1
|
Huang S, Saad Imran SM, Lanahan AA, Hammer SK, Lubner CE, Lynd LR, Olson DG. A distinct class of ferredoxin:NADP + oxidoreductase enzymes driving thermophilic ethanol production. J Biol Chem 2025:110263. [PMID: 40409545 DOI: 10.1016/j.jbc.2025.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
Biofuel production from lignocellulosic biomass offers a transformative solution to reduce global fossil fuel dependency. Certain thermophilic anaerobes, including Clostridium thermocellum, show promise for renewable ethanol production due to their ability to break down plant material at high temperatures. However, achieving commercially viable ethanol yields has proven challenging despite extensive engineering efforts. Here, we characterized 27 ferredoxin:NADP+ oxidoreductase (Fnor) enzymes for their enzyme activity, nicotinamide cofactor specificity, thermotolerance, and functional expression in C. thermocellum. We identified a subset of ten of these enzymes as a novel class of Fnor enzymes suited for metabolic pathways aimed at high-titer ethanol production. When expressed in engineered C. thermocellum, these enzymes increased ethanol production up to 2.2-fold. These findings establish a novel ethanol pathway and provide insights into physiological roles and biotechnological applications of this new class of Fnor enzymes.
Collapse
Affiliation(s)
- Shu Huang
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | | | - Anthony A Lanahan
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Sarah K Hammer
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
2
|
Vodovnik M, Lindič N. Towards the application of nature's catalytic nanomachines: Cellulosomes in 2nd generation biofuel production. Biotechnol Adv 2025; 79:108523. [PMID: 39892314 DOI: 10.1016/j.biotechadv.2025.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Cellulosomes are highly efficient, complex multi-enzyme assemblies, predominantly found in anaerobic bacteria, which offer substantial potential for second-generation biofuel production through efficient lignocellulosic biomass degradation, thus reducing the need for costly pretreatments. Recent advances in cellulosome research have significantly contributed to developing more efficient consolidated bioprocessing (CBP) platforms for biofuel production. This review highlights the latest progress in designing cellulosomes for optimized enzyme synergy and substrate specificity, as well as advances in engineering cellulosome-producing whole-cell biocatalysts tailored for biofuel applications. Apart from recombinant approaches to the development of CBP platforms, metabolic engineering of cellulosome-producing strains (CPS) and co-culture systems that combine CPS with solvent-producing microbes are also discussed. Current challenges and future directions are outlined that emphasize the role of cellulosomes as powerful tools in advancing the efficiency of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Maša Vodovnik
- Chair of Microbial Diversity, Microbiomics and Microbiology, Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia.
| | - Nataša Lindič
- Department of biochemistry, molecular and structural biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
3
|
de Souza LC, Herring CD, Lynd LR. Genetic investigation of hydrogenases in Thermoanaerobacterium thermosaccharolyticum suggests that redox balance via hydrogen cycling enables high ethanol yield. Appl Environ Microbiol 2025; 91:e0110924. [PMID: 39791878 PMCID: PMC11837493 DOI: 10.1128/aem.01109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Thermoanaerobacterium thermosaccharolyticum is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production. Our results indicate that a high ethanol yield, >85% of the theoretical maximum, only occurs when the hfsD, hydAB, and nfnAB genes are all present together, while the hfsB gene is absent. We propose that the products of these three gene clusters facilitate an NADPH-generating reaction via hydrogen cycling, with a stoichiometry comparable with a canonical ferredoxin:NADP+ oxidoreductase (FNOR; EC 1.18.1.2) reaction. The hypothesized mechanism provides a balance of nicotinamide cofactors and facilitates ferredoxin recycling, leading to progress in optimizing the energy conversion of biomass-derived sugars to ethanol. IMPORTANCE Our study elucidates the crucial role of electron flow and redox balancing mechanisms in improving ethanol yields from renewable biomass. We delve into the mechanism of electron transfer, highlighting the potential of key genes to be leveraged for enhanced ethanol production in anaerobic microbial species. We suggest by genetic investigation the existence of a novel Ferredoxin:NADP+ Oxidoreductase (FNOR) reaction, comprising HfsD, HydAB, and NfnAB enzymes, as a promising avenue for achieving balanced stoichiometry and efficient ethanol synthesis. Our findings not only advance the understanding of microbial metabolism but also offer practical insights for developing strategies to improve bioenergy production and sustainability.
Collapse
Affiliation(s)
- Layse C. de Souza
- Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas Instituto de Biologia, Campinas, São Paulo, Brazil
| | | | - Lee R. Lynd
- Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Terragia Biofuel, Hanover, New Hampshire, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
4
|
Khana DB, Jen A, Shishkova E, Thusoo E, Williams J, Henkel A, Stevenson DM, Coon JJ, Amador-Noguez D. Thermodynamics shape the in vivo enzyme burden of glycolytic pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635972. [PMID: 39974948 PMCID: PMC11838459 DOI: 10.1101/2025.01.31.635972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Thermodynamically constrained reactions and pathways are hypothesized to impose greater protein demands on cells, requiring higher enzyme amounts to sustain a given flux compared to those with stronger thermodynamics. To test this, we quantified the absolute concentrations of glycolytic enzymes in three bacterial species -Zymomonas mobilis, Escherichia coli, and Clostridium thermocellum- which employ distinct glycolytic pathways with varying thermodynamic driving forces. By integrating enzyme concentration data with corresponding in vivo metabolic fluxes and ΔG measurements, we found that the highly favorable Entner-Doudoroff (ED) pathway in Z. mobilis requires only one-fourth the amount of enzymatic protein to sustain the same flux as the thermodynamically constrained pyrophosphate-dependent glycolytic pathway in C. thermocellum, with the Embden-Meyerhof-Parnas (EMP) pathway in E. coli exhibiting intermediate thermodynamic favorability and enzyme demand. Across all three pathways, early reactions with stronger thermodynamic driving forces generally required lower enzyme investment than later, less favorable steps. Additionally, reflecting differences in glycolytic strategies, the highly reversible ethanol fermentation pathway in C. thermocellum requires 10-fold more protein to maintain the same flux as the irreversible, forward-driven ethanol fermentation pathway in Z. mobilis. Thus, thermodynamic driving forces constitute a major in vivo determinant of the enzyme burden in metabolic pathways.
Collapse
Affiliation(s)
- Daven B. Khana
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI USA
| | - Eashant Thusoo
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Jonathan Williams
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Alex Henkel
- University of Wisconsin-Madison Carbone Cancer Center, University of Wisconsin-Madison, Madison WI USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Joshua J. Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI USA
- Morgridge Institute for Research, Madison, WI USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
5
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
6
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Lau MH, Madika A, Zhang Y, Minton NP. Parageobacillus thermoglucosidasius Strain Engineering Using a Theophylline Responsive RiboCas for Controlled Gene Expression. ACS Synth Biol 2024; 13:1237-1245. [PMID: 38517011 PMCID: PMC11036489 DOI: 10.1021/acssynbio.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
The relentless increase in atmospheric greenhouse gas concentrations as a consequence of the exploitation of fossil resources compels the adoption of sustainable routes to chemical and fuel manufacture based on biological fermentation processes. The use of thermophilic chassis in such processes is an attractive proposition; however, their effective exploitation will require improved genome editing tools. In the case of the industrially relevant chassis Parageobacillus thermoglucosidasius, CRISPR/Cas9-based gene editing has been demonstrated. The constitutive promoter used, however, accentuates the deleterious nature of Cas9, causing decreased transformation and low editing efficiencies, together with an increased likelihood of off-target effects or alternative mutations. Here, we rectify this issue by controlling the expression of Cas9 through the use of a synthetic riboswitch that is dependent on the nonmetabolized, nontoxic, and cheap inducer, theophylline. We demonstrate that the riboswitches are dose-dependent, allowing for controlled expression of the target gene. Through their use, we were then able to address the deleterious nature of Cas9 and produce an inducible system, RiboCas93. The benefits of RiboCas93 were demonstrated by increased transformation efficiency of the editing vectors, improved efficiency in mutant generation (100%), and a reduction of Cas9 toxicity, as indicated by a reduction in the number of single nucleotide polymorphisms (SNPs) observed. This new system provides a quick and efficient way to produce mutants in P. thermoglucosidasius.
