1
|
Guo J, Sun X, Wang J, Hou Y, Yang M, Tan J, Zhang Z, Chen Y, Chen W. Precise modulation of protein refolding by rationally designed covalent organic frameworks. Nat Commun 2025; 16:4122. [PMID: 40316523 PMCID: PMC12048718 DOI: 10.1038/s41467-025-59368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Precisely regulating protein conformation (folding) for biomanufacturing and biomedicine is of great significance but remains challenging. In this work, we innovate a covalent organic framework (COF)-directed protein refolding strategy to modulate protein conformation by rationally designed covalent organic frameworks with adapted pore structures and customizable microenvironments. The conformation of denatured protein can be efficiently recovered through a simple one-step approach using covalent organic framework treatment in aqueous or buffer solutions. This strategy demonstrates high generality that can be applied to various proteins (for example, lysozyme, glucose oxidase, trypsin, nattokinase, and papain) and diverse covalent organic frameworks. An in-depth investigation of the refolding mechanism reveals that pore size and microenvironments such as hydrophobicity, π-π conjugation, and hydrogen bonding are critical to regulating protein conformation. Furthermore, we use this covalent organic framework platform to build up solid-phase columns for continuous protein recovery and achieved a ~ 100% refolding yield and excellent recycling performance (30 cycles), enabling an integrated process for the extracting and refolding denatured proteins (such as the harvest of protein in inclusion bodies). This study creates a highly efficient and customizable covalent organic framework platform for precisely regulating proteins refolding and enhancing their performance, opening up a new avenue for advanced protein manufacturing.
Collapse
Affiliation(s)
- Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Yimiao Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Mingfang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Junjie Tan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, China
- Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, Cangzhou, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, China.
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Wen H, Lu H, Zhou Z, Sun K, Huang Y, Zeng J, Wang Y, Luo L, Xu C, Xu J, Zhang X, Wang X, Eeltink S, Zhang B. Large Scale Printing of Robust HPLC Medium via Layer-by-Layer Stereolithography. Anal Chem 2025; 97:5014-5021. [PMID: 39947930 DOI: 10.1021/acs.analchem.4c05587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
The manufacture of high-performance liquid chromatography (HPLC) medium has long been viewed as an art rather than science; this raised a great challenge in securing separation consistency, method transferability, and scaling-up in purification of biomolecules. Herein, we report a large scale layer-by-layer manufacturing strategy for a high performance chromatography medium utilizing 3D-printing technology. Combining stereolithography 3D printing and porogenic chemistry, the strategy enables parallel production of high-performance separation medium in diverse scales, shapes, and throughput. Between 1,000 printed devices, high performance consistency was demonstrated by column-to-column and batch-to-batch reproducibility (coefficient of variation of retention time, 2.04%). Fast separations of intact proteins were realized in reversed-phase chromatography: within 1 min, resolution > 1.5 was achieved, and nondenatured antibody separation was realized in hydrophobic interaction chromatography. Purification of native proteins was directly amplified by 3 orders of magnitude: 12 mg of hemeproteins was isolated in 8 min at negligible scaling-up cost, supporting liter-scale processing of fermentation within 7 h on one 20 mm i.d. printed column. With advantages in automatic and parallel production capacity, high-fidelity microstructure across dimensions, and highly efficient method transfer and scaling-up, the stereolithographically printed high performance chromatography medium may open a new path to speeding up separation and purification processes from primary analysis to mass-purification of biomolecular entities, as demanded in the biosynthesis and pharmaceutical industries.
