1
|
Le C, Argilli E, George E, Kalaycı T, Uyguner ZO, Karaman B, Demirören T, DiTroia S, Heron D, Sabatier I, Rodan LH, Girisha KM, Radhakrishnan P, Saunders C, Sullivan B, Fleming E, Alvi JR, Sultan T, Houlden H, Efthymiou S, Sacoto MJG, Goodman M, Pierron L, De Sainte-Agathe JM, Durr A, Sherr EH. Basic helix-loop-helix transcription factor BHLHE22 monoallelic and biallelic variants cause a neurodevelopmental disorder with agenesis of the corpus callosum, intellectual disability, tone and movement abnormalities. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24312856. [PMID: 39502664 PMCID: PMC11537320 DOI: 10.1101/2024.10.11.24312856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
BHLHE22 encodes a Class II basic helix-loop-helix transcription factor (bHLH). It is expressed exclusively in the retina and central nervous system (CNS), and functions as an important regulator of retinogenesis and neuronal differentiation. Mice lacking bhlhe22 show nearly complete loss of three brain comminsure, including the corpus callosum. Here we report eleven individuals from nine unrelated families with BHLHE22 variants, with a neurodevelopmental disorder presenting with absent or limited speech, severely impaired motor abilities, intellectual disability (ID), involuntary movements, autistic traits with stereotypies, abnormal muscle tone. The majority of individuals have partial or complete agenesis of the corpus callosum (ACC). Additional symptoms comprised of epilepsy, variable dysmorphic features, and eye anomalies. One additional individual had spastic paraplegia without delayed development and ACC, expanding the phenotype to milder and later onset forms. Four individuals carry de novo missense variants within the highly conserved helix-loop-helix domain while seven individuals from five unrelated families carry a recurrent homozygous frameshift variant, p.(Gly74Alafs*18). Our findings implicate BHLHE22 variants in causing a previously unidentified autosomal dominant and recessive neurodevelopmental disorder associated with ACC, severe motor, language, and cognitive delays, abnormal tone, and involuntary movements. To our knowledge, this is the first report of Class II bHLH variants in humans shown to significantly disrupt brain development, cognition, and movement.
Collapse
Affiliation(s)
- Carolyn Le
- Department of Neurology, 675 Nelson Rising Lane, University of California, San Francisco, California, 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, California, 94158, USA
| | - Emanuela Argilli
- Department of Neurology, 675 Nelson Rising Lane, University of California, San Francisco, California, 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, California, 94158, USA
| | - Elizabeth George
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, 94122, USA
| | - Tuğba Kalaycı
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Birsen Karaman
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
- Istanbul University, Child Health Institute, Basic Pediatric Science, Istanbul, Turkey
| | - Tanju Demirören
- Yeditepe University, Faculty of Medicine Department, Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Delphine Heron
- Assistance Publique-Hôpitaux de Paris Sorbonne Université (Pitié Salpêtrière et Trousseau), Paris, France
| | - Isabelle Sabatier
- Department of Pediatric Neurology, Hôpital Femme Mère Enfant, Lyon, France
| | - Lance H. Rodan
- Division of Genetics and Genomics and Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Katta Mohan Girisha
- Suma Genomics Private Limited, Manipal, India
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, 64108, USA
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, Missouri, 64108, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, 64108, USA
| | - Bonnie Sullivan
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, 64108, USA
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, Missouri, 64108, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, 64108, USA
| | - Emily Fleming
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, 64108, USA
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, Missouri, 64108, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, 64108, USA
| | - Javeria Raza Alvi
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Tipu Sultan
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | | | | | - Lucie Pierron
- Sorbonne Université, University Hospital Pitié-Salpêtrière, Assistance Publique-Ho pitaux de Paris, Department of Medical Genetics, Paris, France
| | - Jean-Madeleine De Sainte-Agathe
- Sorbonne Université, University Hospital Pitié-Salpêtrière, Assistance Publique-Ho pitaux de Paris, Department of Medical Genetics, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Assistance Publique-Ho pitaux de Paris, Paris, France
