1
|
Turegano-Lopez M, de Las Pozas F, Santuy A, Rodriguez JR, DeFelipe J, Merchan-Perez A. Tracing nerve fibers with volume electron microscopy to quantitatively analyze brain connectivity. Commun Biol 2024; 7:796. [PMID: 38951162 PMCID: PMC11217374 DOI: 10.1038/s42003-024-06491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.
Collapse
Affiliation(s)
- Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Felix de Las Pozas
- Visualization & Graphics Lab (VG-Lab), Universidad Rey Juan Carlos, C/Tulipán S/N, Móstoles, 28933, Madrid, Spain
| | - Andrea Santuy
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), San Cugat del Vallès, 08195, Barcelona, Spain
| | - Jose-Rodrigo Rodriguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain.
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
2
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Gomez L, Cadilhac C, Prados J, Mule N, Jabaudon D, Dayer A. Developmental emergence of cortical neurogliaform cell diversity. Development 2023; 150:dev201830. [PMID: 37401408 PMCID: PMC10445751 DOI: 10.1242/dev.201830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023]
Abstract
GABAergic interneurons are key regulators of cortical circuit function. Among the dozens of reported transcriptionally distinct subtypes of cortical interneurons, neurogliaform cells (NGCs) are unique: they are recruited by long-range excitatory inputs, are a source of slow cortical inhibition and are able to modulate the activity of large neuronal populations. Despite their functional relevance, the developmental emergence and diversity of NGCs remains unclear. Here, by combining single-cell transcriptomics, genetic fate mapping, and electrophysiological and morphological characterization, we reveal that discrete molecular subtypes of NGCs, with distinctive anatomical and molecular profiles, populate the mouse neocortex. Furthermore, we show that NGC subtypes emerge gradually through development, as incipient discriminant molecular signatures are apparent in preoptic area (POA)-born NGC precursors. By identifying NGC developmentally conserved transcriptional programs, we report that the transcription factor Tox2 constitutes an identity hallmark across NGC subtypes. Using CRISPR-Cas9-mediated genetic loss of function, we show that Tox2 is essential for NGC development: POA-born cells lacking Tox2 fail to differentiate into NGCs. Together, these results reveal that NGCs are born from a spatially restricted pool of Tox2+ POA precursors, after which intra-type diverging molecular programs are gradually acquired post-mitotically and result in functionally and molecularly discrete NGC cortical subtypes.
Collapse
Affiliation(s)
- Lucia Gomez
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Cadilhac
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Julien Prados
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Nandkishor Mule
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
5
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
6
|
Pilaz LJ, Liu J, Joshi K, Tsunekawa Y, Musso CM, D'Arcy BR, Suzuki IK, Alsina FC, Kc P, Sethi S, Vanderhaeghen P, Polleux F, Silver DL. Subcellular mRNA localization and local translation of Arhgap11a in radial glial progenitors regulates cortical development. Neuron 2023; 111:839-856.e5. [PMID: 36924763 PMCID: PMC10132781 DOI: 10.1016/j.neuron.2023.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/17/2023]
Abstract
mRNA localization and local translation enable exquisite spatial and temporal control of gene expression, particularly in polarized, elongated cells. These features are especially prominent in radial glial cells (RGCs), which are neural and glial precursors of the developing cerebral cortex and scaffolds for migrating neurons. Yet the mechanisms by which subcellular RGC compartments accomplish their diverse functions are poorly understood. Here, we demonstrate that mRNA localization and local translation of the RhoGAP ARHGAP11A in the basal endfeet of RGCs control their morphology and mediate neuronal positioning. Arhgap11a transcript and protein exhibit conserved localization to RGC basal structures in mice and humans, conferred by the 5' UTR. Proper RGC morphology relies upon active Arhgap11a mRNA transport and localization to the basal endfeet, where ARHGAP11A is locally synthesized. This translation is essential for positioning interneurons at the basement membrane. Thus, local translation spatially and acutely activates Rho signaling in RGCs to compartmentalize neural progenitor functions.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jing Liu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kaumudi Joshi
