1
|
Liu X, Wang D, Zhang Z, Lin X, Xiao J. Epigenetic perspectives on wheat speciation, adaptation, and development. Trends Genet 2025:S0168-9525(25)00083-6. [PMID: 40348655 DOI: 10.1016/j.tig.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Bread wheat (Triticum aestivum) has undergone a complex evolutionary history shaped by polyploidization, domestication, and adaptation. Recent advances in multiomics approaches have shed light on the role of epigenetic mechanisms, including DNA methylation, histone modification, chromatin accessibility, and noncoding RNAs, in regulating gene expression throughout these processes. Epigenomic reprogramming contributes to genome stability and subgenome differentiation and modulates key agronomic traits by influencing flowering time, environmental responses, and developmental programs. This review synthesizes current insights into epigenetic regulation of wheat speciation, adaptation, and development, highlighting their potential applications in crop improvement. A deeper understanding of these mechanisms will facilitate targeted breeding strategies leveraging epigenetic variations to enhance wheat resilience and productivity in the face of changing environments.
Collapse
Affiliation(s)
- Xuemei Liu
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoheng Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelei Lin
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, CAS, Beijing, 100101, China.
| |
Collapse
|
2
|
Rahman MM, Keya SS, Bulle M, Ahsan SM, Rahman MA, Roni MS, Al Noor MM, Hasan M. Past trauma, better future: how stress memory shapes plant adaptation to drought. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24355. [PMID: 40373187 DOI: 10.1071/fp24355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/23/2025] [Indexed: 05/17/2025]
Abstract
Can plants remember drought? Emerging evidence suggests that prior stress exposure leaves an epigenetic imprint, reprogramming plants for enhanced resilience. However, the stability and functional relevance of drought memory remain unresolved. This review synthesizes recent advances in epigenetic modifications, transcriptional reprogramming, and metabolic priming, critically assessing their roles in plant stress adaptation. DNA methylation dynamically reshapes chromatin landscapes, yet its transient nature questions its long-term inheritance. Histone modifications, particularly H3K9ac and H2Bub1, may encode stress signatures, enabling rapid transcriptional responses, whereas small RNAs fine-tune chromatin states to reinforce memory. Beyond epigenetics, physiological priming, including osmotic adjustments, antioxidant defenses, and hormonal crosstalk, introduces further complexity, yet its evolutionary advantage remains unclear. Root system plasticity may enhance drought resilience, but its metabolic trade-offs and epigenetic underpinnings are largely unexplored. A critical challenge is disentangling stable adaptive mechanisms from transient acclimatory shifts. We propose a framework for evaluating drought memory across temporal and generational scales and highlight the potential of precision genome editing to establish causality. By integrating multi-omics, gene editing, and field-based validation, this review aims to unlock the molecular blueprint of drought memory. Understanding these mechanisms is key to engineering climate-resilient crops, ensuring global food security in an era of increasing environmental uncertainty.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; and Department of Agroforestry and Environment, Gazipur Agricultural University, Gazipur 1706, Bangladesh
| | - Sanjida Sultana Keya
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Mallesham Bulle
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - S M Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; and Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Abiar Rahman
- Department of Agroforestry and Environment, Gazipur Agricultural University, Gazipur 1706, Bangladesh; and CIFOR-ICRAF Bangladesh, GAU Campus, Gazipur 1706, Bangladesh
| | - Md Shyduzzaman Roni
- Department of Horticulture, Gazipur Agricultural University, Gazipur 1706, Bangladesh
| | - Md Mahmud Al Noor
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, 2202, Bangladesh
| | - Mehedi Hasan
- Department of Agriculture, Gopalganj Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
3
|
Ali N, Singh S, Garg R. Unlocking crops' genetic potential: Advances in genome and epigenome editing of regulatory regions. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102669. [PMID: 39603170 DOI: 10.1016/j.pbi.2024.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Genome editing tools could precisely and efficiently target plant genomes leading to the development of improved crops. Besides editing the coding regions, researchers can employ editing technologies to target specific gene regulatory elements or modify epigenetic marks associated with distal regulatory regions, thereby regulating gene expression in crops. This review outlines several prominent genome editing technologies, including CRISPR-Cas9, TALENs, and ZFNs and recent advancements. The applications for genome and epigenome editing especially of regulatory regions in crop plants is also discussed, including efforts to enhance abiotic stress tolerance, yield, disease resistance and plant phenotype. Additionally, the review addresses the potential of epigenetic modifications, such as DNA methylation and histone modifications, to alter gene expression for crop improvement. Finally, the limitations and future scope of utilizing various genome editing tools to manipulate regulatory elements for gene regulation to unlock the full potential of these tools in plant breeding has been discussed.