| | - Elliott H. Sherr
- Department of Neurology, 675 Nelson Rising Lane, University of California, San Francisco, California, 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, California, 94158, USA
| |
Collapse
|
2
|
Cogan G, Zaki MS, Issa M, Keren B, Guillaud-Bataille M, Renaldo F, Isapof A, Lallemant P, Stevanin G, Guillot-Noel L, Courtin T, Buratti J, Freihuber C, Gleeson JG, Howarth R, Durr A, de Sainte Agathe JM, Mignot C. Biallelic variants in ERLIN1: a series of 13 individuals with spastic paraparesis. Hum Genet 2024; 143:1353-1362. [PMID: 39367212 DOI: 10.1007/s00439-024-02702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Biallelic variants in the ERLIN1 gene were recently reported as the cause of two motor neuron degeneration diseases, SPG62 and a recessive form of amyotrophic lateral sclerosis. However, only 12 individuals from five pedigrees have been identified so far. Thus, the description of the disease remains limited. Following the discovery of a homozygous pathogenic variant in a girl with SPG62, presenting with intellectual disability, and epilepsy, we gathered the largest series of SPG62 cases reported so far (13 individuals) to better understand the phenotype associated with ERLIN1. We collected molecular and clinical data for 13 individuals from six families with ERLIN1 biallelic variants. We performed RNA-seq analyses to characterize intronic variants and used Alphafold and a transcripts database to characterize the molecular consequences of the variants. We identified three new variants suspected to alter the bell-shaped ring formed by the ERLIN1/ERLIN2 complex. Affected individuals had childhood-onset paraparesis with slow progression. Six individuals presented with gait ataxia and three had superficial sensory loss. Aside from our proband, none had intellectual disability or epilepsy. Biallelic pathogenic ERLIN1 variants induce a rare, predominantly pure, spastic paraparesis, with possible cerebellar and peripheral nerve involvement.
Collapse
Affiliation(s)
- Guillaume Cogan
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mahmoud Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Marine Guillaud-Bataille
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Florence Renaldo
- APHP Sorbonne Université, Service de Neuropédiatrie, Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Arnaud Isapof
- APHP Sorbonne Université, Service de Neuropédiatrie, Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Pauline Lallemant
- APHP Sorbonne Université, Service de Médecine Physique et de Réadaptation Pédiatrique, Hôpital Armand Trousseau, Paris, France
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Bordeaux University, INCIA, UMR5287, CNRS, EPHE, 33000, Bordeaux, France
| | - Lena Guillot-Noel
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Thomas Courtin
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Julien Buratti
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Cécile Freihuber
- APHP Sorbonne Université, Service de Neuropédiatrie, Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92130, USA
| | - Robyn Howarth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92130, USA
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jean-Madeleine de Sainte Agathe
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière-Hôpital Trousseau, Centre de Référence Déficiences Intellectuelles de Causes Rares, ERN-ITHACA, 47-83 Boulevard de l'hôpital, 75013, Paris, France.
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
3
|
Hua F, Bonzerato CG, Keller KR, Guo D, Luo J, Wojcikiewicz RJH. The erlin1/erlin2 complex binds to and stabilizes phosphatidylinositol 3-phosphate and regulates autophagy. Biochem Biophys Res Commun 2024; 731:150397. [PMID: 39018973 DOI: 10.1016/j.bbrc.2024.150397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The erlin1/erlin2 (E1/E2) complex is an endoplasmic reticulum membrane-located assemblage of the proteins erlin1 and erlin2. Here, we demonstrate direct and selective binding of phosphatidylinositol 3-phosphate (PI(3)P) to recombinant erlins and that disruption or deletion of the E1/E2 complex reduces HeLa cell PI(3)P levels by ∼50 %. This reduction correlated with a decrease in autophagic flux, with no effect on the endocytic pathway, and was not due to reduced VPS34 kinase activity, which is critical for maintaining steady-state PI(3)P levels. Pharmacological inhibition of VPS34 and suppression of PI(3)P levels caused a similar reduction in autophagic flux. Overall, these data indicate that by binding to PI(3)P, the E1/E2 complex plays an important role in maintaining the steady-state levels of PI(3)P and, thus, sustains some key PI(3)P-dependent processes, e.g., autophagy.