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Camila M Musso
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brooke R D'Arcy
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pratiksha Kc
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Sahil Sethi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium; Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA; Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY 10027, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
7
|
D’Arcy BR, Lennox AL, Manso Musso C, Bracher A, Escobar-Tomlienovich C, Perez-Sanchez S, Silver DL. Non-muscle myosins control radial glial basal endfeet to mediate interneuron organization. PLoS Biol 2023; 21:e3001926. [PMID: 36854011 PMCID: PMC9974137 DOI: 10.1371/journal.pbio.3001926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
Radial glial cells (RGCs) are essential for the generation and organization of neurons in the cerebral cortex. RGCs have an elongated bipolar morphology with basal and apical endfeet that reside in distinct niches. Yet, how this subcellular compartmentalization of RGCs controls cortical development is largely unknown. Here, we employ in vivo proximity labeling, in the mouse, using unfused BirA to generate the first subcellular proteome of RGCs and uncover new principles governing local control of cortical development. We discover a cohort of proteins that are significantly enriched in RGC basal endfeet, with MYH9 and MYH10 among the most abundant. Myh9 and Myh10 transcripts also localize to endfeet with distinct temporal dynamics. Although they each encode isoforms of non-muscle myosin II heavy chain, Myh9 and Myh10 have drastically different requirements for RGC integrity. Myh9 loss from RGCs decreases branching complexity and causes endfoot protrusion through the basement membrane. In contrast, Myh10 controls endfoot adhesion, as mutants have unattached apical and basal endfeet. Finally, we show that Myh9- and Myh10-mediated regulation of RGC complexity and endfoot position non-cell autonomously controls interneuron number and organization in the marginal zone. Our study demonstrates the utility of in vivo proximity labeling for dissecting local control of complex systems and reveals new mechanisms for dictating RGC integrity and cortical architecture.
Collapse
Affiliation(s)
- Brooke R. D’Arcy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ashley L. Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Camila Manso Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Annalise Bracher
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carla Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Stephany Perez-Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Regeneration Center, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
8
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
9
|
Galakhova AA, Hunt S, Wilbers R, Heyer DB, de Kock CPJ, Mansvelder HD, Goriounova NA. Evolution of cortical neurons supporting human cognition. Trends Cogn Sci 2022; 26:909-922. [PMID: 36117080 PMCID: PMC9561064 DOI: 10.1016/j.tics.2022.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
Human cognitive abilities are generally thought to arise from cortical expansion over the course of human brain evolution. In addition to increased neuron numbers, this cortical expansion might be driven by adaptations in the properties of single neurons and their local circuits. We review recent findings on the distinct structural, functional, and transcriptomic features of human cortical neurons and their organization in cortical microstructure. We focus on the supragranular cortical layers, which showed the most prominent expansion during human brain evolution, and the properties of their principal cells: pyramidal neurons. We argue that the evolutionary adaptations in neuronal features that accompany the expansion of the human cortex partially underlie interindividual variability in human cognitive abilities.
