1
|
Queiroz LP, Nogueira IBR, Ribeiro AM. Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics. Food Res Int 2024; 196:115100. [PMID: 39614513 DOI: 10.1016/j.foodres.2024.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
This state-of-the-art review comprehensively explores flavor development, spanning biological foundations, analytical methodologies, and the socio-cultural impact. It incorporates an industrial perspective and examines the role of artificial intelligence (AI) in flavor science. Initiating with the biological intricacies of flavor, the review delves into the interplay of taste, aroma, and texture rooted in sensory experiences. Advances in mathematical modeling and analytical techniques open avenues for interdisciplinary collaboration and technological innovation, addressing variations in flavor perception. The impact of flavor extends beyond gustatory experiences, influencing economics, society, nutrition, health, and technological innovation. This collective understanding deepens insight into the dynamic interplay between olfactory and flavor elements within cultural landscapes, emphasizing how sensory experiences are woven into human culture and heritage. The evolution of food flavor analysis, encompassing sensory analysis, instrumental analysis, a combination of both, and the integration of artificial intelligence techniques, signifies dynamic progression and, promising advancements in precision, efficiency, and innovation within the flavor industry. This comprehensive review involved analyzing key aspects within flavor engineering and related sectors. Articles and book chapters on these topics were collected using metadata analysis. The data for this analysis was extracted from major online databases, including Scopus, Web of Science, and ScienceDirect.
Collapse
Affiliation(s)
- L P Queiroz
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| | - I B R Nogueira
- Chemical Engineering Department, Norwegian University of Science and Technology, Sem Sælandsvei 4, Kjemiblokk 5, Trondheim 793101, Norway
| | - A M Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
2
|
Soberón‐Chávez G. Some insights on traditional and novel approaches in microbial biotechnology that contribute to the United Nations Sustainable Development Goals. Microb Biotechnol 2023; 16:2015-2018. [PMID: 37452713 PMCID: PMC10616639 DOI: 10.1111/1751-7915.14318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Gloria Soberón‐Chávez
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico
| |
Collapse
|
3
|
Goksen G, Sugra Altaf Q, Farooq S, Bashir I, Capozzi V, Guruk M, Bavaro SL, Sarangi PK. A glimpse into plant-based fermented products alternative to animal based products: Formulation, processing, health benefits. Food Res Int 2023; 173:113344. [PMID: 37803694 DOI: 10.1016/j.foodres.2023.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Fermented foods and beverages are increasingly being included in the diets of people around the world, as they significantly contribute to flavor and interest in nutrition and food consumption. Plant sources, like cereals and pulses, are employed to produce vegan fermented foods that are either commercially available or the subject of ongoing scientific investigation. In addition, the inclination towards nutritionally healthy, natural, and clean-label products amongst consumers has encouraged the development of vegan fermented products alternative to animal-based products for industrial-scale production. However, as the vegan diet is more restrictive than the vegetarian diet, manufacturing food products for vegans presents a significant problem due to the limited availability of many raw materials. So further research is required on this topic. This paper aims to review the formulation, quality, microbial resources, health benefits, and safety of foods that can be categorised as vegan fermented foods and beverages.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye.
| | - Qazi Sugra Altaf
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Salma Farooq
- Desh Bhagat University, Mandi Gobindgarh, Punjab 147203, India; Islamic University of Science and Technology Awantipora, Pulwama 192301, India
| | - Iqra Bashir
- Sher-e-Kashmir University of Agricultural Sciences and Technology, India
| | - Vittorio Capozzi
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), c/o CS-DAT, via Protano, 71121 Foggia, Italy
| | - Mumine Guruk
- Department of Food Engineering, Cukurova University, Balcali 01380, Adana, Türkiye
| | - Simona Lucia Bavaro
- National Research Council of Italy - Institute of Sciences of Food Production (ISPA), Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | | |
Collapse
|
4
|
Ji M, Zhong Y, Li M, Tan R, Hu Y, Li G. Determination of acetic acid in enzymes based on the cataluminescence activity of graphene oxide-supported carbon nanotubes coated with NiMn layered double hydroxides. Mikrochim Acta 2023; 190:231. [PMID: 37209139 DOI: 10.1007/s00604-023-05808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
A cataluminescence (CTL) method has been developed for the rapid determination of acetic acid in enzyme products. The NiMn LDH/CNT/GO was synthesized based on the nanohybridization of NiMn layered double hydroxide (NiMn LDH), carbon nanotubes (CNTs), and graphene oxide (GO). The composite has excellent CTL activity against acetic acid. It could be ascribed to the larger specific surface area and more exposure to active sites. NiMn LDH/CNT/GO is used as a catalyst in the CTL method based on its special structure and advantages. There is a linear relationship between CTL response and the acetic acid concentration in the range 0.31-12.00 mg·L-1 with the detection limit of 0.10 mg·L-1. The developed method is rapid and takes only about 13 s. The method is applied to the determination of acetic acid in enzyme samples with little sample preparation. The result of the CTL method shows good agreement with that of the gas chromatography method. The proposed CTL method possesses promising potential in the quality monitoring of enzymes.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongxia Tan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Sommer S, Hoffmann JL, Fraatz MA, Zorn H. Upcycling of black currant pomace for the production of a fermented beverage with Wolfiporia cocos. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1313-1322. [PMID: 36936114 PMCID: PMC10020415 DOI: 10.1007/s13197-023-05677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Pomace as a side stream from black currant juice production is mostly discarded, even though it is rich in nutrients like protein, fiber, sugars, anthocyanins, polyphenols, and other secondary metabolites. Fungi from the division of Basidiomycota have a great enzymatic toolbox to recycle these complex mixtures of nutrients. In particular, the edible medicinal fungus Wolfiporia cocos has been described as a suitable biocatalyst to form pleasant aroma compounds in fermentation processes. Therefore, medium optimization, upscaling, and filtration were performed to produce a beverage based on black currant pomace fermented with W. cocos. A trained panel described the beverage as highly pleasant, reminiscent of honey, flowers and berries with a well-balanced sour and sweet taste. The flavor compounds linalool (citrus), geraniol (flowery), phenylacetic acid (honey), methyl phenylacetate (honey), eugenol (clove), and 2-phenylethanol (rose) were produced during fermentation and the concentrations exceeded their respective odor thresholds. The produced beverage was evaluated with 8.0 ± 1.4 from 10 for the question of whether panelists would buy the product. Fungal fermentation with the edible fungus W. cocos enabled the production of a highly pleasant beverage and additionally may reduce waste by using pomace and table sugar as sole ingredients. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05677-4.