Collapse
Affiliation(s)
- Fanghui Hua
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | |
Collapse
|
4
|
Fortier M, Cauhapé M, Buono S, Becker J, Menuet A, Branchu J, Ricca I, Mero S, Dorgham K, El Hachimi KH, Dobrenis K, Colsch B, Samaroo D, Devaux M, Durr A, Stevanin G, Santorelli FM, Colombo S, Cowling B, Darios F. Decreasing ganglioside synthesis delays motor and cognitive symptom onset in Spg11 knockout mice. Neurobiol Dis 2024; 199:106564. [PMID: 38876323 DOI: 10.1016/j.nbd.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.
Collapse
Affiliation(s)
- Manon Fortier
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Suzie Buono
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Becker
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Alexia Menuet
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Branchu
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Serena Mero
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Dominic Samaroo
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Morgan Devaux
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | | | - Sophie Colombo
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Belinda Cowling
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Frédéric Darios
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
5
|
Brankovic M, Ivanovic V, Basta I, Khang R, Lee E, Stevic Z, Ralic B, Tubic R, Seo G, Markovic V, Bozovic I, Svetel M, Marjanovic A, Veselinovic N, Mesaros S, Jankovic M, Savic-Pavicevic D, Jovin Z, Novakovic I, Lee H, Peric S. Whole exome sequencing in Serbian patients with hereditary spastic paraplegia. Neurogenetics 2024; 25:165-177. [PMID: 38499745 DOI: 10.1007/s10048-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.
Collapse
Affiliation(s)
- Marija Brankovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia.
| | - Vukan Ivanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Ivana Basta
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | | | | | - Zorica Stevic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | | | - Radoje Tubic
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Vladana Markovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivo Bozovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Marina Svetel
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Marjanovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Nikola Veselinovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Sarlota Mesaros
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dusanka Savic-Pavicevic
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Zita Jovin
- Neurology Clinic, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
| | - Hane Lee
- 3Billion, Inc., Seoul, South Korea
| | - Stojan Peric
- Faculty of Medicine, University of Belgrade, Dr Subotica 6, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
6
|
Malina J, Huessler EM, Jöckel KH, Boog-Whiteside E, Jeschonneck N, Schröder B, Schüle R, Kühl T, Klebe S. Development and validation of TreatHSP-QoL: a patient-reported outcome measure for health-related quality of life in hereditary spastic paraplegia. Orphanet J Rare Dis 2024; 19:2. [PMID: 38167479 PMCID: PMC10763482 DOI: 10.1186/s13023-023-03012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease that lacks specific and validated patient-centered outcome measures (PCOMs). We aimed to develop and validate a health-related quality of life (HRQoL) questionnaire specific to HSP ("TreatHSP-QoL") that could be used as a PCOM. RESULTS The pilot-items of the TreatHSP-QoL (45 five-level Likert scale items, with values per item between 0 and 4) were developed based on a qualitative data analysis of 54 semi-structured interviews, conducted in person with 36 HSP patients and 18 caregivers. It was then reduced and modified through the validation process to 25 items. The main validation was performed using the online questionnaire in 242 HSP patients and 56 caregivers. The exploratory factor analysis defined five subdomains. Cronbach's alpha ranged from 0.57 to 0.85 for the subdomains and reached 0.85 for the total score. The test-retest Pearson correlation reached 0.86 (95% Confidence Interval (CI) [0.79, 0.91]). Pearson correlations with the EuroQol-5 Dimension (5 levels) (EQ-5D-5L) and Friedreich Ataxia Rating Scale-Activities of Daily Living (FARS-ADL) questionnaires varied strongly among the subdomains, with the total scores reaching 0.53 (95% CI [0.42, 0.61]) and -0.45 (95% CI [- 0.55, - 0.35]), respectively. The caregiver-patient response Pearson correlation ranged between 0.64 and 0.82 for subdomains and reached 0.65 (95% CI [0.38, 0.81]) for the total score. CONCLUSIONS TreatHSP-QoL can be used in high-quality clinical trials and clinical practice as a disease-specific PCOM (i.e., HRQoL measure) and is also applicable as a proxy questionnaire. Score values between 0 and 100 can be reached, where higher value represents better HRQoL. The Pearson correlations to the EQ-5D-5L and FARS-ADL support the additional value and need of HSP-specific PCOM, while non-specific QoL-assessment and specific clinical self-assessment tools already exist. All in all, the results demonstrate good validity and reliability for this new patient-centered questionnaire for HSP.