Collapse
Affiliation(s)
- Namra Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Shubhangi Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
4
|
Zhang Y, Tang M, Zhang Y, Cheng Q, Liu L, Chen W, Xie J, Cheng J, Fu Y, Li B, Jiang D, Yu X. An enhancer-promoter-transcription factor module orchestrates plant immune homeostasis by constraining camalexin biosynthesis. MOLECULAR PLANT 2025; 18:95-113. [PMID: 39628054 DOI: 10.1016/j.molp.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Effective plant defense against pathogens relies on highly coordinated regulation of immune gene expression. Enhancers, as cis-regulatory elements, are indispensable determinants of dynamic gene regulation, but the molecular functions in plant immunity are not well understood. In this study, we identified a novel enhancer, CORE PATTERN-INDUCED ENHANCER 35 (CPIE35), which is rapidly activated upon pathogenic elicitation and negatively regulates antifungal resistance through modulating WRKY15 expression. During immune activation, CPIE35 activates the transcription of WRKY15 by forming chromatin loops with the promoter of WRKY15 in a WRKY18/40/60-, WRKY33-, and MYC2-dependent manner. WRKY15 directly binds to the promoters of PAD3 and GSTU4, suppressing their expression and leading to reduced camalexin synthesis and resistance. Interestingly, CPIE35 region is evolutionarily conserved among Brassicaceae plants, and the CPIE35-WRKY15 module exerts similar functions in Brassica napus to negatively regulate antifungal resistance. Our work reveals the "enhancer-promoter-transcription factor" regulatory mechanism in maintenance of immune homeostasis, highlighting the importance and conserved role of enhancers in fine-tuning immune gene expression in plants.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Meng Tang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Qinglin Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan 430062, China
| | - Wei Chen
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Wen C, Yuan Z, Zhang X, Chen H, Luo L, Li W, Li T, Ma N, Mao F, Lin D, Lin Z, Lin C, Xu T, Lü P, Lin J, Zhu F. Sea-ATI unravels novel vocabularies of plant active cistrome. Nucleic Acids Res 2023; 51:11568-11583. [PMID: 37850650 PMCID: PMC10681729 DOI: 10.1093/nar/gkad853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Collapse
Affiliation(s)
- Chenjin Wen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhen Yuan
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaotian Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wanying Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Dongmei Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhanxi Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chentao Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tongda Xu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Juncheng Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
6
|
Jores T, Hamm M, Cuperus JT, Queitsch C. Frontiers and techniques in plant gene regulation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102403. [PMID: 37331209 DOI: 10.1016/j.pbi.2023.102403] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Understanding plant gene regulation has been a priority for generations of plant scientists. However, due to its complex nature, the regulatory code governing plant gene expression has yet to be deciphered comprehensively. Recently developed methods-often relying on next-generation sequencing technology and state-of-the-art computational approaches-have started to further our understanding of the gene regulatory logic used by plants. In this review, we discuss these methods and the insights into the regulatory code of plants that they can yield.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Morgan Hamm
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Großkinsky DK, Faure JD, Gibon Y, Haslam RP, Usadel B, Zanetti F, Jonak C. The potential of integrative phenomics to harness underutilized crops for improving stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1216337. [PMID: 37409292 PMCID: PMC10318926 DOI: 10.3389/fpls.2023.1216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Dominik K. Großkinsky
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
- Bordeaux Metabolome, INRAE, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Björn Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum, Jülich, Germany
- Biological Data Science, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Federica Zanetti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| |
Collapse
|
8
|