Collapse
Affiliation(s)
- Matthew
S. H. Lau
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Abubakar Madika
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Department
of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ying Zhang
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- BBSRC/EPSRC
Synthetic Biology Research Centre (SBRC), Biodiscovery Institute,
School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, Nottingham
University Hospitals NHS Trust and The University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
8
|
Nissen LS, Moon J, Hitschler L, Basen M. A Versatile Aldehyde: Ferredoxin Oxidoreductase from the Organic Acid Reducing Thermoanaerobacter sp. Strain X514. Int J Mol Sci 2024; 25:1077. [PMID: 38256150 PMCID: PMC10816221 DOI: 10.3390/ijms25021077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Aldehyde:ferredoxin oxidoreductases (AORs) have been isolated and biochemically-characterized from a handful of anaerobic or facultative aerobic archaea and bacteria. They catalyze the ferredoxin (Fd)-dependent oxidation of aldehydes to acids. Recently, the involvement of AOR in the reduction of organic acids to alcohols with electrons derived from sugar or synthesis gas was demonstrated, with alcohol dehydrogenases (ADHs) carrying out the reduction of the aldehyde to the alcohol (AOR-ADH pathway). Here, we describe the biochemical characterization of an AOR of the thermophilic fermentative bacterium Thermoanaerobacter sp. strain X514 (AORX514). The putative aor gene (Teth514_1380) including a 6x-His-tag was introduced into the genome of the genetically-accessible, related species Thermoanaerobacter kivui. The protein was purified to apparent homogeneity, and indeed revealed AOR activity, as measured by acetaldehyde-dependent ferredoxin reduction. AORX514 was active over a wide temperature (10 to 95 °C) and pH (5.5 to 11.5) range, utilized a wide variety of aldehydes (short and branched-chained, aliphatic, aromatic) and resembles archaeal sensu stricto AORs, as the protein is active in a homodimeric form. The successful, recombinant production of AORX514 in a related, well-characterized and likewise strict anaerobe paves the road towards structure-function analyses of this enzyme and possibly similar oxygen-sensitive or W/Mo-dependent proteins in the future.
Collapse
Affiliation(s)
- Laura Sofie Nissen
- Microbiology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany;
| | - Jimyung Moon
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt/Main, Germany; (J.M.)
| | - Lisa Hitschler
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt/Main, Germany; (J.M.)
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany;
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt/Main, Germany; (J.M.)
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
9
|
Daley SR, Gallanosa PM, Sparling R. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:112. [PMID: 37438781 DOI: 10.1186/s13068-023-02362-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The efficient production of sustainable biofuels is important for the reduction of greenhouse gas emissions. Clostridium thermocellum ATCC 27405 is a candidate for ethanol production from lignocellulosic biomass using consolidated bioprocessing. Fermentation of cellulosic biomass goes through an atypical glycolytic pathway in this thermophilic bacterium, with various glycolytic enzymes capable of utilizing different phosphate donors, including GTP and inorganic pyrophosphate (PPi), in addition to or in place of the usual ATP. C. thermocellum contains three annotated phosphofructokinases (PFK) genes, the expression of which have all been detected through proteomics and transcriptomics. Pfp (Cthe_0347) was previously characterized as pyrophosphate dependent with fructose-6-phosphate (F6P) as its substrate. RESULTS We now demonstrate that this enzyme can also phosphorylate sedoheptulose-7-phosphate (an intermediate in the pentose phosphate pathway), with the Vmax and Km of F6P being approximately 15 folds higher and 43 folds lower, respectively, in comparison to sedoheptulose-7-phosphate. Purified PfkA shows preference for GTP as the phosphate donor as opposed to ATP with a 12.5-fold difference in Km values while phosphorylating F6P. Allosteric regulation is a factor at play in PfkA activity, with F6P exhibiting positive cooperativity, and an apparent requirement for ammonium ions to attain maximal activity. Phosphoenolpyruvate and PPi were the only inhibitors for PfkA determined from the study, which corroborates what is known about enzymes from this subfamily. The activation or inhibition by these ligands lends support to the argument that glycolysis is regulated by metabolites such as PPi and NH4+ in the organism. PfkB, showed no activity with F6P, but had significant activity with fructose, while utilizing either ATP or GTP, making it a fructokinase. Rounding out the upper glycolysis pathway, the identity of the fructose-1,6-bisphosphate aldolase in the genome was verified and reported to have substantial activity with fructose-1,6-bisphosphate, in the presence of the divalent ion, Zn2+. CONCLUSION These findings along with previous proteomic data suggest that Pfp, plays a role in both glycolysis and the pentose phosphate pathway, while PfkA and PfkB may phosphorylate sugars in glycolysis but is responsible for sugar metabolism elsewhere under conditions outside of growth on sufficient cellobiose.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Mae Gallanosa
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
10
|
Lipscomb GL, Crowley AT, Nguyen DMN, Keller MW, O’Quinn HC, Tanwee TNN, Vailionis JL, Zhang K, Zhang Y, Kelly RM, Adams MWW. Manipulating Fermentation Pathways in the Hyperthermophilic Archaeon Pyrococcus furiosus for Ethanol Production up to 95°C Driven by Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0001223. [PMID: 37162365 PMCID: PMC10304873 DOI: 10.1128/aem.00012-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/11/2023] Open
Abstract
Genetic engineering of hyperthermophilic organisms for the production of fuels and other useful chemicals is an emerging biotechnological opportunity. In particular, for volatile organic compounds such as ethanol, fermentation at high temperatures could allow for straightforward separation by direct distillation. Currently, the upper growth temperature limit for native ethanol producers is 72°C in the bacterium Thermoanaerobacter ethanolicus JW200, and the highest temperature for heterologously-engineered bioethanol production was recently demonstrated at 85°C in the archaeon Pyrococcus furiosus. Here, we describe an engineered strain of P. furiosus that synthesizes ethanol at 95°C, utilizing a homologously-expressed native alcohol dehydrogenase, termed AdhF. Ethanol biosynthesis was compared at 75°C and 95°C with various engineered strains. At lower temperatures, the acetaldehyde substrate for AdhF is most likely produced from acetate by aldehyde ferredoxin oxidoreductase (AOR). At higher temperatures, the effect of AOR on ethanol production is negligible, suggesting that acetaldehyde is produced by pyruvate ferredoxin oxidoreductase (POR) via oxidative decarboxylation of pyruvate, a reaction known to occur only at higher temperatures. Heterologous expression of a carbon monoxide dehydrogenase complex in the AdhF overexpression strain enabled it to use CO as a source of energy, leading to increased ethanol production. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes. This work opens the door to the potential for 'bioreactive distillation' since fermentation can be performed well above the normal boiling point of ethanol. IMPORTANCE Previously, the highest temperature for biological ethanol production was 85°C. Here, we have engineered ethanol production at 95°C by the hyperthermophilic archaeon Pyrococcus furiosus. Using mutant strains, we showed that ethanol production occurs by different pathways at 75°C and 95°C. In addition, by heterologous expression of a carbon monoxide dehydrogenase complex, ethanol production by this organism was driven by the oxidation of carbon monoxide. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes.
Collapse
Affiliation(s)
- Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Alexander T. Crowley
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Diep M. N. Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Matthew W. Keller
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hailey C. O’Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jason L. Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Greses S, De Bernardini N, Treu L, Campanaro S, González-Fernández C. Genome-centric metagenomics revealed the effect of pH on the microbiome involved in short-chain fatty acids and ethanol production. BIORESOURCE TECHNOLOGY 2023; 377:128920. [PMID: 36934910 DOI: 10.1016/j.biortech.2023.128920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Added-value chemicals production via food waste (FWs) valorization using open-mixed cultures is an emerging approach to replace petrochemical-based compounds. Nevertheless, the effects of operational parameters on the product spectrum remain uncertain given the wide number of co-occurring species and metabolisms. In this study, the identification of 58 metagenome-assembled genomes and their investigation assessed the effect of slight pH variations on microbial dynamics and the corresponding functions when FWs were subjected to anaerobic fermentation (AF) in 1-L continuous stirred tank reactors at 25 °C. The initial pH of 6.5 promoted a microbial community involved in acetate, butyrate and ethanol production, mediated by Bifidobacterium subtile IE007 and Eubacteriaceae IE027 as main species. A slight pH decrease to 6.1 shaped microbial functions that resulted in caproate and H2 production, increasing the relevance of Eubacteriaceae IE037 role. This study elucidated the strong pH effect on product outputs when minimal variations take place in AF.