Collapse
Affiliation(s)
- Svenja Sommer
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Janine Laura Hoffmann
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Marco Alexander Fraatz
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- grid.418010.c0000 0004 0573 9904Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Holger Zorn
- grid.8664.c0000 0001 2165 8627Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- grid.418010.c0000 0004 0573 9904Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
6
|
Effects of Lactobacillus curvatus HY7602-Fermented Antlers in Dexamethasone-Induced Muscle Atrophy. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the improvements yielded by Lactobacillus curvatus HY7602-fermented antlers (FA) in dexamethasone-induced muscle atrophy and the effects of bioactive compounds increased by fermentation. Dexamethasone-treated C2C12 myoblast cells were treated with FA and non-fermented antlers (NFA). FA showed inhibitory effects on muscle protein degradation in the C2C12 cells. Hsb:ICR mice were orally administered saline (control(CON) and dexamethasone only (DEX)), oxymetholone (DEX+OXY), NFA (DEX+NFA), and FA (DEX+FA) via gavage. Before the end of the experiment, dexamethasone was intraperitoneally (IP) injected into the mice, except in the control group, to induce muscle atrophy. Compared with the DEX group, the DEX+FA group exhibited a significant prevention in the reduction of hindlimb strength, calf thickness, calf muscle weight, and the cross-sectional area of muscle fibers (p < 0.05). The FA-induced improvements in muscle atrophy were associated with a decreased gene expression of protein degradation and growth inhibition, and an increased gene expression of protein synthesis and growth factors. Sialic acid, a bioactive compound associated with muscles, was increased by 51.41% after fermentation and suppressed the expression of protein degradation genes in the C2C12 cells. L. curvatus HY7602-fermented antlers with increased sialic acid after fermentation may therefore be useful for preventing and improving muscle atrophy.
Collapse
|
7
|
Fermentative Production of Volatile Metabolites Using Brettanomyces bruxellensis from Fruit and Vegetable By-Products. FERMENTATION 2022. [DOI: 10.3390/fermentation8090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural sources of flavour and aroma compounds are highly sought by the modern consumer; however, traditional sources are often low-yielding, and global supply is often outstripped by consumer demand. Fermentation is a favourable route by which natural flavours and fragrances can be produced. A non-Saccharomyces yeast, Brettanomyces bruxellensis, was investigated for its fermentative potential for the production of flavour and aroma metabolites from juice industry by-products: apple pomace, carrot pomace, and orange pomace. Submerged solid-substrate fermentations were carried out using sterile by-products without nutrient supplementation. Gas chromatography–mass spectrometry was used for volatile metabolite profiling of fermented substrates. One compound of interest, phenylethyl alcohol (rose fragrance), was extracted and quantified using GC-MS at a yield of 2.68 g/kg wet carrot pomace weight. This represents a novel, natural production strategy for phenylethyl alcohol compared to the traditional steam distillation of Rosa domascus sp. petals.
Collapse
|
8
|
Vermote L, Verce M, Mozzi F, De Vuyst L, Weckx S. Microbiomes Associated With the Surfaces of Northern Argentinian Fruits Show a Wide Species Diversity. Front Microbiol 2022; 13:872281. [PMID: 35898900 PMCID: PMC9309516 DOI: 10.3389/fmicb.2022.872281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The fiber, vitamin, and antioxidant contents of fruits contribute to a balanced human diet. In countries such as Argentina, several tropical fruits are witnessing a high yield in the harvest season, with a resulting surplus. Fruit fermentation using autochthonous starter cultures can provide a solution for food waste. However, limited knowledge exists about the microbiota present on the surfaces of fruits and the preceding flowers. In the present exploratory study, the microbiomes associated with the surfaces of tropical fruits from Northern Argentina, such as white guava, passion fruit and papaya were investigated using a shotgun metagenomic sequencing approach. Hereto, one sample composed of 14 white guava fruits, two samples of passion fruits with each two to three fruits representing the almost ripe and ripe stage of maturity, four samples of papaya with each two to three fruits representing the unripe, almost ripe, and ripe stage of maturity were processed, as well as a sample of closed and a sample of open Japanese medlar flowers. A considerable heterogeneity was found in the composition of the fruits’ surface microbiota at the genus and species level. While bacteria dominated the microbiota of the fruits and flowers, a small number of the metagenomic sequence reads corresponded with yeasts and filamentous fungi. A minimal abundance of bacterial species critical in lactic acid and acetic acid fermentations was found. A considerable fraction of the metagenomic sequence reads from the fruits’ surface microbiomes remained unidentified, which suggested that intrinsic species are to be sequenced or discovered.