Collapse
Affiliation(s)
- Hanrong Wen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Haonan Lu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Zhuoheng Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Kaiyue Sun
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Yinjia Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Juxing Zeng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Yuchen Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| | - Lianzhong Luo
- Fujian Province Universities and Colleges Engineering Research Center for Marine Biopharmaceutical Resource Utilization, Xiamen Medical College, Xiamen 361023, China
| | - Chen Xu
- HaoQi Separation & Purification Technologies, Xiamen 361102, China
| | - Jianzhong Xu
- HaoQi Separation & Purification Technologies, Xiamen 361102, China
| | - Xin Zhang
- Anhui Wanyi Science and Technology Co. Ltd, Hefei 230088, China
| | | | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Khezri H, Mostafavi M, Dabirmanesh B, Khajeh K. Peptibodies: Bridging the gap between peptides and antibodies. Int J Biol Macromol 2024; 278:134718. [PMID: 39142490 DOI: 10.1016/j.ijbiomac.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Hamidhossein Khezri
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdiyeh Mostafavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Ughade S, Rana S, Nadeem M, Kumthekar R, Mahajani S, Bhambure R. Mechanistic Modeling of Size Exclusion Chromatography-Assisted In Vitro Refolding of the Recombinant Biosimilar Teriparatide (PTH-34). ACS OMEGA 2024; 9:3204-3216. [PMID: 38284095 PMCID: PMC10809233 DOI: 10.1021/acsomega.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
In vitro protein refolding is one of the critical unit operations in manufacturing recombinant peptides expressed using Escherichia coli as host cells. This study is focused on designing size exclusion chromatography-assisted in vitro refolding process for biosimilar recombinant parathyroid hormone. Inclusion bodies (IBs) of recombinant parathyroid hormone were solubilized at higher pH, and in vitro refolding was performed using size exclusion chromatography. In the first part of the investigation, DoE-based empirical optimization was performed to achieve a higher refolding yield for a biosimilar recombinant parathyroid hormone. The effect of solubilized inclusion body (IB) feed volume, concentration of IBs, and residence time on in vitro refolding of recombinant teriparatide was studied using the Box-Behnken design. Size exclusion chromatography (SEC)-assisted in vitro refolding was performed at 8 °C at pH 10.5 by using 20 mM Tris buffer. The maximum refolding yield of 98.12% was achieved at feed volume (12.5% of CV) and 20 mg/mL inclusion body (IB) concentration with a residence time of 50 min and a purity of 66.1% based on densitometric analysis using SDS-PAGE. In the latter part of the investigation, the general rate mechanistic model framework for size exclusion chromatography was developed and validated with the experimental results. The developed model helped in the accurate prediction of the elution volumes and product yield. The developed model also helps to predict the elution performance of a scalable column a priori. Post in vitro refolding, the formation of the native peptide structure was examined using various orthogonal analytical tools to study the protein's primary, secondary, and tertiary structures. The developed hybrid process development approach is a valuable tool toachieve high-yield, scalable refolding conditions for recombinant proteins without disulfide bonds.
Collapse
Affiliation(s)
- Santosh Ughade
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Rana
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Nadeem
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rupali Kumthekar
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay Mahajani
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rahul Bhambure
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Guo L, Zhao J, An Z, Kim S, Kim J, Yu Y, Middelberg A, Bi J, Marković M, Kim JK, Yoo PJ, Choe WS. Harnessing Liquid Crystal Sensors for High-Throughput Real-Time Detection of Structural Changes in Lysozyme during Refolding Processes. Anal Chem 2023; 95:17603-17612. [PMID: 37973790 DOI: 10.1021/acs.analchem.3c03272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Despite the rapid advances in process analytical technology, the assessment of protein refolding efficiency has largely relied on off-line protein-specific assays and/or chromatographic procedures such as reversed-phase high-performance liquid chromatography and size exclusion chromatography. Due to the inherent time gap pertaining to traditional methods, exploring optimum refolding conditions for many recombinant proteins, often expressed as insoluble inclusion bodies, has proven challenging. The present study describes a novel protein refolding sensor that utilizes liquid crystals (LCs) to discriminate varying protein structures during unfolding and refolding. An LC layer containing 4-cyano-4'-pentylbiphenyl (5CB) intercalated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) is used as a sensing platform, and its proof-of-concept performance is demonstrated using lysozyme as a model protein. As proteins unfold or refold, a local charge fluctuation at their surfaces modulates their interaction with zwitterionic phospholipid DOPE. This alters the alignment of DOPE molecules at the aqueous/LC interface, affecting the orientational ordering of bulk LC (i.e., homeotropic to planar for refolding and planar to homeotropic for unfolding). Differential polarized optical microscope images of the LC layer are subsequently generated, whose brightness directly linked to conformational changes of lysozyme molecules is quantified by gray scale analysis. Importantly, our LC-based refolding sensor is compatible with diverse refolding milieus for real-time analysis of lysozyme refolding and thus likely to facilitate the refolding studies of many proteins, especially those lacking a method to determine structure-dependent biological activity.