Collapse
Affiliation(s)
- Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain.
| | - Nicola De Bernardini
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid 47011, Spain
| |
Collapse
|
12
|
Sharma BD, Olson DG, Giannone RJ, Hettich RL, Lynd LR. Characterization and Amelioration of Filtration Difficulties Encountered in Metabolomic Studies of Clostridium thermocellum at Elevated Sugar Concentrations. Appl Environ Microbiol 2023; 89:e0040623. [PMID: 37039651 PMCID: PMC10132107 DOI: 10.1128/aem.00406-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
Clostridium thermocellum, a promising candidate for consolidated bioprocessing, has been subjected to numerous engineering strategies for enhanced bioethanol production. Measurements of intracellular metabolites at substrate concentrations high enough (>50 g/L) to allow the production of industrially relevant titers of ethanol would inform efforts toward this end but have been difficult due to the production of a viscous substance that interferes with the filtration and quenching steps during metabolite extraction. To determine whether this problem is unique to C. thermocellum, we performed filtration experiments with other organisms that have been engineered for high-titer ethanol production, including Escherichia coli and Thermoanaerobacterium saccharolyticum. We addressed the problem through a series of improvements, including active pH control (to reduce problems with viscosity), investigation of different filter materials and pore sizes (to increase the filtration capacity), and correction for extracellular metabolite concentrations, and we developed a technique for more accurate intracellular metabolite measurements at elevated substrate concentrations. IMPORTANCE The accurate measurement of intracellular metabolites (metabolomics) is an integral part of metabolic engineering for the enhanced production of industrially important compounds and a useful technique to understand microbial physiology. Previous work tended to focus on model organisms under laboratory conditions. As we try to perform metabolomic studies with a wider range of organisms under conditions that more closely represent those found in nature or industry, we have found limitations in existing techniques. For example, fast filtration is an important step in quenching metabolism in preparation for metabolite extraction; however, it does not work for cultures of C. thermocellum at high substrate concentrations. In this work, we characterize the extent of the problem and develop techniques to overcome it.
Collapse
Affiliation(s)
- Bishal D. Sharma
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Daniel G. Olson
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Richard J. Giannone
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lee R. Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Enchi Corporation, Holliston, Massachusetts, USA
| |
Collapse
|
13
|
Kuil T, Yayo J, Pechan J, Küchler J, van Maris AJA. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity. Microb Cell Fact 2022; 21:273. [PMID: 36567317 PMCID: PMC9790125 DOI: 10.1186/s12934-022-01999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/17/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clostridium thermocellum is a promising candidate for consolidated bioprocessing of lignocellulosic biomass to ethanol. The low ethanol tolerance of this microorganism is one of the remaining obstacles to industrial implementation. Ethanol inhibition can be caused by end-product inhibition and/or chaotropic-induced stress resulting in increased membrane fluidization and disruption of macromolecules. The highly reversible glycolysis of C. thermocellum might be especially sensitive to end-product inhibition. The chaotropic effect of ethanol is known to increase with temperature. This study explores the relative contributions of these two aspects to investigate and possibly mitigate ethanol-induced stress in growing and non-growing C. thermocellum cultures. RESULTS To separate chaotropic from thermodynamic effects of ethanol toxicity, a non-ethanol producing strain AVM062 (Pclo1313_2638::ldh* ∆adhE) was constructed by deleting the bifunctional acetaldehyde/alcohol dehydrogenase gene, adhE, in a lactate-overproducing strain. Exogenously added ethanol lowered the growth rate of both wild-type and the non-ethanol producing mutant. The mutant strain grew quicker than the wild-type at 50 and 55 °C for ethanol concentrations ≥ 10 g L-1 and was able to reach higher maximum OD600 at all ethanol concentrations and temperatures. For the wild-type, the maximum OD600 and relative growth rates were higher at 45 and 50 °C, compared to 55 °C, for ethanol concentrations ≥ 15 g L-1. For the mutant strain, no positive effect on growth was observed at lower temperatures. Growth-arrested cells of the wild-type demonstrated improved fermentative capacity over time in the presence of ethanol concentrations up to 40 g L-1 at 45 and 50 °C compared to 55 °C. CONCLUSION Positive effects of temperature on ethanol tolerance were limited to wild-type C. thermocellum and are likely related to mechanisms involved in the ethanol-formation pathway and redox cofactor balancing. Lowering the cultivation temperature provides an attractive strategy to improve growth and fermentative capacity at high ethanol titres in high-cellulose loading batch cultivations. Finally, non-ethanol producing strains are useful platform strains to study the effects of chaotropicity and thermodynamics related to ethanol toxicity and allow for deeper understanding of growth and/or fermentation cessation under industrially relevant conditions.
Collapse
Affiliation(s)
- Teun Kuil
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Yayo
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johanna Pechan
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jan Küchler
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden ,grid.5807.a0000 0001 1018 4307Present Address: Max Plank Institute for Dynamics of Complex Technical Systems, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Antonius J. A. van Maris
- grid.5037.10000000121581746Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
14
|
Zhao W, Zhang X, Cai Y, Zhao S, Wang S. Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility. BIORESOURCE TECHNOLOGY 2022; 362:127795. [PMID: 35988858 DOI: 10.1016/j.biortech.2022.127795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Metronidazole (MNZ), an antibiotic that is specifically used for the treatment of anaerobic infections, may inhibit anaerobic fermentation. This work was designed to understand the fate and effects of MNZ in mesophilic fermentation (MF) and thermophilic fermentation (TF), respectively. The results showed that the removal of MNZ mainly occurred via biodegradation, rather than adsorption, and that MNZ could be completely degraded by opening the imidazole ring. MFs were more strongly inhibited by MNZ than TFs. MNZ concentration increased from 0 to 25 mg/L, hydrogen yield (HY) decreased from 167.5 to 16.8 mL/g glucose (90.0% decrease), and butyrate yield almost completely disappeared in MFs, whereas in TFs, HY decreased only from 101.1 to 89.3 mL/g glucose (11.7% decrease), and ethanol yield increased by 39.8%. Illumina MiSeq sequencing analysis showed that MNZ reduced the abundance of hydrogen-producing bacteria. Furthermore, the inhibition of MNZ on anaerobic fermentation was reversible.
Collapse
Affiliation(s)
- Wenqian Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Lazzini G, Romoli L, Fuso F. Fluid-driven bacterial accumulation in proximity of laser-textured surfaces. Colloids Surf B Biointerfaces 2022; 217:112654. [PMID: 35816878 DOI: 10.1016/j.colsurfb.2022.112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
In this work we investigated the role of fluid in the initial phase of bacterial adhesion on textured surfaces, focusing onto the approach of the bacterial cells towards the surface. In particular, stainless steel surfaces textured via femtosecond laser interaction have been considered. The method combined a simulation routine, based on the numerical solution of Navier-Stokes equations, and the use of a theoretical model, based on the Smoluchowski's equation. Results highlighted a slowdown of the fluid velocity field in correspondence of the surface dales. In addition, a shear induced accumulation on the top of the surface protrusions was predicted for motile bacterial species, E. coli. In particular, we observed a role of the surface protrusions in increasing the range over which motile bacterial species are attracted towards the surface through a rheotactic mechanism. In other words, we found that, in certain conditions of fluid flow and textured surface morphology, surface protrusions act as a sort of "rheotactic antennas".