Collapse
Affiliation(s)
- Louise Vermote
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernanda Mozzi
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | - Luc De Vuyst
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Faculty of Sciences and Bioengineering Sciences, Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Stefan Weckx,
| |
Collapse
|
9
|
Identification of New Natural Sources of Flavour and Aroma Metabolites from Solid-State Fermentation of Agro-Industrial By-Products. Metabolites 2022; 12:metabo12020157. [PMID: 35208231 PMCID: PMC8877680 DOI: 10.3390/metabo12020157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing consumer demand for natural flavours and fragrances has driven up prices and increased pressure on natural resources. A shift in consumer preference towards more sustainable and economical sources of these natural additives and away from synthetic production has encouraged research into alternative supplies of these valuable compounds. Solid-state fermentation processes support the natural production of secondary metabolites, which represents most flavour and aroma compounds, while agro-industrial by-products are a low-value waste stream with a high potential for adding value. Accordingly, four filamentous fungi species with a history of use in the production of fermented foods and food additives were tested to ferment nine different agro-industrial by-products. Hundreds of volatile compounds were produced and identified using headspace (HS) solid-phase microextraction (SPME) coupled to gas chromatography–mass spectrometry (GC–MS). Four compounds of interest, phenylacetaldehyde, methyl benzoate, 1-octen-3-ol, and phenylethyl alcohol, were extracted and quantified. Preliminary yields were encouraging compared to traditional sources. This, combined with the low-cost substrates and the high-value natural flavours and aromas produced, presents a compelling case for further optimisation of the process.
Collapse
|
10
|
FAN Y, MA C, WANG R. Deciphering bacterial community succession patterns and their correlations with physicochemical factors in solid-state fermentation of high-quality jujube vinegar. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ying FAN
- Shanxi Agricultural University, China
| | - Chao MA
- Shanxi Agricultural University, China
| | - Rufu WANG
- Shanxi Agricultural University, China
| |
Collapse
|
11
|
|
12
|
|
13
|
Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr Opin Biotechnol 2020; 70:36-41. [PMID: 33232845 DOI: 10.1016/j.copbio.2020.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Omics tools offer the opportunity to characterize and trace traditional and industrial fermented foods. Bioinformatics, through machine learning, and other advanced statistical approaches, are able to disentangle fermentation processes and to predict the evolution and metabolic outcomes of a food microbial ecosystem. By assembling microbial artificial consortia, the biotechnological advances will also be able to enhance the nutritional value and organoleptics characteristics of fermented food, preserving, at the same time, the potential of autochthonous microbial consortia and metabolic pathways, which are difficult to reproduce. Preserving the traditional methods contributes to protecting the hidden value of local biodiversity, and exploits its potential in industrial processes with the final aim of guaranteeing food security and safety, even in developing countries.
Collapse
|
14
|
Pontonio E, Raho S, Dingeo C, Centrone D, Carofiglio VE, Rizzello CG. Nutritional, Functional, and Technological Characterization of a Novel Gluten- and Lactose-Free Yogurt-Style Snack Produced With Selected Lactic Acid Bacteria and Leguminosae Flours. Front Microbiol 2020; 11:1664. [PMID: 32765471 PMCID: PMC7379130 DOI: 10.3389/fmicb.2020.01664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
Aiming at meeting consumers' requirements for healthy foods, dietary needs (vegetarianism, lactose- and gluten-free), as well as the nutrition recommendations of the Health Authorities in terms of protein, fibers and bioactive compounds, the present study proposes a novel yogurt-style snack made with plant-derived ingredients. The biotechnological protocol includes the fermentation of a thermal-treated blend of cereal and legume flours by the selected lactic acid bacteria (LAB) Lactoplantibacillus plantarum DSM33326 and Levilactobacillus brevis DSM33325. The yogurt-style snack was characterized by protein and fiber concentration of 3 and 4%, respectively, and a low-fat content. Compared to the unfermented control, the yogurt-style snack was characterized by a significant higher concentration of free amino acids and lower contents of the antinutritional factors, i.e., phytic acid, condensed tannins, saponins and raffinose (up to 90%) mainly due to the LAB metabolic activity. Hence, an in-vitro protein digestibility of 79% and improvements of all the nutritional indexes related to the quality of the protein fraction (e.g., GABA) were achieved at the end of fermentation. According to the Harvard Medical School recommendations, the novel snack can be potentially classified as low-glycemic index food (53%). Antioxidant properties of the fermented snack were also improved by means of increased the total phenol content and radical scavenging activity. High survival rate of the starter LAB and a commercial probiotic (added to the snack) was found through 30 days storage under refrigerated conditions. The biotechnological protocol to make the novel snack here proposed is suitable for the large-scale application in food industry, giving a platform product with a peculiar and appreciated sensory profile.
