh J, Aballay A. Bacterial Lawn Avoidance and Bacterial Two Choice Preference Assays in Caenorhabditis elegans. Bio Protoc 2020; 10:e3623. [PMID: 33659296 DOI: 10.21769/bioprotoc.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 11/02/2022] Open
Abstract
Physical avoidance of pathogens is a crucial defense strategy used by the host to reduce pathogen infection. Hosts display the use of multiple strategies to sense and avoid pathogens, ranging from olfaction to sensing of damage caused by pathogen infection. Understanding various mechanisms of pathogen avoidance has the potential to uncover conserved host defense responses that are important against pathogen infections. Here, we describe protocols for studying pathogen lawn avoidance behavior as well as a change of bacterial preferences in the model nematode Caenorhabditis elegans. Besides, we describe the protocol for measuring preferences for pathogenic and nonpathogenic bacteria after training of the animals on pathogenic bacteria. These assays can be implemented in discovering various mechanisms of host learning that result in the avoidance of pathogens.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
27
|
Chu C, Artis D, Chiu IM. Neuro-immune Interactions in the Tissues. Immunity 2020; 52:464-474. [PMID: 32187517 PMCID: PMC10710744 DOI: 10.1016/j.immuni.2020.02.017] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The ability of the nervous system to sense environmental stimuli and to relay these signals to immune cells via neurotransmitters and neuropeptides is indispensable for effective immunity and tissue homeostasis. Depending on the tissue microenvironment and distinct drivers of a certain immune response, the same neuronal populations and neuro-mediators can exert opposing effects, promoting or inhibiting tissue immunity. Here, we review the current understanding of the mechanisms that underlie the complex interactions between the immune and the nervous systems in different tissues and contexts. We outline current gaps in knowledge and argue for the importance of considering infectious and inflammatory disease within a conceptual framework that integrates neuro-immune circuits both local and systemic, so as to better understand effective immunity to develop improved approaches to treat inflammation and disease.
Collapse
Affiliation(s)
- Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|