Collapse
Affiliation(s)
- Lili Guo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jing Zhao
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Zongfu An
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sieun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaekwang Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yeseul Yu
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Anton Middelberg
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marijana Marković
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woo-Seok Choe
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC. Recent Advances in Overexpression of Functional Recombinant Lipases. Mol Biotechnol 2023; 65:1737-1749. [PMID: 36971996 DOI: 10.1007/s12033-023-00725-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
Collapse
Affiliation(s)
- Fatin Liyana Alias
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Intensification of Inclusion Body Processing via Temperature-Based Refolding. Methods Mol Biol 2023; 2617:189-200. [PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
Collapse
|
8
|
Sharma R, Anupa A, Kateja N, Rathore AS. Optimization of the in-vitro refolding of biotherapeutic Fab Ranibizumab. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Bayar E, Ren Y, Chen Y, Hu Y, Zhang S, Yu X, Fan J. Construction, Investigation and Application of TEV Protease Variants with Improved Oxidative Stability. J Microbiol Biotechnol 2021; 31:1732-1740. [PMID: 34528919 PMCID: PMC9705859 DOI: 10.4014/jmb.2106.06075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Tobacco etch virus protease (TEVp) is a useful tool for removing fusion tags, but wild-type TEVp is less stable under oxidized redox state. In this work, we introduced and combined C19S, C110S and C130S into TEVp variants containing T17S, L56V, N68D, I77V and S135G to improve protein solubility, and S219V to inhibit self-proteolysis. The solubility and cleavage activity of the constructed variants in Escherichia coli strains including BL21(DE3), BL21(DE3)pLys, Rossetta(DE3) and Origami(DE3) under the same induction conditions were analyzed and compared. The desirable soluble amounts, activity, and oxidative stability were identified to be reluctantly favored in the TEVp. Unlike C19S, C110S and C130S hardly impacted on decreasing protein solubility in the BL21(DE3), but they contributed to improved tolerance to the oxidative redox state in vivo and in vitro. After two fusion proteins were cleaved by purified TEVp protein containing double mutations under the oxidized redox state, the refolded disulfide-rich bovine enterokinase catalytic domain or maize peroxidase with enhanced yields were released from the regenerated amorphous cellulose via affinity absorption of the cellulose-binding module as the affinity tag.
Collapse
Affiliation(s)
- Enkhtuya Bayar
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yuanyuan Ren
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yinghua Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yafang Hu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xuelian Yu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China,Corresponding author Phone : +86-551-65786464 Fax : +86-551-65786021 E-mail:
| |
Collapse
|
10
|
Rajendran V, Pushpavanam S, Jayaraman G. Continuous refolding of L-asparaginase inclusion bodies using periodic counter-current chromatography. J Chromatogr A 2021; 1662:462746. [PMID: 34936904 DOI: 10.1016/j.chroma.2021.462746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Chromatography-based refolding is emerging as a promising alternative to dilution-refolding of solubilized inclusion bodies (IBs). The advantages of this matrix-assisted refolding (MAR) lie in its ability to reduce aggregate formation, leading to better recovery of active protein, and enabling refolding at higher protein concentration. However, batch chromatography has the disadvantage of ineffective solvent utilization, under-utilization of resin, and low throughput. In this work, we overcome these challenges by using a 3-column Periodic Counter-current Chromatographic (PCC) system for continuous refolding of IBs, formed during the production of L-asparaginase by recombinant E. coli cultures. Initial experiments were conducted in batch processes using single-column immobilized metal-affinity chromatography. Different gradient operations were designed to improve the protein loading for the single-column, batch-MAR processes. Optimized conditions, based on the batch-MAR experiments, were used for designing the continuous-MAR processes using the PCC system. The continuous-MAR experiments were carried out over 3 cycles (∼ 30 h) in the PCC system. A detailed quantitative comparison based on recovery, throughput, buffer consumption, and resin utilization was made for the three modes of operation: pulse-dilution, single-column batch-MAR, and 3-Column PCC-based continuous-MAR processes. While recovery (73%) and throughput (11 mg/h) were the highest in PCC, specific buffer consumption (6.9 ml/mg) was the least. Also, during PCC operation, resin utilization improved by 92% in comparison to the single-column batch-MAR process. These quantitative comparisons clearly establish the advantages of the continuous-MAR process over the batch-MAR and other conventional refolding techniques.