Collapse
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Susanna Raho
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | | | | |
Collapse
|
15
|
Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruíz HA, Loredo-Treviño A, Texeira JA, Belmares R. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Crit Rev Food Sci Nutr 2020; 61:2984-3006. [PMID: 32662286 DOI: 10.1080/10408398.2020.1791050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fermented food has been present throughout history, since fermentation not only helps preserving food, but also provides specific organoleptic characteristics typically associated to these foods. Most of the traditional fermented foods and artisanal beverages are produced by spontaneous generation, meaning no control of the microbiota, or the substrate used. Nevertheless, even not being standardized, they are an important source of bioactive compounds, such as antioxidant compounds, bioactive beeps, short chain fatty acids, amino acids, vitamins, and minerals. This review compiles a list of relevant traditional fermented beverages around the world, aiming to detail the fermentation process itself-including source of microorganisms, substrates, produced metabolites and the operational conditions involved. As well as to list the bioactive compounds present in each fermented food, together with their impact in the human health. Traditional fermented beverages from Mexico will be highlighted. These compounds are of high interest for the food, pharmaceutical and cosmetics industry. To scale-up the home fermentation processes, it is necessary to fully understand the microbiology and biochemistry behind these traditional products. The use of good quality raw materials with standardized methodologies and defined microorganisms, may improve and increase the production of the desirable bioactive compounds and open a market for novel functional products.
Collapse
Affiliation(s)
- R B Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Saltillo, Coahuila, Mexico
| | - Rosa M Rodriguez-Jasso
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Héctor A Ruíz
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - Araceli Loredo-Treviño
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| | - J A Texeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Saltillo Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
16
|
Zhang Q, Sun Q, Tan X, Zhang S, Zeng L, Tang J, Xiang W. Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing. J Biosci Bioeng 2020; 129:447-453. [DOI: 10.1016/j.jbiosc.2019.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
|
17
|
Augustin M, Sanguansri L, Fox E, Cobiac L, Cole M. Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Wuyts S, Van Beeck W, Allonsius CN, van den Broek MF, Lebeer S. Applications of plant-based fermented foods and their microbes. Curr Opin Biotechnol 2019; 61:45-52. [PMID: 31733464 DOI: 10.1016/j.copbio.2019.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Plant-based fermentations and their microbes provide an underexplored source for novel biotechnological applications. Recent advances in DNA sequencing technologies and analyses of sequencing data highlight that a diverse array of lactic acid bacteria (LAB) frequently dominate these plant fermentations. Because of the long history of safe LAB use in fermented foods, we argue here that various novel probiotic, synbiotic and a range of other industrial applications can be produced based on new insights in the functional and genetic potential of these LAB. To aid in this quest, comparative genomics tools are increasingly available enabling a more rational design of wet-lab experiments to screen for the most relevant properties. This is also true for the exploration of useful enzymatic and (secondary) metabolic production capacities of the LAB that can be isolated from these plant-based fermentations, such as the recent discovery of a cellulase enzyme in specific Lactobacillus plantarum group members.
Collapse
Affiliation(s)
- Sander Wuyts
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Camille Nina Allonsius
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Marianne Fl van den Broek
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
19
|
Sour beer production: impact of pitching sequence of yeast and lactic acid bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
21
|
Techno-Functional Role of Exopolysaccharides in Cereal-Based, Yogurt-Like Beverages. BEVERAGES 2019. [DOI: 10.3390/beverages5010016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the technical and functional role of exopolysaccharides (EPSs) in cereal-based, yogurt-like beverages. Many microorganisms produce EPSs as a strategy for growing, adhering to solid surfaces, and surviving under adverse conditions. In several food and beverages, EPSs play technical and functional roles. Therefore, EPSs can be isolated, purified, and added to the product, or appropriate bacteria can be employed as starter cultures to produce the EPSs in situ within the matrix. The exploitation of in situ production of EPSs is of particular interest to manufacturers of cereal-base beverages aiming to mimic dairy products. In this review, traditional and innovative or experimental cereal-based beverages, and in particular, yogurt-like beverages are described with a particular focus in lactic acid bacteria (LAB’s) EPS production. The aim of this review is to present an overview of the current knowledge of exopolysaccharides produced by lactic acid bacteria, and their presence in cereal-based, yogurt-like beverages.
Collapse
|
22
|
De Roos J, De Vuyst L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:25-38. [PMID: 30246252 DOI: 10.1002/jsfa.9291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 05/18/2023]
Abstract
Acidic beers, such as Belgian lambic beers and American and other coolship ales, are becoming increasingly popular worldwide thanks to their refreshing acidity and fruity notes. The traditional fermentation used to produce them does not apply pure yeast cultures but relies on spontaneous, environmental inoculation. The fermentation and maturation process is carried out in wooden barrels and can take up to three years. It is characterized by different microbial species belonging to the enterobacteria, acetic acid bacteria, lactic acid bacteria, and yeasts. This review provides an introduction to the technology and four fermentation strategies of beer production, followed by the microbiology of acidic beer production, focusing on the main microorganisms present during the long process used for the production of Belgian lambic beers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Anastasova L, Petreska Ivanovska T, Petkovska R, Petrusevska-Tozi L. Concepts, benefits and perspectives of functional dairy food products. MAKEDONSKO FARMACEVTSKI BILTEN 2019. [DOI: 10.33320/maced.pharm.bull.2018.64.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rising awareness of the consumers towards the health benefits of food has resulted in the development of the so-called functional foods. These added value products which refer to prevention and/or therapeutic effects of food beyond its nutritional value, are especially useful for health improvement and reduction of medical care costs. The combination between health and nutrition and its potential to improve the quality of life has become one of the key attention points of consumers who are aware of and are seeking nutritional solutions to their health concerns.