Collapse
Affiliation(s)
| | - Eva-Maria Huessler
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | | | | | | | - Rebecca Schüle
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital and Faculty of Medicine, Heidelberg, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tobias Kühl
- Center for Clinical Trials, University Hospital Essen, Essen, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
7
|
Chen X, Li X, Tan Y, Yang D, Lu L, Deng Y, Xu R. Identification of c.1495C > T mutation in SPAST gene in a family of Han Chinese with hereditary spastic paraplegia. Neurosci Lett 2023; 812:137399. [PMID: 37473796 DOI: 10.1016/j.neulet.2023.137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Hereditary spastic paraplegia 4 (SPG4) caused by spastin (SPAST) gene mutations accounts for 40-45% of hereditary spastic paraplegia (HSP) cases. To search for more genetic evidences for the pathogenesis of HSP, the SPAST genotype and clinical phenotype of a Chinese Han SPG4 family were analysed in this study. METHODS The clinical data of the proband and his family members were collected. Whole genomic DNA was extracted from peripheral blood, and the gene detection and pathogenicity analysis of mutations were conducted using whole-exome sequencing technology. Suspected pathogenic mutations were identified. Verification within this family was conducted by Sanger sequencing. RESULTS Eight (4 males and 4 females) of 20 members in 4 generations had SPG4. All patients presented with the high feet arches (pes cavus), the abnormal gait, the active tendon reflexes of the upper limbs, the hyperreflexia of the lower limbs, and the positive ankle clonus and Babinski's signs bilaterally. In the proband, we found a heterozygous mutation c.1495C > T in SPAST gene, which was associated with the autosomal dominant SPG4. Both the daughters and granddaughters of the proband in this family were verified to carry this mutation. The clinical characteristics of the SPG4 patients in this family are in line with the simple type of HSP. Heterozygous c.1495C > T is a pathogenic mutation in this family. CONCLUSION In this study, we identified a c.1495C > T mutation in the SPAST gene in a Han Chinese family, enriching the mutation spectrum of SPG4.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Xinming Li
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Yu Tan
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Dejiang Yang
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Lijun Lu
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China
| | - Youqing Deng
- Department of Neurology, The First Hospital of Nanchang, Nanchang 330006, Jiangxi, China.
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The Clinical College of Nanchang College, The First Affiliated Hospital of Nanchang College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
8
|
Fang SY, Chou YT, Hsu KC, Hsu SL, Yu KW, Tsai YS, Liao YC, Tsai PC, Lee YC. Clinical and genetic characterization of NIPA1 mutations in a Taiwanese cohort with hereditary spastic paraplegia. Ann Clin Transl Neurol 2023; 10:353-362. [PMID: 36607129 PMCID: PMC10014004 DOI: 10.1002/acn3.51724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE NIPA1 mutations have been implicated in hereditary spastic paraplegia (HSP) as the cause of spastic paraplegia type 6 (SPG6). The aim of this study was to investigate the clinical and genetic features of SPG6 in a Taiwanese HSP cohort. METHODS We screened 242 unrelated Taiwanese patients with HSP for NIPA1 mutations. The clinical features of patients with a NIPA1 mutation were analyzed. Minigene-based splicing assay, RT-PCR analysis on the patients' RNA, and cell-based protein expression study were utilized to assess the effects of the mutations on splicing and protein expression. RESULTS Two patients were identified to carry a different heterozygous NIPA1 mutation. The two mutations, c.316G>A and c.316G>C, are located in the 3' end of NIPA1 exon 3 near the exon-intron boundary and putatively lead to the same amino acid substitution, p.G106R. The patient harboring NIPA1 c.316G>A manifested spastic paraplegia, epilepsy and schizophrenia since age 17 years, whereas the individual carrying NIPA1 c.316G>C had pure HSP since age 12 years. We reviewed literature and found that epilepsy was present in multiple individuals with NIPA1 c.316G>A but none with NIPA1 c.316G>C. Functional studies demonstrated that both mutations did not affect splicing, but only the c.316G>A mutation was associated with a significantly reduced NIPA1 protein expression. INTERPRETATION SPG6 accounted for 0.8% of HSP cases in the Taiwanese cohort. The NIPA1 c.316G>A and c.316G>C mutations are associated with adolescent-onset complex and pure form HSP, respectively. The different effects on protein expression of the two mutations may be associated with their phenotypic discrepancy.