Collapse
Affiliation(s)
- Vivek Rajendran
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India; Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Guhan Jayaraman
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
11
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
A novel and simple method to produce large amounts of recombinant soluble peptide/major histocompatibility complex monomers for analysis of antigen-specific human T cell receptors. N Biotechnol 2018; 49:169-177. [PMID: 30465909 DOI: 10.1016/j.nbt.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 11/24/2022]
Abstract
Soluble peptide/major histocompatibility complex (p/MHC) tetramers that directly bind to T cell receptors (TCRs) allow the direct quantification, phenotypic characterization and isolation of antigen-specific T cells. Conventionally, soluble p/MHC tetramers have been produced using Escherichia coli, but this method requires refolding of the recombinant proteins. Here, a novel and technically simple method that does not require protein refolding in vitro has been developed for the high-throughput generation of soluble and functional p/MHC-single chain trimer (SCT) monomers and tetramers in a mammalian cell system. The p/MHC-SCT tetramers generated by this method bound to the corresponding antigen-specific TCRs. Moreover, the immobilized p/MHC-SCT monomers effectively activated antigen-specific T cell lines as well as primary T cells in an antigen-specific manner. This technique provides a robust improvement in the technology, such that recombinant soluble p/MHC monomers and tetramers can be produced more readily and which enables their use in analysis of antigen-specific T cells in basic and clinical studies.
Collapse
|
13
|
de la Cruz JJ, Villanueva-Lizama L, Dzul-Huchim V, Ramírez-Sierra MJ, Martinez-Vega P, Rosado-Vallado M, Ortega-Lopez J, Flores-Pucheta CI, Gillespie P, Zhan B, Bottazzi ME, Hotez PJ, Dumonteil E. Production of recombinant TSA-1 and evaluation of its potential for the immuno-therapeutic control of Trypanosoma cruzi infection in mice. Hum Vaccin Immunother 2018; 15:210-219. [PMID: 30192702 PMCID: PMC6363145 DOI: 10.1080/21645515.2018.1520581] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A therapeutic vaccine for human Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is under development based on the success of vaccinating mice with DNA constructs expressing the antigens Tc24 and Tc-TSA-1. However, because DNA and nucleic acid vaccines produce less than optimal responses in humans, our strategy relies on administering a recombinant protein-based vaccine, together with adjuvants that promote Th1-type immunity. Here we describe a process for the purification and refolding of recombinant TSA-1 expressed in Escherichia coli. The overall yield (20–25%) and endotoxin level of the purified recombinant TSA-1 (rTSA-1) is suitable for pilot scale production of the antigen for use in phase 1 clinical trials. Mice infected with T. cruzi were treated with rTSA-1, either alone or with Toll-like receptor 4 (TLR-4) agonist adjuvants including monophosphoryl lipid A (MPLA), glucopyranosyl lipid A (GLA, IDRI), and E6020 (EISEI, Inc). TSA-1 with the TLR-4 agonists was effective at reducing parasitemia relative to rTSA-1 alone, although it was difficult to discern a therapeutic effect compared to treatment with TLR-4 agonists alone. However, rTSA-1 with a 10 ug dose of MPLA optimized reductions in cardiac tissue inflammation, which were significantly reduced compared to MPLA alone. It also elicited the lowest parasite burden and the highest levels of TSA-1-specific IFN-gamma levels and IFN-gamma/IL-4 ratios. These results warrant the further evaluation of rTSA-1 in combination with rTc24 in order to maximize the therapeutic effect of vaccine-linked chemotherapy in both mice and non-human primates before advancing to clinical development.