Milk and dairy products have been used in human nutrition for thousands of years, providing important nutrients for the human body such as proteins, fats and calcium. It is now widely recognized that in addition to their basic nutritive role they also exert functional properties beneficial for human health, so the development of functional dairy products is one of the fastest growing areas in the dairy industry as well as one of the largest sectors in the global market of functional foods.
This review provides a brief overview of the health benefits and the natural functionality of dairy products as well as the challenges together with the future perspectives of their application as delivery vehicles for beneficial compounds to the human body.
Keywords: functional foods, milk, dairy products
Collapse
Affiliation(s)
- Liljana Anastasova
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, Republic of Macedonia
| | - Tanja Petreska Ivanovska
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 10000 Skopje, Republic of Macedonia
| | - Rumenka Petkovska
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, Republic of Macedonia
| | - Lidija Petrusevska-Tozi
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 10000 Skopje, Republic of Macedonia
| |
Collapse
|
24
|
Nutritional and Microbiological Quality of Tiger Nut Tubers (Cyperus esculentus), Derived Plant-Based and Lactic Fermented Beverages. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tiger nut (Cyperus esculentus) is a tuber that can be consumed raw or processed into beverages. Its nutritional composition shows a high content of lipid and dietary fiber, close to those of nuts, and a high content of starch, like in other tubers. Tiger nuts also contain high levels of phosphorus, calcium, and phenolic compounds, which contribute to their antioxidant activity. From those characteristics, tiger nuts and derived beverages are particularly relevant to limit food insecurity in regions where the plant can grow. In Europe and United States, the tiger nut derived beverages are of high interest as alternatives to milk and for gluten-free diets. Fermentation or addition of probiotic cultures to tiger nut beverages has proven the ability of lactic acid bacteria to acidify the beverages. Preliminary sensory assays concluded that acceptable products are obtained. In the absence of pasteurization, the safety of tiger nut-based beverages is not warranted. In spite of fermentation, some foodborne pathogens or mycotoxigenic fungi have been observed in fermented beverages. Further studies are required to select a tailored bacterial cocktail which would effectively dominate endogenous flora, preserve bioactive compounds and result in a well-accepted beverage.
Collapse
|
25
|
Iversen KN, Johansson D, Brunius C, Andlid T, Andersson R, Langton M, Landberg R. Appetite and Subsequent Food Intake Were Unaffected by the Amount of Sourdough and Rye in Soft Bread-A Randomized Cross-Over Breakfast Study. Nutrients 2018; 10:nu10111594. [PMID: 30380770 PMCID: PMC6266039 DOI: 10.3390/nu10111594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/05/2023] Open
Abstract
Sourdough fermented bread has been suggested to have beneficial health effects, in part mediated by increased satiety in the postprandial phase, but only limited research has been conducted to verify this. The current study aimed to investigate the effect of the amounts of sourdough and rye in soft bread on postprandial appetite. On 6 occasions, 23 healthy volunteers consumed 5 different test breads, with varying amount of rye and sourdough, and a yeast-fermented refined wheat control bread as part of a breakfast meal. The sourdough ranged between 9–51% of dough weight and rye content between 35–48% of flour weight. Appetite was recorded using visual analogue scales from immediately before breakfast and every 30 min the following 4 h. An ad libitum lunch was served 4 h after the breakfast meal, from which voluntary energy intake was measured. While some of the test breads resulted in lower hunger ratings and increased sense of fullness compared to the refined wheat bread, there were no differences between the test breads. The content of rye in the test breads differed within a narrow range, which might explain the lack of a consistent effect of rye on appetite. Microstructural examination of the test breads showed an increased aggregation of proteins in the breads with high content of sourdough, indicating additional changes to the breads, beyond change in pH, which may counteract the potential effect of decreased pH in the bread on appetite. In conclusion, our study does not support an effect of sourdough on appetite and ad libitum food intake.
Collapse
Affiliation(s)
- Kia Nøhr Iversen
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Daniel Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Carl Brunius
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
26
|
Pico J, Khomenko I, Capozzi V, Navarini L, Bernal J, Gómez M, Biasioli F. Analysis of volatile organic compounds in crumb and crust of different baked and toasted gluten-free breads by direct PTR-ToF-MS and fast-GC-PTR-ToF-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:893-902. [PMID: 30019512 DOI: 10.1002/jms.4258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Joana Pico
- IU Cinquima, Analytical Chemistry Group, University of Valladolid, Paseo de Belén Street 7, E-47011, Valladolid, Spain
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstr. 25, Innsbruck, Austria
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Napoli Street 25, E-71122, Foggia, Italy
| | | | - José Bernal
- IU Cinquima, Analytical Chemistry Group, University of Valladolid, Paseo de Belén Street 7, E-47011, Valladolid, Spain
| | - Manuel Gómez
- Food Technology Area, ETS Ingenierías Agrarias, University of Valladolid, Madrid Avenue 57, E-34071, Palencia, Spain
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
| |
Collapse
|
27
|
Cole MB, Augustin MA, Robertson MJ, Manners JM. The science of food security. NPJ Sci Food 2018; 2:14. [PMID: 31304264 PMCID: PMC6550266 DOI: 10.1038/s41538-018-0021-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/15/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023] Open
Abstract
We need to feed an estimated population in excess of 9 billion by 2050 with diminishing natural resources, whilst ensuring the health of people and the planet. Herein we connect the future global food demand to the role of agricultural and food science in producing and stabilising foods to meet the global food demand. We highlight the challenges to food and agriculture systems in the face of climate change and global megatrends that are shaping the future world. We discuss the opportunities to reduce food loss and waste, and recover produce that is currently wasted to make this the new raw ingredient supply for the food industry. Our systems-based perspective links food security to agricultural productivity, food safety, health and nutrition, processing and supply chain efficiency in the face of global and industry megatrends. We call for a collaborative, transdisciplinary approach to the science of food security, with a focus on enabling technologies within a context of social, market and global trends to achieve food and nutritional security.