Collapse
Affiliation(s)
- Gianmarco Lazzini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy.
| | - Luca Romoli
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | - Francesco Fuso
- Dipartimento di Fisica "Enrico Fermi", Universitá di Pisa, 56127 Pisa, Italy
| |
Collapse
|
16
|
Synergy of Cellulase Systems between Acetivibrio thermocellus and Thermoclostridium stercorarium in Consolidated-Bioprocessing for Cellulosic Ethanol. Microorganisms 2022; 10:microorganisms10030502. [PMID: 35336078 PMCID: PMC8951355 DOI: 10.3390/microorganisms10030502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Anaerobes harbor some of the most efficient biological machinery for cellulose degradation, especially thermophilic bacteria, such as Acetivibrio thermocellus and Thermoclostridium stercorarium, which play a fundamental role in transferring lignocellulose into ethanol through consolidated bioprocessing (CBP). In this study, we compared activities of two cellulase systems under varying kinds of hemicellulose and cellulose. A. thermocellus was identified to contribute specifically to cellulose hydrolysis, whereas T. stercorarium contributes to hemicellulose hydrolysis. The two systems were assayed in various combinations to assess their synergistic effects using cellulose and corn stover as the substrates. Their maximum synergy degrees on cellulose and corn stover were, respectively, 1.26 and 1.87 at the ratio of 3:2. Furthermore, co-culture of these anaerobes on the mixture of cellulose and xylan increased ethanol concentration from 21.0 to 40.4 mM with a high cellulose/xylan-to-ethanol conversion rate of up to 20.7%, while the conversion rates of T. stercorarium and A. thermocellus monocultures were 19.3% and 15.2%. The reason is that A. thermocellus had the ability to rapidly degrade cellulose while T. stercorarium co-utilized both pentose and hexose, the metabolites of cellulose degradation, to produce ethanol. The synergistic effect of cellulase systems and metabolic pathways in A. thermocellus and T. stercorarium provides a novel strategy for the design, selection, and optimization of ethanol production from cellulosic biomass through CBP.
Collapse
|
17
|
Martín C, Dixit P, Momayez F, Jönsson LJ. Hydrothermal Pretreatment of Lignocellulosic Feedstocks to Facilitate Biochemical Conversion. Front Bioeng Biotechnol 2022; 10:846592. [PMID: 35252154 PMCID: PMC8888528 DOI: 10.3389/fbioe.2022.846592] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/27/2022] Open
Abstract
Biochemical conversion of lignocellulosic feedstocks to advanced biofuels and other bio-based commodities typically includes physical diminution, hydrothermal pretreatment, enzymatic saccharification, and valorization of sugars and hydrolysis lignin. This approach is also known as a sugar-platform process. The goal of the pretreatment is to facilitate the ensuing enzymatic saccharification of cellulose, which is otherwise impractical due to the recalcitrance of lignocellulosic feedstocks. This review focuses on hydrothermal pretreatment in comparison to alternative pretreatment methods, biomass properties and recalcitrance, reaction conditions and chemistry of hydrothermal pretreatment, methodology for characterization of pretreatment processes and pretreated materials, and how pretreatment affects subsequent process steps, such as enzymatic saccharification and microbial fermentation. Biochemical conversion based on hydrothermal pretreatment of lignocellulosic feedstocks has emerged as a technology of high industrial relevance and as an area where advances in modern industrial biotechnology become useful for reducing environmental problems and the dependence on fossil resources.
Collapse
Affiliation(s)
- Carlos Martín
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Pooja Dixit
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Leif J. Jönsson
- Department of Chemistry, Umeå University, Umeå, Sweden
- *Correspondence: Leif J. Jönsson,
| |
Collapse
|
18
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
19
|
Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. BIORESOURCE TECHNOLOGY 2022; 344:126212. [PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Somayeh Dehhaghi
- Department of Agricultural Extension and Education, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
20
|
Modelling the effect of bioreactor height on stripping fermentation products from the engineered bacterium Geobacillus thermoglucosidasius. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Enhanced In Vitro Cascade Catalysis of Glycerol into Pyruvate and Acetoin by Integration with Dihydroxy Acid Dehydratase from Paralcaligenes ureilyticus. Catalysts 2021. [DOI: 10.3390/catal11111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently, an in vitro enzymatic cascade was constructed to transform glycerol into the high-value platform chemical pyruvate. However, the low activity of dihydroxy acid dehydratase from Sulfolobus solfataricus (SsDHAD) limited the efficiency. In this study, the enzymatic reduction of pyruvate catalyzed by d-lactate dehydrogenase from Pseudomonas aeruginosa PAO1 was used to assay the activities of dihydroxy acid dehydratases. Dihydroxy acid dehydratase from Paralcaligenes ureilyticus (PuDHT) was identified as the most efficient candidate for glycerate dehydration. After the optimization of the catalytic temperature for the enzymatic cascade, comprising alditol oxidase from Streptomyces coelicolor A3, PuDHT, and catalase from Aspergillus niger, 20.50 ± 0.27 mM of glycerol was consumed in 4 h to produce 18.95 ± 0.97 mM of pyruvate with a productivity 12.15-fold higher than the previous report using SsDHAD. The enzymatic cascade was further coupled with the pyruvate decarboxylase from Zymomonas mobile for the production of another platform compound, acetoin. Acetoin at a concentration of 8.52 ± 0.12 mM was produced from 21.62 ± 0.19 mM of glycerol with a productivity of 1.42 ± 0.02 mM h−1.
Collapse
|
22
|
Hitschler L, Nissen LS, Kuntz M, Basen M. Alcohol dehydrogenases AdhE and AdhB with broad substrate ranges are important enzymes for organic acid reduction in Thermoanaerobacter sp. strain X514. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:187. [PMID: 34563250 PMCID: PMC8466923 DOI: 10.1186/s13068-021-02038-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The industrial production of various alcohols from organic carbon compounds may be performed at high rates and with a low risk of contamination using thermophilic microorganisms as whole-cell catalysts. Thermoanaerobacter species that thrive around 50-75 °C not only perform fermentation of sugars to alcohols, but some also utilize different organic acids as electron acceptors, reducing them to their corresponding alcohols. RESULTS We purified AdhE as the major NADH- and AdhB as the major NADPH-dependent alcohol dehydrogenase (ADH) from the cell extract of the organic acid-reducing Thermoanaerobacter sp. strain X514. Both enzymes were present in high amounts during growth on glucose with and without isobutyrate, had broad substrate spectra including different aldehydes, with high affinities (< 1 mM) for acetaldehyde and for NADH (AdhE) or NADPH (AdhB). Both enzymes were highly thermostable at the physiological temperature of alcohol production. In addition to AdhE and AdhB, we identified two abundant AdhA-type ADHs based on their genes, which were recombinantly produced and biochemically characterized. The other five ADHs encoded in the genome were only expressed at low levels. CONCLUSIONS According to their biochemical and kinetic properties, AdhE and AdhB are most important for ethanol formation from sugar and reduction of organic acids to alcohols, while the role of the two AdhA-type enzymes is less clear. AdhE is the only abundant aldehyde dehydrogenase for the acetyl-CoA reduction to aldehydes, however, acid reduction may also proceed directly by aldehyde:ferredoxin oxidoreductase. The role of the latter in bio-alcohol formation from sugar and in organic acid reduction needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Lisa Hitschler
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue Str. 9, 60438, Frankfurt/Main, Germany
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Laura Sofie Nissen
- Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein Str. 3, 18059, Rostock, Germany
| | - Michelle Kuntz
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue Str. 9, 60438, Frankfurt/Main, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
| | - Mirko Basen
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue Str. 9, 60438, Frankfurt/Main, Germany.
- Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
23
|
Lau MSH, Sheng L, Zhang Y, Minton NP. Development of a Suite of Tools for Genome Editing in Parageobacillus thermoglucosidasius and Their Use to Identify the Potential of a Native Plasmid in the Generation of Stable Engineered Strains. ACS Synth Biol 2021; 10:1739-1749. [PMID: 34197093 DOI: 10.1021/acssynbio.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The relentless rise in the levels of atmospheric greenhouse gases caused by the exploitation of fossil fuel necessitates the development of more environmentally friendly routes to the manufacture of chemicals and fuels. The exploitation of a fermentative process that uses a thermophilic chassis represents an attractive option. Its use, however, is hindered by a dearth of genetic tools. Here we expand on those available for the engineering of the industrial chassis Parageobacillus thermoglucosidasius through the assembly and testing of a range of promoters, ribosome binding sites, reporter genes, and the implementation of CRISPR/Cas9 genome editing based on two different thermostable Cas9 nucleases. The latter were used to demonstrate that the deletion of the two native plasmids carried by P. thermoglucosidasius, pNCI001 and pNCI002, either singly or in combination, had no discernible effects on the overall phenotypic characteristics of the organism. Through the CRISPR/Cas9-mediated insertion of the gene encoding a novel fluorescent reporter, eCGP123, we showed that pNCI001 exhibited a high degree of segregational stability. As the relatively higher copy number of pNCI001 led to higher levels of eCGP123 expression than when the same gene was integrated into the chromosome, we propose that pNCI001 represents the preferred option for the integration of metabolic operons when stable commercial strains are required.