Collapse
Affiliation(s)
- Juan Jose de la Cruz
- a Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi , Universidad Autónoma de Yucatán , Mérida , Yucatán , México
| | - Liliana Villanueva-Lizama
- a Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi , Universidad Autónoma de Yucatán , Mérida , Yucatán , México
| | - Victor Dzul-Huchim
- a Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi , Universidad Autónoma de Yucatán , Mérida , Yucatán , México
| | - María-Jesus Ramírez-Sierra
- a Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi , Universidad Autónoma de Yucatán , Mérida , Yucatán , México
| | - Pedro Martinez-Vega
- a Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi , Universidad Autónoma de Yucatán , Mérida , Yucatán , México
| | - Miguel Rosado-Vallado
- a Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi , Universidad Autónoma de Yucatán , Mérida , Yucatán , México
| | - Jaime Ortega-Lopez
- b Departamento de Biotecnología y Bioingeniería , CINVESTAV-IPN , Ciudad de México , México
| | | | - Portia Gillespie
- c Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Bin Zhan
- c Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Maria Elena Bottazzi
- c Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- c Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Eric Dumonteil
- d Department of Tropical Medicine , Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University , New Orleans , LA , USA
| |
Collapse
|
14
|
Gabrielczyk J, Jördening HJ. Ion exchange resins as additives for efficient protein refolding by dialysis. Protein Expr Purif 2017; 133:35-40. [DOI: 10.1016/j.pep.2017.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
15
|
Yang Y, Qu Q, Li W, Yuan J, Ren Y, Wang L. Preparation of a silica-based high-performance hydrophobic interaction chromatography stationary phase for protein separation and renaturation. J Sep Sci 2016; 39:2481-90. [DOI: 10.1002/jssc.201501216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yicong Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Qian Qu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Weimin Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Jie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Yi Ren
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science; Northwest University; Xi'an China
| | - Lili Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Shaanxi Key Laboratory of Modern Separation Science, Institute of Modern Separation Science; Northwest University; Xi'an China
| |
Collapse
|
16
|
Liu H, Dong X, Sun Y. Grafting iminodiacetic acid on silica nanoparticles for facilitated refolding of like-charged protein and its metal-chelate affinity purification. J Chromatogr A 2016; 1429:277-83. [DOI: 10.1016/j.chroma.2015.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
17
|
|
18
|
In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1–34) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): implication of solution additives and their role on aggregates and renaturation. Anal Bioanal Chem 2015; 408:217-29. [DOI: 10.1007/s00216-015-9097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/01/2015] [Indexed: 11/26/2022]
|
19
|
Ryś S, Muca R, Kołodziej M, Piątkowski W, Dürauer A, Jungbauer A, Antos D. Design and optimization of protein refolding with crossflow ultrafiltration. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14:41. [PMID: 25889252 PMCID: PMC4379949 DOI: 10.1186/s12934-015-0222-8] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arun Kumar Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Surinder Mohan Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
21
|
Rathore AS, Agarwal H, Sharma AK, Pathak M, Muthukumar S. Continuous Processing for Production of Biopharmaceuticals. Prep Biochem Biotechnol 2015; 45:836-49. [DOI: 10.1080/10826068.2014.985834] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using “thiol–ene click chemistry”. Anal Bioanal Chem 2014; 407:1721-34. [DOI: 10.1007/s00216-014-8400-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
|
23
|
Ling C, Zhang J, Chen H, Zou Z, Lai H, Zhang J, Lin D, Tao A. Expression and refolding of mite allergen pro-Der f1 from inclusion bodies in Escherichia coli. Protein Expr Purif 2014; 109:93-8. [PMID: 25462803 DOI: 10.1016/j.pep.2014.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/31/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
House dust mite (Dermatophagoides farinae) allergen Der f1 is one of the most important indoor allergens associated with asthma, eczema and allergic rhinitis in humans. Therefore, sufficient quantities of Der f1 cysteine protease to be used for both experimental and therapeutic purposes are very much needed. Using recombinant DNA technology, high expression rates of cysteine proteases were obtained. The cDNA sequence encoding pro-Der f1 was cloned and expressed in Escherichia coli using the T7 based expression vector pET-44a and induced by isopropyl-β-d-thiogalactoside at a final concentration of 0.2mM. Recombinant pro-Der f1 (pro-rDer f1) was expressed as an inclusion body and the isolated protease was solubilized, refolded and purified. The protease activities and IgE reactivities of pro-rDer f1 that were refolded by size-exclusion chromatography (SEC) were higher than those obtained by dilution. The pair of pro-rDer f1 polypeptides produced by this method could be used for more effective and safer allergen-specific immunotherapy or to produce enzymatically and immunologically active Der f1 for diagnostic testing and deciphering of immunotherapy mechanisms.
Collapse
Affiliation(s)
- Chunfang Ling
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China; School of Life Science, South China Normal University, 55# Zhongshan Road West, Tianhe District, Guangzhou 510631, PR China
| | - Junyan Zhang
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China
| | - Huifang Chen
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China
| | - Zehong Zou
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China
| | - He Lai
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China
| | - Jianguo Zhang
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China
| | - Deqiu Lin
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China; School of Life Science, South China Normal University, 55# Zhongshan Road West, Tianhe District, Guangzhou 510631, PR China.