Collapse
Affiliation(s)
- Martin Barry Cole
- CSIRO Agriculture and Food, Australia, 11, Julius Avenue, North Ryde, New South Wales 2113 Australia
| | - Mary Ann Augustin
- CSIRO Agriculture and Food, Australia, 11, Julius Avenue, North Ryde, New South Wales 2113 Australia
| | - Michael John Robertson
- CSIRO Agriculture and Food, Australia, 11, Julius Avenue, North Ryde, New South Wales 2113 Australia
| | - John Michael Manners
- CSIRO Agriculture and Food, Australia, 11, Julius Avenue, North Ryde, New South Wales 2113 Australia
| |
Collapse
|
28
|
|
29
|
Lorusso A, Coda R, Montemurro M, Rizzello CG. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods 2018; 7:E51. [PMID: 29614769 PMCID: PMC5920416 DOI: 10.3390/foods7040051] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
This study aimed at investigating the suitability of quinoa for making yogurt-like beverages. After the selection of the adequate technological parameters, the fermentation was carried out by using different lactic acid bacteria strains: a probiotic (Lactobacillus rhamnosus SP1), an exopolysaccharides (EPS)-producing (Weissella confusa DSM 20194), and one isolated from quinoa (Lactobacillus plantarum T6B10). During the 20 h of fermentation, W. confusa caused the highest viscosity increase. All the strains had improved concentration of free amino acids and γ-Aminobutyric acid (GABA), polyphenols availability, antioxidant activity (up to 54%), and protein digestibility. The nutritional index (NI) was the highest when L. rhamnosus SP1 was used. The starch hydrolysis index in vitro ranged from 52 to 60. During storage at 4 °C, viscosity and water holding capacity decreased with the exception of the beverage fermented with W. confusa, while all the nutritional characteristics remained stable or slightly increased. Sensory analyses showed that beverages had good textural and organoleptic profiles. Besides the well-known positive properties of the raw matrix, fermentation allowed the obtainment of beverages with different features. Due to the nutritional and functional characteristics conferred to the quinoa beverages, the use of the probiotic and EPS-producing strains showed adequate potential for the industrial application.
Collapse
Affiliation(s)
- Anna Lorusso
- Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Rossana Coda
- Department of Food and Nutrition, Helsinki Institute of Sustainability Science, University of Helsinki, 00100 Helsinki, Finland.
| | - Marco Montemurro
- Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant, and Food Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| |
Collapse
|
30
|
De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49:115-119. [DOI: 10.1016/j.copbio.2017.08.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
|
31
|
Lu ZM, Wang ZM, Zhang XJ, Mao J, Shi JS, Xu ZH. Microbial ecology of cereal vinegar fermentation: insights for driving the ecosystem function. Curr Opin Biotechnol 2017; 49:88-93. [PMID: 28843369 DOI: 10.1016/j.copbio.2017.07.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023]
Abstract
Over thousands of years, humans have mastered the natural vinegar fermentation technique of cultivating functional microbiota on different raw materials. Functional microbial communities that form reproducibly on non-autoclaved raw materials through repeated batch acetic acid fermentation underpin the flavour development of traditional cereal vinegars. However, how to modulate rationally and optimise the metabolic function of these naturally engineered acidic ecosystems remains unclear. Exploring two key minorities in a vinegar ecosystem, including microbial functions (e.g., flavour and aroma synthesis) and microbial strains, is a crucial step for the vinegar industry to modulate the metabolic function of vinegar microbiota, to monitor the fermentation process, and to maintain the flavour quality of final product.
Collapse
Affiliation(s)
- Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Zong-Min Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
32
|
Luz C, Saladino F, Luciano F, Mañes J, Meca G. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Yépez A, Luz C, Meca G, Vignolo G, Mañes J, Aznar R. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Wu LH, Lu ZM, Zhang XJ, Wang ZM, Yu YJ, Shi JS, Xu ZH. Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiol 2017; 62:23-31. [DOI: 10.1016/j.fm.2016.09.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/11/2016] [Accepted: 09/15/2016] [Indexed: 01/28/2023]
|
35
|
Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutr Res Rev 2017; 30:1-24. [PMID: 28115036 DOI: 10.1017/s0954422416000202] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fermented beverages hold a long tradition and contribution to the nutrition of many societies and cultures worldwide. Traditional fermentation has been empirically developed in ancient times as a process of raw food preservation and at the same time production of new foods with different sensorial characteristics, such as texture, flavour and aroma, as well as nutritional value. Low-alcoholic fermented beverages (LAFB) and non-alcoholic fermented beverages (NAFB) represent a subgroup of fermented beverages that have received rather little attention by consumers and scientists alike, especially with regard to their types and traditional uses in European societies. A literature review was undertaken and research articles, review papers and textbooks were searched in order to retrieve data regarding the dietary role, nutrient composition, health benefits and other relevant aspects of diverse ethnic LAFB and NAFB consumed by European populations. A variety of traditional LAFB and NAFB consumed in European regions, such as kefir, kvass, kombucha and hardaliye, are presented. Milk-based LAFB and NAFB are also available on the market, often characterised as 'functional' foods on the basis of their probiotic culture content. Future research should focus on elucidating the dietary role and nutritional value of traditional and 'functional' LAFB and NAFB, their potential health benefits and consumption trends in European countries. Such data will allow for LAFB and NAFB to be included in national food composition tables.