Collapse
Affiliation(s)
- Matthew S. H. Lau
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Lili Sheng
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
24
|
Adebami GE, Kuila A, Ajunwa OM, Fasiku SA, Asemoloye MD. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Arindam Kuila
- Department of Bioscience and Biotechnology Banasthali University Vanasthali India
| | - Obinna M. Ajunwa
- Department of Microbiology Modibbo Adama University of Technology Yola Nigeria
| | - Samuel A. Fasiku
- Department of Biological Sciences Ajayi Crowther University Oyo Nigeria
| | - Michael D. Asemoloye
- Department of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
25
|
Fu H, Luo S, Dai K, Qu C, Wang J. Engineering Thermoanaerobacterium aotearoense SCUT27/Δldh with pyruvate formate lyase-activating protein (PflA) knockout for enhanced ethanol tolerance and production. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Tarraran L, Gandini C, Luganini A, Mazzoli R. Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis. Biotechnol J 2021; 16:e2100064. [PMID: 34019730 DOI: 10.1002/biot.202100064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/05/2022]
Abstract
Engineering microbial strains combining efficient lignocellulose metabolization and high-value chemical production is a cutting-edge strategy towards cost-sustainable 2nd generation biorefining. Here, protein components of the Clostridium cellulovorans cellulosome were introduced in Lactococcus lactis IL1403, one of the most efficient lactic acid producers but unable to directly ferment cellulose. Cellulosomes are protein complexes with high cellulose depolymerization activity whose synergistic action is supported by scaffolding protein(s) (i.e., scaffoldins). Scaffoldins are involved in bringing enzymes close to each other and often anchor the cellulosome to the cell surface. In this study, three synthetic scaffoldins were engineered by using domains derived from the main scaffoldin CbpA and the Endoglucanase E (EngE) of the C. cellulovorans cellulosome. Special focus was on CbpA X2 and EngE S-layer homology (SLH) domains possibly involved in cell-surface anchoring. The recombinant scaffoldins were successfully introduced in and secreted by L. lactis. Among them, only that carrying the three EngE SLH modules was able to bind to the L. lactis surface although these domains lack the conserved TRAE motif thought to mediate binding with secondary cell wall polysaccharides. The synthetic scaffoldins engineered in this study could serve for assembly of secreted or surface-displayed designer cellulosomes in L. lactis.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Department of Applied Science and Technology, Politecnico of Turin, Torino, Italy
| | - Chiara Gandini
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
27
|
Zhou Z, Tang H, Wang W, Zhang L, Su F, Wu Y, Bai L, Li S, Sun Y, Tao F, Xu P. A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov 2021; 7:15. [PMID: 33727528 PMCID: PMC7966797 DOI: 10.1038/s41421-021-00246-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/27/2021] [Indexed: 01/18/2023] Open
Abstract
Endowing mesophilic microorganisms with high-temperature resistance is highly desirable for industrial microbial fermentation. Here, we report a cold-shock protein (CspL) that is an RNA chaperone protein from a lactate producing thermophile strain (Bacillus coagulans 2–6), which is able to recombinantly confer strong high-temperature resistance to other microorganisms. Transgenic cspL expression massively enhanced high-temperature growth of Escherichia coli (a 2.4-fold biomass increase at 45 °C) and eukaryote Saccharomyces cerevisiae (a 2.6-fold biomass increase at 36 °C). Importantly, we also found that CspL promotes growth rates at normal temperatures. Mechanistically, bio-layer interferometry characterized CspL’s nucleotide-binding functions in vitro, while in vivo we used RNA-Seq and RIP-Seq to reveal CspL’s global effects on mRNA accumulation and CspL’s direct RNA binding targets, respectively. Thus, beyond establishing how a cold-shock protein chaperone provides high-temperature resistance, our study introduces a strategy that may facilitate industrial thermal fermentation.
Collapse
Affiliation(s)
- Zikang Zhou
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lige Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fei Su
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuanting Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sicong Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, 430071, People's Republic of China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, Hubei, 430071, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
28
|
Fenton CA, Tang Q, Olson DG, Maloney MI, Bose JL, Lynd LR, Fenton AW. Inhibition of Pyruvate Kinase From Thermoanaerobacterium saccharolyticum by IMP Is Independent of the Extra-C Domain. Front Microbiol 2021; 12:628308. [PMID: 33679651 PMCID: PMC7925390 DOI: 10.3389/fmicb.2021.628308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum (TsPYK) has previously been used in metabolic engineering for improved ethanol production. This isozyme belongs to a subclass of PYK isozymes that include an extra C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than activators) of TsPYK. We believe this to be the first report of any PYK isozyme being inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset of those isozymes.
Collapse
Affiliation(s)
- Christopher A Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Qingling Tang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.,Oak Ridge National Laboratories, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Marybeth I Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.,Oak Ridge National Laboratories, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States.,Oak Ridge National Laboratories, Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Zhang B, Sun L, Song X, Huang D, Li M, Peng C, Wang W. Genetically engineered thermotolerant facultative anaerobes for high-efficient degradation of multiple hazardous nitroalkanes. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124253. [PMID: 33144004 DOI: 10.1016/j.jhazmat.2020.124253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Nitroalkanes are important industrial raw materials but also toxic pollutants, which are difficult to degrade once released into the environment. In this study, to significantly improve the degradation-efficiency of multiple nitroalkanes, a facultative anaerobe was genetically engineered, possible influencing factors and simulated application experiments of bioreactor were tested and evaluated. Among all engineered recombinants, the most effective strains NG-S1 (anaerobic) and NG-S2 (aerobic) displayed 2-fold and 2.8-fold final degradation rates higher than the wild type, respectively. Exogenous components, particularly those that enhance coenzyme synthesis, helped to increase the degradation rate, as the level of coenzymes affected full function of overexpressed nitroalkane oxidase. Importantly, simulated mixed-nitroalkane-wastewater bioreactor experiments proved excellent and sustainable degradation performance of the engineered strains for potential industrial applications. Collectively, these findings provide a promising thermophilic biological engineering platform and a new perspective for high-efficient and continuous environmental bioremediation of hazardous pollutants under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Xiaoru Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
30
|
Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 2021; 24:102168. [PMID: 33665582 PMCID: PMC7907465 DOI: 10.1016/j.isci.2021.102168] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/20/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Methanol biotransformation can expand biorefinery substrate spectrum other than biomass by using methylotrophic microbes. Ogataea (Hansenula) polymorpha, a representative methylotrophic yeast, attracts much attention due to its thermotolerance, but the low homologous recombination (HR) efficiency hinders its precise genetic manipulation during cell factory construction. Here, recombination machinery engineering (rME) is explored for enhancing HR activity together with establishing an efficient CRISPR-Cas9 system in O. polymorpha. Overexpression of HR-related proteins and down-regulation of non-homologous end joining (NHEJ) increased HR rates from 20%-30% to 60%-70%. With these recombination perturbation mutants, a competition between HR and NHEJ is observed. This HR up-regulated system has been applied for homologous integration of large fragments and in vivo assembly of multiple fragments, which enables the production of fatty alcohols in O. polymorpha. These findings will simplify genetic engineering in non-conventional yeasts and facilitate the adoption of O. polymorpha as an attractive cell factory for industrial application.