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang Road East, Guangzhou 510260, Guangdong Province, PR China.
| |
Collapse
|
24
|
Ryś S, Piątkowski W, Antos D. Predictions of matrix-assisted refolding of α-lactalbumin: Process efficiency versus batch dilution method. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sylwia Ryś
- Department of Chemical and Process Engineering; Rzeszów University of Technology; Rzeszów Poland
| | - Wojciech Piątkowski
- Department of Chemical and Process Engineering; Rzeszów University of Technology; Rzeszów Poland
| | - Dorota Antos
- Department of Chemical and Process Engineering; Rzeszów University of Technology; Rzeszów Poland
| |
Collapse
|
25
|
|
26
|
Wang Y, Ren W, Gao D, Wang L, Yang Y, Bai Q. One-step refolding and purification of recombinant human tumor necrosis factor-α (rhTNF-α) using ion-exchange chromatography. Biomed Chromatogr 2014; 29:305-11. [PMID: 24941919 DOI: 10.1002/bmc.3276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 11/05/2022]
Abstract
Protein refolding is a key step for the production of recombinant proteins, especially at large scales, and usually their yields are very low. Chromatographic-based protein refolding techniques have proven to be superior to conventional dilution refolding methods. High refolding yield can be achieved using these methods compared with dilution refolding of proteins. In this work, recombinant human tumor necrosis factor-α (rhTNF-α) from inclusion bodies expressed in Escherichia coli was renatured with simultaneous purification by ion exchange chromatography with a DEAE Sepharose FF column. Several chromatographic parameters influencing the refolding yield of the denatured/reduced rhTNF-α, such as the urea concentration, pH value and concentration ratio of glutathione/oxidized glutathione in the mobile phase, were investigated in detail. Under optimal conditions, rhTNF-α can be renatured and purified simultaneously within 30 min by one step. Specific bioactivity of 2.18 × 10(8) IU/mg, purity of 95.2% and mass recovery of 76.8% of refolded rhTNF-α were achieved. Compared with the usual dilution method, the ion exchange chromatography method developed here is simple and more effective for rhTNF-α refolding in terms of specific bioactivity and mass recovery.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an, 710069, China
| | | | | | | | | | | |
Collapse
|
27
|
Integrative refolding and purification of histidine-tagged protein by like-charge facilitated refolding and metal-chelate affinity adsorption. J Chromatogr A 2014; 1344:59-65. [DOI: 10.1016/j.chroma.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/17/2022]
|
28
|
Xu X, Hirpara J, Epting K, Jin M, Ghose S, Rieble S, Li ZJ. Clarification and capture of high-concentration refold pools forE. coli-based therapeutics using expanded bed adsorption chromatography. Biotechnol Prog 2013; 30:113-23. [DOI: 10.1002/btpr.1833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Xuankuo Xu
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| | - Jeet Hirpara
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| | - Kevin Epting
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| | - Mi Jin
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| | - Sanchayita Ghose
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| | - Siegfried Rieble
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| | - Zheng Jian Li
- Process Sciences Downstream; Bristol-Myers Squibb; East Syracuse NY 13057
| |
Collapse
|
29
|
Wellhoefer M, Sprinzl W, Hahn R, Jungbauer A. Autoprotease Npro: Analysis of self-cleaving fusion protein. J Chromatogr A 2013; 1304:92-100. [DOI: 10.1016/j.chroma.2013.06.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
|
30
|
Gautam S, Gupta MN. WITHDRAWN: Smart polymer-coated microplate wells: Applications in protein purification, protein refolding, and sensing of analytes. Anal Biochem 2013:S0003-2697(13)00221-2. [PMID: 23685053 DOI: 10.1016/j.ab.2013.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/07/2013] [Accepted: 05/05/2013] [Indexed: 11/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
31
|
Singh MI, Jain V. Tagging the expressed protein with 6 histidines: rapid cloning of an amplicon with three options. PLoS One 2013; 8:e63922. [PMID: 23691118 PMCID: PMC3655076 DOI: 10.1371/journal.pone.0063922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022] Open
Abstract
We report the designing of three expression vectors that can be used for rapid cloning of any blunt-end DNA segment. Only a single set of oligonucleotides are required to perform the amplification of the target DNA and its cloning in all three vectors simultaneously. The DNA thus cloned can express a protein either with or without a hexa-histidine tag depending upon the vector used. The expression occurs from T7 promoter when transformed into E. coli BL21(DE3). Two of the three plasmids have been designed to provide the expressed protein with either N- or C-terminus 6 histidine amino acids in tandem. The third plasmid, however, does not add any tag to the expressed protein. The cloning is achieved quickly with the requirement of phosphorylation of PCR product without any restriction digestion. Additionally, the generated clones can be confirmed with a single step PCR reaction carried out from bacterial colonies (generally termed as “colony PCR”). We show the cloning, expression and purification of Green Fluorescent Protein (GFP) as proof-of-concept. Additionally, we also show the cloning and expression of four sigma factors from Mycobacterium tuberculosis further demonstrating the utility of the designed plasmids. We strongly believe that the vectors and the strategy that we have developed will facilitate the rapid cloning and expression of any gene in E. coli BL21(DE3) with or without a hexa-histidine tag.