Collapse
|
36
|
Elucidating and Regulating the Acetoin Production Role of Microbial Functional Groups in Multispecies Acetic Acid Fermentation. Appl Environ Microbiol 2016; 82:5860-8. [PMID: 27451452 DOI: 10.1128/aem.01331-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. However, the specific microorganisms responsible for acetoin formation in this centuries-long repeated batch fermentation have not yet been clearly identified. Here, the microbial distribution discrepancy in the diacetyl/acetoin metabolic pathway of vinegar microbiota was revealed at the species level by a combination of metagenomic sequencing and clone library analysis. The results showed that Acetobacter pasteurianus and 4 Lactobacillus species (Lactobacillus buchneri, Lactobacillus reuteri, Lactobacillus fermentum, and Lactobacillus brevis) might be functional producers of acetoin from 2-acetolactate in vinegar microbiota. Furthermore, A. pasteurianus G3-2, L. brevis 4-22, L. fermentum M10-3, and L. buchneri F2-5 were isolated from vinegar microbiota by a culture-dependent method. The acetoin concentrations in two cocultures (L. brevis 4-22 plus A. pasteurianus G3-2 and L. fermentum M10-3 plus A. pasteurianus G3-2) were obviously higher than those in monocultures of lactic acid bacteria (LAB), while L. buchneri F2-5 did not produce more acetoin when coinoculated with A. pasteurianus G3-2. Last, the acetoin-producing function of vinegar microbiota was regulated in situ via augmentation with functional species in vinegar Pei After 72 h of fermentation, augmentation with A. pasteurianus G3-2 plus L. brevis 4-22, L. fermentum M10-3, or L. buchneri F2-5 significantly increased the acetoin content in vinegar Pei compared with the control group. This study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota. IMPORTANCE Acetoin (3-hydroxy-2-butanone) formation in vinegar microbiota is crucial for the flavor quality of Zhenjiang aromatic vinegar, a traditional vinegar produced from cereals. Thus, it is of interest to understand which microbes are driving the formation of acetoin to elucidate the microbial distribution discrepancy in the acetoin metabolic pathway and to regulate the metabolic function of functional microbial groups in vinegar microbiota. Our study provides a perspective on elucidating and manipulating different metabolic roles of microbes during flavor formation in vinegar microbiota.
Collapse
|
37
|
Peyer LC, Zannini E, Arendt EK. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Fessard A, Bourdon E, Payet B, Remize F. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves. Can J Microbiol 2016; 62:550-61. [DOI: 10.1139/cjm-2015-0624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted.
Collapse
Affiliation(s)
- Amandine Fessard
- Université de La Réunion, UMR QualiSud, ESIROI, 2 rue J. Wetzell, Parc Technologique Universitaire, Sainte Clotilde, France
| | - Emmanuel Bourdon
- Université de La Réunion, UMR DéTROI – Inserm U1188 Diabète athérothrombose Thérapies Réunion Océan Indien, Plateforme CYROI, Saint Denis de La Réunion, France
| | - Bertrand Payet
- Université de La Réunion, EA LCSNSA, rue René Cassin, Saint Denis de La Réunion, France
| | - Fabienne Remize
- Université de La Réunion, UMR QualiSud, ESIROI, 2 rue J. Wetzell, Parc Technologique Universitaire, Sainte Clotilde, France
| |
Collapse
|
39
|
Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Sci Rep 2016; 6:26818. [PMID: 27241188 PMCID: PMC4886211 DOI: 10.1038/srep26818] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/18/2016] [Indexed: 11/09/2022] Open
Abstract
Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar.
Collapse
|
40
|
Capozzi V, Makhoul S, Aprea E, Romano A, Cappellin L, Sanchez Jimena A, Spano G, Gasperi F, Scampicchio M, Biasioli F. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin. Molecules 2016; 21:483. [PMID: 27077836 PMCID: PMC6274548 DOI: 10.3390/molecules21040483] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/16/2022] Open
Abstract
In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
- L'Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques-L'équipe Vin Aliment Microbiologie et Stress, Institut Universitaire de la Vigne et du Vin, 1 rue Claude Ladrey, Dijon Cedex 21078, France.
- Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon.
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Andrea Romano
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Ana Sanchez Jimena
- Lallemand SAS, Lallemand Baking Solution Department, a Subsidiary of Lallemand Inc., Blagnac 31702, France.
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, Foggia 71122, Italy.
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzano, Bolzano 39100, Italy.
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, San Michele all'Adige 38010, Italy.
| |
Collapse
|
41
|
Genome Sequence of Bacillus glycinifermentans TH008, Isolated from Ohio Soil. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01573-15. [PMID: 26798097 PMCID: PMC4722264 DOI: 10.1128/genomea.01573-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The genome sequence of an Ohio soil isolate, TH008, was determined. The sequence reveals a close relationship between TH008 and domesticated Bacillus glycinifermentans strains found in a traditional Korean fermented soybean food.