Collapse
|
31
|
Mohanraju P, Mougiakos I, Albers J, Mabuchi M, Fuchs RT, Curcuru JL, van Kranenburg R, Robb GB, van der Oost J. Development of a Cas12a-Based Genome Editing Tool for Moderate Thermophiles. CRISPR J 2021; 4:82-91. [PMID: 33538626 DOI: 10.1089/crispr.2020.0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of CRISPR-Cas12a nucleases to function reliably in a wide range of species has been key to their rapid adoption as genome engineering tools. However, so far, Cas12a nucleases have been limited for use in organisms with growth temperatures up to 37 °C. Here, we biochemically characterize three Cas12a orthologs for their temperature stability and activity. We demonstrate that Francisella novicida Cas12a (FnCas12a) has great biochemical potential for applications that require enhanced stability, including use at temperatures >37°C. Furthermore, by employing the moderate thermophilic bacterium Bacillus smithii as our experimental platform, we demonstrate that FnCas12a is active in vivo at temperatures up to 43°C. Subsequently, we develop a single-plasmid FnCas12a-based genome editing tool for B. smithii, combining the FnCas12a targeting system with plasmid-borne homologous recombination (HR) templates that carry the desired modifications. Culturing of B. smithii cells at 45°C allows for the uninhibited realization of the HR-based editing step, while a subsequent culturing step at reduced temperatures induces the efficient counterselection of the non-edited cells by FnCas12a. The developed gene-editing tool yields gene-knockout mutants within 3 days, and does not require tightly controllable expression of FnCas12a to achieve high editing efficiencies, indicating its potential for other (thermophilic) bacteria and archaea, including those with minimal genetic toolboxes. Altogether, our findings provide new biochemical insights into three widely used Cas12a nucleases, and establish the first Cas12a-based bacterial genome editing tools for moderate thermophilic microorganisms.
Collapse
Affiliation(s)
- Prarthana Mohanraju
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ioannis Mougiakos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Justin Albers
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Ryan T Fuchs
- New England Biolabs, Ipswich, Massachusetts, USA
| | | | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.,Corbion, Gorinchem, The Netherlands
| | - G Brett Robb
- New England Biolabs, Ipswich, Massachusetts, USA
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
32
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
33
|
Rubinstein GM, Lipscomb GL, Williams-Rhaesa AM, Schut GJ, Kelly RM, Adams MWW. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. J Ind Microbiol Biotechnol 2020; 47:585-597. [PMID: 32783103 DOI: 10.1007/s10295-020-02299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.
Collapse
Affiliation(s)
- Gabriel M Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
34
|
Kahn A, Moraïs S, Chung D, Sarai NS, Hengge NN, Kahn A, Himmel ME, Bayer EA, Bomble YJ. Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis. FEBS J 2020; 287:4370-4388. [DOI: 10.1111/febs.15251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/06/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Amaranta Kahn
- Department of Biomolecular Sciences The Weizmann Institute of Science Rehovot Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences The Weizmann Institute of Science Rehovot Israel
- Faculty of Natural Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Daehwan Chung
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| | - Nicholas S. Sarai
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| | - Neal N. Hengge
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| | - Audrey Kahn
- Department of Biomolecular Sciences The Weizmann Institute of Science Rehovot Israel
| | - Michael E. Himmel
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| | - Edward A. Bayer
- Department of Biomolecular Sciences The Weizmann Institute of Science Rehovot Israel
| | - Yannick J. Bomble
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| |
Collapse
|
35
|
Mazzoli R, Olson D. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:111-161. [PMID: 32948265 DOI: 10.1016/bs.aambs.2020.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second generation biorefining, namely fermentation processes based on lignocellulosic feedstocks, has attracted tremendous interest (owing to the large availability and low cost of this biomass) as a strategy to produce biofuels and commodity chemicals that is an alternative to oil refining. However, the innate recalcitrance of lignocellulose has slowed progress toward economically viable processes. Consolidated bioprocessing (CBP), i.e., single-step fermentation of lignocellulose may dramatically reduce the current costs of 2nd generation biorefining. Metabolic engineering has been used as a tool to develop improved microbial strains supporting CBP. Clostridium thermocellum is among the most efficient cellulose degraders isolated so far and one of the most promising host organisms for application of CBP. The development of efficient and reliable genetic tools has allowed significant progress in metabolic engineering of this strain aimed at expanding the panel of growth substrates and improving the production of a number of commodity chemicals of industrial interest such as ethanol, butanol, isobutanol, isobutyl acetate and lactic acid. The present review aims to summarize recent developments in metabolic engineering of this organism which currently represents a reference model for the development of biocatalysts for 2nd generation biorefining.
Collapse
|
36
|
Holwerda EK, Olson DG, Ruppertsberger NM, Stevenson DM, Murphy SJL, Maloney MI, Lanahan AA, Amador-Noguez D, Lynd LR. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:40. [PMID: 32175007 PMCID: PMC7063780 DOI: 10.1186/s13068-020-01680-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Engineering efforts targeted at increasing ethanol by modifying the central fermentative metabolism of Clostridium thermocellum have been variably successful. Here, we aim to understand this variation by a multifaceted approach including genomic and transcriptomic analysis combined with chemostat cultivation and high solids cellulose fermentation. Three strain lineages comprising 16 strains total were examined. Two strain lineages in which genes involved in pathways leading to organic acids and/or sporulation had been knocked out resulted in four end-strains after adaptive laboratory evolution (ALE). A third strain lineage recapitulated mutations involving adhE that occurred spontaneously in some of the engineered strains. RESULTS Contrary to lactate dehydrogenase, deleting phosphotransacetylase (pta, acetate) negatively affected steady-state biomass concentration and caused increased extracellular levels of free amino acids and pyruvate, while no increase in ethanol was detected. Adaptive laboratory evolution (ALE) improved growth and shifted elevated levels of amino acids and pyruvate towards ethanol, but not for all strain lineages. Three out of four end-strains produced ethanol at higher yield, and one did not. The occurrence of a mutation in the adhE gene, expanding its nicotinamide-cofactor compatibility, enabled two end-strains to produce more ethanol. A disruption in the hfsB hydrogenase is likely the reason why a third end-strain was able to make more ethanol. RNAseq analysis showed that the distribution of fermentation products was generally not regulated at the transcript level. At 120 g/L cellulose loadings, deletions of spo0A, ldh and pta and adaptive evolution did not negatively influence cellulose solubilization and utilization capabilities. Strains with a disruption in hfsB or a mutation in adhE produced more ethanol, isobutanol and 2,3-butanediol under these conditions and the highest isobutanol and ethanol titers reached were 5.1 and 29.9 g/L, respectively. CONCLUSIONS Modifications in the organic acid fermentative pathways in Clostridium thermocellum caused an increase in extracellular pyruvate and free amino acids. Adaptive laboratory evolution led to improved growth, and an increase in ethanol yield and production due a mutation in adhE or a disruption in hfsB. Strains with deletions in ldh and pta pathways and subjected to ALE demonstrated undiminished cellulolytic capabilities when cultured on high cellulose loadings.
Collapse
Affiliation(s)
- Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sean J. L. Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Anthony A. Lanahan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
37
|
Abstract
Thermophilic microbes are an attractive bioproduction platform due to their inherently lower contamination risk and their ability to perform thermostable enzymatic processes which may be required for biomass processing and other industrial applications. The engineering of microbes for industrial scale processes requires a suite of genetic engineering tools to optimize existing biological systems as well as to design and incorporate new metabolic pathways within strains. Yet, such tools are often lacking and/or inadequate for novel microbes, especially thermophiles. This chapter focuses on genetic tool development and engineering strategies, in addition to challenges, for thermophilic microbes. We provide detailed instructions and techniques for tool development for an anaerobic thermophile, Caldanaerobacter subterraneus subsp. tengcongensis, including culturing, plasmid construction, transformation, and selection. This establishes a foundation for advanced genetic tool development necessary for the metabolic engineering of this microbe and potentially other thermophilic organisms.
Collapse
|
38
|
Hou X, Dai C, Tang Y, Xing Z, Mintah BK, Dabbour M, Ding Q, He R, Ma H. Thermophilic solid-state fermentation of rapeseed meal and analysis of microbial community diversity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Nissen LS, Basen M. The emerging role of aldehyde:ferredoxin oxidoreductases in microbially-catalyzed alcohol production. J Biotechnol 2019; 306:105-117. [DOI: 10.1016/j.jbiotec.2019.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
|
40
|
Sutiono S, Satzinger K, Pick A, Carsten J, Sieber V. To beat the heat - engineering of the most thermostable pyruvate decarboxylase to date. RSC Adv 2019; 9:29743-29746. [PMID: 35531508 PMCID: PMC9071941 DOI: 10.1039/c9ra06251c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Pyruvate decarboxylase (PDC) is a key enzyme for the production of ethanol at high temperatures and for cell-free butanol synthesis. Thermostable, organic solvent stable PDC was evolved from bacterial PDCs. The new variant shows >1500-fold-improved half-life at 75 °C and >5000-fold-increased half-life in the presence of 9 vol% butanol at 50 °C.