Collapse
Affiliation(s)
- Manika Indrajit Singh
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
32
|
Antonio-Pérez A, Ramón-Luing LA, Ortega-López J. Chromatographic refolding of rhodanese and lysozyme assisted by the GroEL apical domain, DsbA and DsbC immobilized on cellulose. J Chromatogr A 2012; 1248:122-9. [DOI: 10.1016/j.chroma.2012.05.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/06/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
33
|
Wang L, Wang C, Geng X. Fast preparation of recombinant human stem cell factor from inclusion bodies using different hydrophobic interaction chromatographic columns. Se Pu 2012; 29:36-41. [PMID: 21568213 DOI: 10.3724/sp.j.1123.2011.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A method was developed to increase the recovery of recombinant human stem cell factor (rhSCF) from inclusion bodies using high performance hydrophobic interaction chromatography (HPHIC). The target protein was first solubilized in 8.0 mol/L urea solution, and was purified and refolded simultaneously by HPHIC with different chromatographic cakes. Experimental conditions, such as the ligand structures of stationary phase and the composition of mobile phase, were optimized. Under the optimal conditions, high mass recoveries and specific activities of rhSCF were acquired, the purities of rhSCF were above 95.5%, and the mass recoveries of rhSCF were above 49.6%. The final product was also verified as monomer by size exclusion chromatography and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). These results provided further evidence that HPHIC is an effective tool in the refolding and purification of recombinant proteins.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Institute of Modern Separation Science, Northwest University, Shaanxi Key Laboratory of Modern Separation Science, Xi'an 710069, China.
| | | | | |
Collapse
|
34
|
Gajdosik MS, Clifton J, Josic D. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures. J Chromatogr A 2012; 1239:1-9. [PMID: 22520159 PMCID: PMC3340482 DOI: 10.1016/j.chroma.2012.03.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/06/2023]
Abstract
Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed.
Collapse
Affiliation(s)
| | - James Clifton
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Djuro Josic
- COBRE Center for Cancer Research Development, Rhode Island Hospital and Brown University, Providence, RI, USA
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
35
|
Gautam S, Dubey P, Singh P, Kesavardhana S, Varadarajan R, Gupta MN. Smart polymer mediated purification and recovery of active proteins from inclusion bodies. J Chromatogr A 2012; 1235:10-25. [DOI: 10.1016/j.chroma.2012.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
36
|
Li M, Fan H, Liu J, Wang M, Wang L, Wang C. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies. Appl Biochem Biotechnol 2012; 166:1264-74. [PMID: 22212394 DOI: 10.1007/s12010-011-9512-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/20/2011] [Indexed: 12/01/2022]
Abstract
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 2011; 92:241-51. [DOI: 10.1007/s00253-011-3513-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/31/2023]
|
38
|
Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Appl Microbiol Biotechnol 2011; 91:1353-63. [DOI: 10.1007/s00253-011-3421-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/26/2022]
|
39
|
Freydell EJ, van der Wielen LAM, Eppink MHM, Ottens M. Techno-economic evaluation of an inclusion body solubilization and recombinant protein refolding process. Biotechnol Prog 2011; 27:1315-28. [PMID: 21674819 DOI: 10.1002/btpr.652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/20/2011] [Indexed: 11/07/2022]
Abstract
Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology.