Collapse
Affiliation(s)
- A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
10
|
Staiger JF, Sachkova A, Möck M, Guy J, Witte M. Repetitively burst-spiking neurons in reeler mice show conserved but also highly variable morphological features of layer Vb-fated “thick-tufted” pyramidal cells. Front Neuroanat 2022; 16:1000107. [DOI: 10.3389/fnana.2022.1000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Reelin is a large extracellular glycoprotein that is secreted by Cajal-Retzius cells during embryonic development to regulate neuronal migration and cell proliferation but it also seems to regulate ion channel distribution and synaptic vesicle release properties of excitatory neurons well into adulthood. Mouse mutants with a compromised reelin signaling cascade show a highly disorganized neocortex but the basic connectional features of the displaced excitatory principal cells seem to be relatively intact. Very little is known, however, about the intrinsic electrophysiological and morphological properties of individual cells in the reeler cortex. Repetitive burst-spiking (RB) is a unique property of large, thick-tufted pyramidal cells of wild-type layer Vb exclusively, which project to several subcortical targets. In addition, they are known to possess sparse but far-reaching intracortical recurrent collaterals. Here, we compared the electrophysiological properties and morphological features of neurons in the reeler primary somatosensory cortex with those of wild-type controls. Whereas in wild-type mice, RB pyramidal cells were only detected in layer Vb, and the vast majority of reeler RB pyramidal cells were found in the superficial third of the cortical depth. There were no obvious differences in the intrinsic electrophysiological properties and basic morphological features (such as soma size or the number of dendrites) were also well preserved. However, the spatial orientation of the entire dendritic tree was highly variable in the reeler neocortex, whereas it was completely stereotyped in wild-type mice. It seems that basic quantitative features of layer Vb-fated RB pyramidal cells are well conserved in the highly disorganized mutant neocortex, whereas qualitative morphological features vary, possibly to properly orient toward the appropriate input pathways, which are known to show an atypical oblique path through the reeler cortex. The oblique dendritic orientation thus presumably reflects a re-orientation of dendritic input domains toward spatially highly disorganized afferent projections.
Collapse
|
11
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
12
|
Genescu I, Aníbal-Martínez M, Kouskoff V, Chenouard N, Mailhes-Hamon C, Cartonnet H, Lokmane L, Rijli FM, López-Bendito G, Gambino F, Garel S. Dynamic interplay between thalamic activity and Cajal-Retzius cells regulates the wiring of cortical layer 1. Cell Rep 2022; 39:110667. [PMID: 35417707 PMCID: PMC9035679 DOI: 10.1016/j.celrep.2022.110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development. Prenatal thalamic waves of activity regulate CRc density in L1 Prenatal and postnatal CRc manipulations alter specific interneuron populations Postnatal CRc shape L5 apical dendrite structural and functional properties Early sensory activity selectively regulates L5 basal dendrite spine formation
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Mar Aníbal-Martínez
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernandez, Sant Joan d'Alacant, Spain
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Caroline Mailhes-Hamon
- Acute Transgenesis Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | | | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
13
|
Schmidt ERE, Zhao HT, Park JM, Dipoppa M, Monsalve-Mercado MM, Dahan JB, Rodgers CC, Lejeune A, Hillman EMC, Miller KD, Bruno RM, Polleux F. A human-specific modifier of cortical connectivity and circuit function. Nature 2021; 599:640-644. [PMID: 34707291 PMCID: PMC9161439 DOI: 10.1038/s41586-021-04039-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The cognitive abilities that characterize humans are thought to emerge from unique features of the cortical circuit architecture of the human brain, which include increased cortico-cortical connectivity. However, the evolutionary origin of these changes in connectivity and how they affected cortical circuit function and behaviour are currently unknown. The human-specific gene duplication SRGAP2C emerged in the ancestral genome of the Homo lineage before the major phase of increase in brain size1,2. SRGAP2C expression in mice increases the density of excitatory and inhibitory synapses received by layer 2/3 pyramidal neurons (PNs)3-5. Here we show that the increased number of excitatory synapses received by layer 2/3 PNs induced by SRGAP2C expression originates from a specific increase in local and long-range cortico-cortical connections. Mice humanized for SRGAP2C expression in all cortical PNs displayed a shift in the fraction of layer 2/3 PNs activated by sensory stimulation and an enhanced ability to learn a cortex-dependent sensory-discrimination task. Computational modelling revealed that the increased layer 4 to layer 2/3 connectivity induced by SRGAP2C expression explains some of the key changes in sensory coding properties. These results suggest that the emergence of SRGAP2C at the birth of the Homo lineage contributed to the evolution of specific structural and functional features of cortical circuits in the human cortex.
Collapse
Affiliation(s)
- Ewoud R E Schmidt
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Hanzhi T Zhao
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA
| | - Jung M Park
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mario Dipoppa
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mauro M Monsalve-Mercado
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jacob B Dahan
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Chris C Rodgers
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Amélie Lejeune
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA
| | - Kenneth D Miller
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|