Collapse
|
42
|
Wang ZM, Lu ZM, Yu YJ, Li GQ, Shi JS, Xu ZH. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar. Food Microbiol 2015; 50:64-9. [PMID: 25998816 DOI: 10.1016/j.fm.2015.03.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
Abstract
Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective.
Collapse
Affiliation(s)
- Zong-Min Wang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhen-Ming Lu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Yong-Jian Yu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang 212043, PR China
| | - Guo-Quan Li
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang 212043, PR China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zheng-Hong Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|
43
|
Carrau F, Gaggero C, Aguilar PS. Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol 2015; 33:148-54. [DOI: 10.1016/j.tibtech.2014.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/29/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023]
|
44
|
|
45
|
The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria cultures. Talanta 2014; 129:364-73. [DOI: 10.1016/j.talanta.2014.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 11/15/2022]
|
46
|
Gómez AV, Ferrero C, Puppo C, Tadini CC, Abraham AG. Fermented milk obtained with kefir grains as an ingredient in breadmaking. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Analía V. Gómez
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
- LIPA (Facultad Ciencias Agrarias y Forestales - UNLP), 60 y 119; 1900 La Plata Argentina
| | - Cristina Ferrero
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
| | - Cecilia Puppo
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
- LIPA (Facultad Ciencias Agrarias y Forestales - UNLP), 60 y 119; 1900 La Plata Argentina
| | - Carmen C. Tadini
- Chemical Eng. Department; Escola Politécnica; University of São Paulo; P.O. Box 61548 05424-970 São Paulo Brasil
| | - Analía G. Abraham
- CIDCA (CONICET - Facultad Ciencias Exactas - UNLP) 47 y 116; 1900 La Plata Argentina
| |
Collapse
|
47
|
Marsh AJ, Hill C, Ross RP, Cotter PD. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Gatti M, Bottari B, Lazzi C, Neviani E, Mucchetti G. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J Dairy Sci 2014; 97:573-91. [DOI: 10.3168/jds.2013-7187] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022]
|
49
|
Ravasio D, Walther A, Trost K, Vrhovsek U, Wendland J. An indirect assay for volatile compound production in yeast strains. Sci Rep 2014; 4:3707. [PMID: 24424137 PMCID: PMC3892184 DOI: 10.1038/srep03707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022] Open
Abstract
Traditional flavor analysis relies on gas chromatography coupled to mass spectrometry (GC-MS) methods. Here we describe an indirect method coupling volatile compound formation to an ARO9-promoter-LacZ reporter gene. The resulting β-galactosidase activity correlated well with headspace solid phase micro extraction (HS/SPME) GC-MS data, particularly with respect to the formation of rose flavor. This tool enables large-scale screening of yeast strains and their progeny to identify the most flavor active strains.
Collapse
Affiliation(s)
- Davide Ravasio
- Carlsberg Laboratory; Yeast Genetics Gamle Carlsberg Vej 10 DK-1799 Copenhagen V, Denmark
| | - Andrea Walther
- Carlsberg Laboratory; Yeast Genetics Gamle Carlsberg Vej 10 DK-1799 Copenhagen V, Denmark
| | - Kajetan Trost
- Fondazione Edmund Mach Research and Innovation Centre Food Quality and Nutrition Department Via E.Mach 1, I-38010 S.Michele all'Adige, Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach Research and Innovation Centre Food Quality and Nutrition Department Via E.Mach 1, I-38010 S.Michele all'Adige, Italy
| | - Jürgen Wendland
- Carlsberg Laboratory; Yeast Genetics Gamle Carlsberg Vej 10 DK-1799 Copenhagen V, Denmark
| |
Collapse
|
50
|
Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 2014; 33:2. [PMID: 24422720 PMCID: PMC3904694 DOI: 10.1186/1880-6805-33-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/18/2013] [Indexed: 02/06/2023] Open
Abstract
The purposeful application of fermentation in food and beverage preparation, as a means to provide palatability, nutritional value, preservative, and medicinal properties, is an ancient practice. Fermented foods and beverages continue to make a significant contribution to the overall patterns of traditional dietary practices. As our knowledge of the human microbiome increases, including its connection to mental health (for example, anxiety and depression), it is becoming increasingly clear that there are untold connections between our resident microbes and many aspects of physiology. Of relevance to this research are new findings concerning the ways in which fermentation alters dietary items pre-consumption, and in turn, the ways in which fermentation-enriched chemicals (for example, lactoferrin, bioactive peptides) and newly formed phytochemicals (for example, unique flavonoids) may act upon our own intestinal microbiota profile. Here, we argue that the consumption of fermented foods may be particularly relevant to the emerging research linking traditional dietary practices and positive mental health. The extent to which traditional dietary items may mitigate inflammation and oxidative stress may be controlled, at least to some degree, by microbiota. It is our contention that properly controlled fermentation may often amplify the specific nutrient and phytochemical content of foods, the ultimate value of which may associated with mental health; furthermore, we also argue that the microbes (for example, Lactobacillus and Bifidobacteria species) associated with fermented foods may also influence brain health via direct and indirect pathways.
Collapse
Affiliation(s)
- Eva M Selhub
- Harvard Medical School and Massachusetts General Hospital, 40 Crescent St., Suite 201, Waltham, MA 02453, USA
| | - Alan C Logan
- CAMNR, 23679 Calabasas Road Suite 542, Calabasas, CA 91302, USA
| | - Alison C Bested
- Complex Chronic Diseases Program, BC Women’s Hospital and Health Centre, B223A-4500 Oak Street, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|