Collapse
Affiliation(s)
- Shih-Yu Fang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Ying-Tsen Chou
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Chou Hsu
- Department of Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yuanshan, Taiwan
| | - Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Kai-Wei Yu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Hereditary spastic paraplegia SPG13 mutation increases structural stability and ATPase activity of human mitochondrial chaperonin. Sci Rep 2022; 12:18321. [PMID: 36316435 PMCID: PMC9622745 DOI: 10.1038/s41598-022-21993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Human mitochondrial chaperonin mHsp60 is broadly associated with various human health conditions and the V72I mutation in mHsp60 causes a form of hereditary spastic paraplegia, a neurodegenerative disease. The main function of mHsp60 is to assist folding of mitochondrial proteins in an ATP-dependent manner. In this study, we unexpectedly found that mutant mHsp60V72I was more stable structurally and more active in the ATPase activity than the wildtype. Analysis of our recently solved cryo-EM structure of mHsp60 revealed allosteric roles of V72I in structural stability and ATPase activity, which were supported by studies including those using the V72A mutation. Despite with the increases in structural stability and ATPase activity, mHsp60V72I was less efficient in folding malate dehydrogenase, a putative mHsp60 substrate protein in mitochondria and also commonly used in chaperonin studies. In addition, although mHsp60V72I along with its cochaperonin mHsp10 was able to substitute the E. coli chaperonin system in supporting cell growth under normal temperature of 37 °C, it was unable under heat shock temperature of 42 °C. Our results support the importance of structural dynamics and an optimal ATP turnover that mHsp60 has evolved for its function and physiology. We propose that unproductive energy utilization, or hyperactive ATPase activity and compromised folding function, not mutually exclusive, are responsible for the V72I pathology in neurodegenerative disease.
Collapse
|
10
|
Husain M. New mechanistic insights into hereditary spastic paraplegias. Brain 2022; 145:2937-2938. [PMID: 36103409 DOI: 10.1093/brain/awac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Phenotypic and Genetic Heterogeneity of Adult Patients with Hereditary Spastic Paraplegia from Serbia. Cells 2022; 11:cells11182804. [PMID: 36139378 PMCID: PMC9497238 DOI: 10.3390/cells11182804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is among the most genetically diverse of all monogenic diseases. The aim was to analyze the genetic causes of HSP among adult Serbian patients. The study comprised 74 patients from 65 families clinically diagnosed with HSP during a nine-year prospective period. A panel of thirteen genes was analyzed: L1CAM (SPG1), PLP1 (SPG2), ATL1 (SPG3A), SPAST (SPG4), CYP7B1 (SPG5A), SPG7 (SPG7), KIF5A (SPG10), SPG11 (SPG11), ZYFVE26 (SPG15), REEP1 (SPG31), ATP13A2 (SPG78), DYNC1H1, and BICD2 using a next generation sequencing-based technique. A copy number variation (CNV) test for SPAST, SPG7, and SPG11 was also performed. Twenty-three patients from 19 families (29.2%) had conclusive genetic findings, including 75.0% of families with autosomal dominant and 25.0% with autosomal recessive inheritance, and 15.7% of sporadic cases. Twelve families had mutations in the SPAST gene, usually with a pure HSP phenotype. Three sporadic patients had conclusive findings in the SPG11 gene. Two unrelated patients carried a homozygous pathogenic mutation c.233T>A (p.L78*) in SPG7 that is a founder Roma mutation. One patient had a heterozygous de novo variant in the KIF5A gene, and one had a compound heterozygous mutation in the ZYFVE26 gene. The combined genetic yield of our gene panel and CNV analysis for HSP was around 30%. Our findings broaden the knowledge on the genetic epidemiology of HSP, with implications for molecular diagnostics in this region.
Collapse
|