Collapse
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Katharina Satzinger
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - André Pick
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
| | - Jörg Carsten
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
- Catalytic Research Center, Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich Schulgasse 16 94315 Straubing Germany
- Catalytic Research Center, Technical University of Munich Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
- Straubing Branch BioCat Fraunhofer IGB Schulgasse 11a 94315 Straubing Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland 68 Copper Road St. Lucia 4072 Australia
| |
Collapse
|
41
|
Lin JH, Zhang KC, Tao WY, Wang D, Li S. Geobacillus strains that have potential value in microbial enhanced oil recovery. Appl Microbiol Biotechnol 2019; 103:8339-8350. [PMID: 31501940 DOI: 10.1007/s00253-019-10115-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022]
Abstract
Bacteria from the genus Geobacillus are generally obligately thermophilic, with a unique bioenergy production capacity and unique enzymes. Geobacillus species were isolated primarily from hot springs, oilfields, and associated soils. They often exhibit unique survival patterns in these extreme oligotrophic environments. With the development of the microbial resources found in oilfields, Geobacillus spp. have been proven as valuable bacteria in many reports related to oilfields. After the isolation of Geobacillus by culture methods, more evidence was found that they possess the abilities of hydrocarbon utilization and bioemulsifier production. This paper mainly summarizes some characteristics of the Geobacillus species found in the oilfield environment, focusing on the inference and analysis of hydrocarbon degradation and bioemulsifier synthesis based on existing research, which may reveal their potential value in microbial enhanced oil recovery. It also provides references for understanding microbes in extreme environments.
Collapse
Affiliation(s)
- Jia-Hui Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Kun-Cheng Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Wei-Yi Tao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Dan Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road, Nanjing, 211800, China.
| |
Collapse
|
42
|
Dash S, Olson DG, Joshua Chan SH, Amador-Noguez D, Lynd LR, Maranas CD. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab Eng 2019; 55:161-169. [PMID: 31220663 DOI: 10.1016/j.ymben.2019.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Clostridium thermocellum is a candidate for consolidated bioprocessing by carrying out both cellulose solubilization and fermentation. However, despite significant efforts the maximum ethanol titer achieved to date remains below industrially required targets. Several studies have analyzed the impact of increasing ethanol concentration on C. thermocellum's membrane properties, cofactor pool ratios, and altered enzyme regulation. In this study, we explore the extent to which thermodynamic equilibrium limits maximum ethanol titer. We used the max-min driving force (MDF) algorithm (Noor et al., 2014) to identify the range of allowable metabolite concentrations that maintain a negative free energy change for all reaction steps in the pathway from cellobiose to ethanol. To this end, we used a time-series metabolite concentration dataset to flag five reactions (phosphofructokinase (PFK), fructose bisphosphate aldolase (FBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH)) which become thermodynamic bottlenecks under high external ethanol concentrations. Thermodynamic analysis was also deployed in a prospective mode to evaluate genetic interventions which can improve pathway thermodynamics by generating minimal set of reactions or elementary flux modes (EFMs) which possess unique genetic variations while ensuring mass and redox balance with ethanol production. MDF evaluation of all generated (336) EFMs indicated that, i) pyruvate phosphate dikinase (PPDK) has a higher pathway MDF than the malate shunt alternative due to limiting CO2 concentrations under physiological conditions, and ii) NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) can alleviate thermodynamic bottlenecks at high ethanol concentrations due to cofactor modification and reduction in ATP generation. The combination of ATP linked phosphofructokinase (PFK-ATP) and NADPH linked alcohol dehydrogenase (ADH-NADPH) with NADPH linked aldehyde dehydrogenase (ALDH-NADPH) or ferredoxin: NADP + oxidoreductase (NADPH-FNOR) emerges as the best intervention strategy for ethanol production that balances MDF improvements with ATP generation, and appears to functionally reproduce the pathway employed by the ethanologen Thermoanaerobacterium saccharolyticum. Expanding the list of measured intracellular metabolites and improving the quantification accuracy of measurements was found to improve the fidelity of pathway thermodynamics analysis in C. thermocellum. This study demonstrates even before addressing an organism's enzyme kinetics and allosteric regulations, pathway thermodynamics can flag pathway bottlenecks and identify testable strategies for enhancing pathway thermodynamic feasibility and function.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, University Park, PA, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| |
Collapse
|
43
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
44
|
Li H, Mei X, Liu B, Xie G, Ren N, Xing D. Quantitative proteomic analysis reveals the ethanologenic metabolism regulation of Ethanoligenens harbinense by exogenous ethanol addition. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:166. [PMID: 31297154 PMCID: PMC6598285 DOI: 10.1186/s13068-019-1511-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND H2-ethanol-coproducing bacteria, as primary fermenters, play important roles in the microbiome of bioreactors for bioenergy production from organic wastewater or solid wastes. Ethanoligenens harbinense YUAN-3 is an anaerobic ethanol-H2-fermenting bacterium. Ethanol is one of the main end-products of strain YUAN-3 that influence its fermentative process. Until recently, the molecular mechanism of metabolic regulation in strain YUAN-3 during ethanol accumulation has still been unclear. This study aims to elucidate the metabolic regulation mechanisms in strain YUAN-3, which contributes to effectively shape the microbiome for biofuel and bioenergy production from waste stream. RESULTS This study reports that ethanol stress altered the distribution of end-product yields in the H2-ethanol-coproducing Ethanoligenens harbinense strain YUAN-3. Decreasing trends of hydrogen yield from 1888.6 ± 45.8 to 837 ± 64.7 mL L-1 and acetic acid yield from 1767.7 ± 45 to 160.6 ± 44.7 mg L-1 were observed in strain YUAN-3 with increasing exogenous ethanol (0 mM-200 mM). However, the ethanol yield of strain YUAN-3 increased by 15.1%, 30.1%, and 27.4% in 50 mM, 100 mM, and 200 mM ethanol stress, respectively. The endogenous ethanol accounted for 96.1% (w/w) in liquid end-products when exogenous ethanol of 200 mM was added. The molar ratio of ethanol to acetic acid increased 14 times (exogenous ethanol of 200 mM) compared to the control. iTRAQ-based quantitative proteomic analysis indicated that 263 proteins of strain YUAN-3 were differentially expressed in 50 mM, 100 mM, and 200 mM of exogenous ethanol. These proteins are mainly involved in amino acid transport and metabolism, central carbon metabolism, and oxidative stress response. CONCLUSION These differentially expressed proteins play important roles in metabolic changes necessary for growth and survival of strain YUAN-3 during ethanol stress. The up-regulation of bifunctional acetaldehyde-CoA/alcohol dehydrogenase (ADHE) was the main reason why ethanol production was enhanced, while hydrogen gas and acetic acid yields declined in strain YUAN-3 during ethanol stress. This study also provides a new approach for the enhancement of ethanologenesis by H2-ethanol-coproducing bacteria through exogenous ethanol addition.
Collapse
Affiliation(s)
- Huahua Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Xiaoxue Mei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, No. 73 Huanghe Road, Nangang District, Harbin, 150090 Heilongjiang China
| |
Collapse
|
45
|
Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Metab Eng 2018; 51:32-42. [PMID: 30218716 DOI: 10.1016/j.ymben.2018.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
The thermophilic anaerobes Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are good candidates for lignocellulosic ethanol production. T. saccharolyticum has been successfully engineered to produce ethanol at high titer (70 g/L). The maximum ethanol titer of engineered strains of C. thermocellum is only 25 g/L. We hypothesize that one or more of the enzymes in the ethanol production pathway in C. thermocellum is not adequate for ethanol production at high titer. In this study, we focused on the enzymes responsible for the part of the ethanol production pathway from pyruvate to ethanol. In T. saccharolyticum, we replaced all of the genes encoding proteins in this pathway with their homologs from C. thermocellum and examined what combination of gene replacements restricted ethanol titer. We found that a pathway consisting of Ct_nfnAB, Ct_fd, Ct_adhE and Ts_pforA was sufficient to support ethanol titer greater than 50 g/L, however replacement of Ts_pforA by Ct_pfor1 dramatically decreased the maximum ethanol titer to 14 g/L. We then demonstrated that the reason for reduced ethanol production is that the Ct_pfor1 is inhibited by accumulation of ethanol and NADH, while Ts_pforA is not.