Collapse
Affiliation(s)
- Esteban J Freydell
- Dept. of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
40
|
Hagel L. Gel Filtration: Size Exclusion Chromatography. METHODS OF BIOCHEMICAL ANALYSIS 2011; 54:51-91. [DOI: 10.1002/9780470939932.ch3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Equilibrium adsorption of poly(His)-tagged proteins on immobilized metal affinity chromatographic adsorbents. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Wang GZ, Dong XY, Sun Y. Ion-exchange resins greatly facilitate refolding of like-charged proteins at high concentrations. Biotechnol Bioeng 2011; 108:1068-77. [DOI: 10.1002/bit.23038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/23/2010] [Accepted: 12/09/2010] [Indexed: 11/12/2022]
|
43
|
Sun W, Dai X, Zheng Y, Wang J, Hou L, Du J, Hu HG. On-column refolding purification of DT389-hIL13 recombinant protein expressed in Escherichia coli. Protein Expr Purif 2011; 75:83-8. [DOI: 10.1016/j.pep.2010.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/09/2010] [Accepted: 09/12/2010] [Indexed: 12/01/2022]
|
44
|
Abstract
A method for carrying out protein folding with simultaneous separation by protein folding liquid chromatography (PFLC) is described herein. Furthermore, a two-dimensional chromatographic column, termed a 2D column, which can be independently employed for accomplishing PFLC in either weak cation exchange mode or hydrophobic interaction chromatography mode is reported. The content of this chapter describes the most commonly employed methods and operations of PFLC, such as the use of urea or guanidine hydrochloride as a denaturant with the protein in either the reduced or oxidized state and solving problems caused by the formation of the precipitates during protein folding. The PFLC can be performed using conventional chromatographic columns and a new chromatographic cake. A protocol for fast renaturation with simultaneous purification of inclusion body protein of the recombinant human interferon-gamma to obtain purity ≥95% and high specific bioactivity in a single step and in 1 h is introduced.
Collapse
Affiliation(s)
- Quan Bai
- Key Laboratory of Modern Separation Science in Shaanxi Province, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Northwest University, Xi'an, China.
| | | |
Collapse
|
45
|
Wang C, Zhang Q, Cheng Y, Wang L. Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone-ion exchange chromatography. Biotechnol Prog 2010; 26:1073-9. [PMID: 20730764 DOI: 10.1002/btpr.407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Development of high efficiency and low cost protein refolding methods is a highlighted research focus in biotechnology. Artificial molecular chaperone (AMC) and protein folding liquid chromatography (PFLC) are two attractive refolding methods developed in recent years. In the present work, AMC and one branch of PFLC, ion exchange chromatography (IEC), are integrated to form a new refolding method, artificial molecular chaperone-ion exchange chromatography (AMC-IEC). This new method is applied to the refolding of a widely used model protein, urea-denatured/dithiothreitol-reduced lysozyme. Many factors influencing the refolding of lysozyme, such as urea concentration, beta-cyclodextrin concentration, molar ratio of detergent to protein, mobile phase flow rate, and type of detergent, were investigated, respectively, to optimize the conditions for lysozyme refolding by AMC-IEC. Compared with normal IEC refolding method, the activity recoveries of lysozyme obtained by AMC-IEC were much higher in the investigated range of initial protein concentrations. Moreover, the activity recoveries obtained by using this newly developed refolding method were still quite high for denatured/reduced lysozyme at high initial concentrations. When the initial protein concentration was 200 mg mL(-1), the activity recovery was over 60%. In addition, the lifetime of the chromatographic column during AMC-IEC was much longer than that during protein refolding by normal IEC. Therefore, AMC-IEC is a high efficient and low cost protein refolding method.
Collapse
Affiliation(s)
- Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Dept. of Chemistry, Northwest University, No. 49 Chang'an North Road, Xi'an, China.
| | | | | | | |
Collapse
|
46
|
Freydell EJ, van der Wielen LA, Eppink MH, Ottens M. Size-exclusion chromatographic protein refolding: Fundamentals, modeling and operation. J Chromatogr A 2010; 1217:7723-37. [DOI: 10.1016/j.chroma.2010.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/04/2010] [Accepted: 10/06/2010] [Indexed: 10/19/2022]
|
47
|
Schmoeger E, Wellhoefer M, Dürauer A, Jungbauer A, Hahn R. Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column: A kinetic investigation. J Chromatogr A 2010; 1217:5950-6. [DOI: 10.1016/j.chroma.2010.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/13/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022]
|
48
|
A novel one-step strategy for the preparation of HLA/HBc18–27 and HLA/CEA694–702 complexes with ion exchange chromatography. Biotechnol Lett 2010; 32:1803-8. [DOI: 10.1007/s10529-010-0374-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/28/2010] [Indexed: 11/26/2022]
|
49
|
|
50
|
Eiberle MK, Jungbauer A. Technical refolding of proteins: Do we have freedom to operate? Biotechnol J 2010; 5:547-59. [DOI: 10.1002/biot.201000001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|