Kumar K, Mandal SN, Pradhan B, Kaur P, Kaur K, Neelam K. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. PLANT & CELL PHYSIOLOGY 2022; 63:1607-1623. [PMID: 36018059 DOI: 10.1093/pcp/pcac124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crop domestication has a tremendous impact on socioeconomic conditions and human civilization. Modern cultivars were domesticated from their wild progenitors thousands of years ago by the selection of natural variation by humans. New cultivars are being developed by crossing two or more compatible individuals. But the limited genetic diversity in the cultivars severely affects the yield and renders the crop susceptible to many biotic and abiotic stresses. Crop wild relatives (CWRs) are the rich reservoir for many valuable agronomic traits. The incorporation of useful genes from CWR is one of the sustainable approaches for enriching the gene pool of cultivated crops. However, CWRs are not suited for urban and intensive cultivation because of several undesirable traits. Researchers have begun to study the domestication traits in the CWRs and modify them using genome-editing tools to make them suitable for extensive cultivation. Growing evidence has shown that modification in these genes is not sufficient to bring the desired change in the neodomesticated crop. However, the other dynamic genetic factors such as microRNAs (miRNAs), transposable elements, cis-regulatory elements and epigenetic changes have reshaped the domesticated crops. The creation of allelic series for many valuable domestication traits through genome editing holds great potential for the accelerated development of neodomesticated crops. The present review describes the current understanding of the genetics of domestication traits that are responsible for the agricultural revolution. The targeted mutagenesis in these domestication genes via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 could be used for the rapid domestication of CWRs.
Collapse
Affiliation(s)
- Kishor Kumar
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Swarupa Nanda Mandal
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Extended Campus, Burdwan, West Bengal 713101, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79415, USA
| | - Bhubaneswar Pradhan
- Faculty Centre for Integrated Rural Development and Management, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata 700103, India
| | - Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
9
|
Negrão S, Julkowska MM. Editorial overview: Plant biotechnology. Curr Opin Biotechnol 2022; 75:102733. [PMID: 35562266 DOI: 10.1016/j.copbio.2022.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland.
| | | |
Collapse
|
10
|
Decoding the sorghum methylome: understanding epigenetic contributions to agronomic traits. Biochem Soc Trans 2022; 50:583-596. [PMID: 35212360 PMCID: PMC9022969 DOI: 10.1042/bst20210908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation is a chromatin modification that plays an essential role in regulating gene expression and genome stability and it is typically associated with gene silencing and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methylation have the potential to provide for epigenetic inheritance of traits. Contemporary epigenomic technologies provide information beyond sequence variation and could supply alternative sources of trait variation for improvement in crops such as sorghum. Yet, compared with other species such as maize and rice, the sorghum DNA methylome is far less well understood. The distribution of CG, CHG, and CHH methylation in the genome is different compared with other species. CG and CHG methylation levels peak around centromeric segments in the sorghum genome and are far more depleted in the gene dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet to be functionally characterised; better understanding of their identity and functional analysis of DNA methylation machinery mutants in diverse genotypes will be important to better characterise the sorghum methylome. Here, we catalogue homologous genes encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis, maize, and rice. Discovering variation in the methylome may uncover epialleles that provide extra information to explain trait variation and has the potential to be applied in epigenome-wide association studies or genomic prediction. DNA methylation can also improve genome annotations and discover regulatory elements underlying traits. Thus, improving our knowledge of the sorghum methylome can enhance our understanding of the molecular basis of traits and may be useful to improve sorghum performance.
Collapse
|
11
|
Epigenome guided crop improvement: current progress and future opportunities. Emerg Top Life Sci 2022; 6:141-151. [PMID: 35072210 PMCID: PMC9023013 DOI: 10.1042/etls20210258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term ‘epigenome guided’ improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.
Collapse
|
12
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|