Collapse
|
46
|
Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG. Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:242. [PMID: 30202437 PMCID: PMC6125887 DOI: 10.1186/s13068-018-1245-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Clostridium thermocellum has been the subject of multiple metabolic engineering strategies to improve its ability to ferment cellulose to ethanol, with varying degrees of success. For ethanol production in C. thermocellum, the conversion of pyruvate to acetyl-CoA is catalyzed primarily by the pyruvate ferredoxin oxidoreductase (PFOR) pathway. Thermoanaerobacterium saccharolyticum, which was previously engineered to produce ethanol of high yield (> 80%) and titer (70 g/L), also uses a pyruvate ferredoxin oxidoreductase, pforA, for ethanol production. RESULTS Here, we introduced the T. saccharolyticum pforA and ferredoxin into C. thermocellum. The introduction of pforA resulted in significant improvements to ethanol yield and titer in C. thermocellum grown on 50 g/L of cellobiose, but only when four other T. saccharolyticum genes (adhA, nfnA, nfnB, and adhEG544D ) were also present. T. saccharolyticum ferredoxin did not have any observable impact on ethanol production. The improvement to ethanol production was sustained even when all annotated native C. thermocellum pfor genes were deleted. On high cellulose concentrations, the maximum ethanol titer achieved by this engineered C. thermocellum strain from 100 g/L Avicel was 25 g/L, compared to 22 g/L for the reference strain, LL1319 (adhA(Tsc)-nfnAB(Tsc)-adhEG544D (Tsc)) under similar conditions. In addition, we also observed that deletion of the C. thermocellum pfor4 results in a significant decrease in isobutanol production. CONCLUSIONS Here, we demonstrate that the pforA gene can improve ethanol production in C. thermocellum as part of the T. saccharolyticum pyruvate-to-ethanol pathway. In our previous strain, high-yield (~ 75% of theoretical) ethanol production could be achieved with at most 20 g/L substrate. In this strain, high-yield ethanol production can be achieved up to 50 g/L substrate. Furthermore, the introduction of pforA increased the maximum titer by 14%.
Collapse
Affiliation(s)
- Shuen Hon
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Robert S. Worthen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| | - Jingxuan Cui
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Paul P. Lin
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Daniel G. Olson
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA
- Bioenergy Science Center, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratories, Oak Ridge, TN 37830 USA
| |
Collapse
|
47
|
Kothari N, Holwerda EK, Cai CM, Kumar R, Wyman CE. Biomass augmentation through thermochemical pretreatments greatly enhances digestion of switchgrass by Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:219. [PMID: 30087696 PMCID: PMC6076393 DOI: 10.1186/s13068-018-1216-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 06/06/2023]
Abstract
BACKGROUND The thermophilic anaerobic bacterium Clostridium thermocellum is a multifunctional ethanol producer, capable of both saccharification and fermentation, that is central to the consolidated bioprocessing (CBP) approach of converting lignocellulosic biomass to ethanol without external enzyme supplementation. Although CBP organisms have evolved efficient machinery for biomass deconstruction, achieving complete solubilization requires targeted approaches, such as pretreatment, to prepare recalcitrant biomass feedstocks for further biological digestion. Here, differences between how C. thermocellum and fungal cellulases respond to senescent switchgrass prepared by four different pretreatment techniques revealed relationships between biomass substrate composition and its digestion by the two biological approaches. RESULTS Alamo switchgrass was pretreated using hydrothermal, dilute acid, dilute alkali, and co-solvent-enhanced lignocellulosic fractionation (CELF) pretreatments to produce solids with varying glucan, xylan, and lignin compositions. C. thermocellum achieved highest sugar release and metabolite production from de-lignified switchgrass prepared by CELF and dilute alkali pretreatments demonstrating greater resilience to the presence of hemicellulose sugars than fungal enzymes. 100% glucan solubilization and glucan plus xylan release from switchgrass were achieved using the CELF-CBP combination. Lower glucan solubilization and metabolite production by C. thermocellum was observed on solids prepared by dilute acid and hydrothermal pretreatments with higher xylan removal from switchgrass than lignin removal. Further, C. thermocellum (2% by volume inoculum) showed ~ 48% glucan solubilization compared to < 10% through fungal enzymatic hydrolysis (15 and 65 mg protein/g glucan loadings) of unpretreated switchgrass indicating the effectiveness of C. thermocellum's cellulosome. Overall, C. thermocellum performed equivalent to 65 and better than 15 mg protein/g glucan fungal enzymatic hydrolysis on all substrates except CELF-pretreated substrates. CELF pretreatments of switchgrass produced solids that were highly digestible regardless of whether C. thermocellum or fungal enzymes were chosen. CONCLUSIONS The unparalleled comprehensive nature of this work with a comparison of four pretreatment and two biological digestion techniques provides a strong platform for future integration of pretreatment with CBP. Lignin removal had a more positive impact on biological digestion of switchgrass than xylan removal from the biomass. However, the impact of switchgrass structural properties, including cellulose, hemicellulose, and lignin characterization, would provide a better understanding of lignocellulose deconstruction.
Collapse
Affiliation(s)
- Ninad Kothari
- Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Charles M. Cai
- Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Charles E. Wyman
- Dept. of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside (UCR), Riverside, CA USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
48
|
Hitschler L, Kuntz M, Langschied F, Basen M. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols. Appl Microbiol Biotechnol 2018; 102:8465-8476. [DOI: 10.1007/s00253-018-9210-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
|
49
|
Sammond DW, Kastelowitz N, Donohoe BS, Alahuhta M, Lunin VV, Chung D, Sarai NS, Yin H, Mittal A, Himmel ME, Guss AM, Bomble YJ. An iterative computational design approach to increase the thermal endurance of a mesophilic enzyme. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:189. [PMID: 30002729 PMCID: PMC6036693 DOI: 10.1186/s13068-018-1178-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/18/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Strategies for maximizing the microbial production of bio-based chemicals and fuels include eliminating branched points to streamline metabolic pathways. While this is often achieved by removing key enzymes, the introduction of nonnative enzymes can provide metabolic shortcuts, bypassing branched points to decrease the production of undesired side-products. Pyruvate decarboxylase (PDC) can provide such a shortcut in industrially promising thermophilic organisms; yet to date, this enzyme has not been found in any thermophilic organism. Incorporating nonnative enzymes into host organisms can be challenging in cases such as this, where the enzyme has evolved in a very different environment from that of the host. RESULTS In this study, we use computational protein design to engineer the Zymomonas mobilis PDC to resist thermal denaturation at the growth temperature of a thermophilic host. We generate thirteen PDC variants using the Rosetta protein design software. We measure thermal stability of the wild-type PDC and PDC variants using circular dichroism. We then measure and compare enzyme endurance for wild-type PDC with the PDC variants at an elevated temperature of 60 °C (thermal endurance) using differential interference contrast imaging. CONCLUSIONS We find that increases in melting temperature (Tm) do not directly correlate with increases in thermal endurance at 60 °C. We also do not find evidence that any individual mutation or design approach is the major contributor to the most thermostable PDC variant. Rather, remarkable cooperativity among sixteen thermostabilizing mutations is key to rationally designing a PDC with significantly enhanced thermal endurance. These results suggest a generalizable iterative computational protein design approach to improve thermal stability and endurance of target enzymes.
Collapse
Affiliation(s)
- Deanne W. Sammond
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Noah Kastelowitz
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Vladimir V. Lunin
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Hang Yin
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA
| | - Ashutosh Mittal
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| |
Collapse
|
50
|
Fujii K, Tominaga Y, Okunaka J, Yagi H, Ohshiro T, Suzuki H. Microbial and genomic characterization of Geobacillus thermodenitrificans OS27, a marine thermophile that degrades diverse raw seaweeds. Appl Microbiol Biotechnol 2018; 102:4901-4913. [DOI: 10.1007/s00253-018-8958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 02/03/2023]
|