1
|
Steeghs TJ, van Engelshoven L, Kuijpers SPL, Coolen NMM, van de Ridder CJ, van Geffen M, Lous EJ, Schols SEM, Veer CV, van Heerde WL. Novel microfluidic device for factor VIII quantification by chemiluminescence in hemophilia A patients. Biosens Bioelectron 2025; 282:117469. [PMID: 40286644 DOI: 10.1016/j.bios.2025.117469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Point-of-care (PoC) testing can revolutionize diagnostics, enabling early detection and disease monitoring for chronic disorders. However, current PoC systems often lack the adaptability to detect multiple analytes. We present a capillary-based microfluidic detection platform with integrated optical sensors, that allows for an array of 16 simultaneous measurements using a chemiluminescent readout. The device consists of a disposable part containing microfluidics and a reusable part with integrated optical sensors. To demonstrate proof-of-principle, the current study specifically focuses on quantifying clotting Factor VIII (FVIII), a critical parameter in Hemophilia A management. Therefore, a chemiluminescent-based FVIII assay (FVIIIlum) was designed to quantify the activity levels in citrated plasma samples. All reagents necessary for the assay are contained in the disposable part of the device. To detect FIXa/FVIIIa tenase activity, a caged chemiluminescent substrate specific for activated Factor X (FXa) was synthesized for ultrasensitive real-time measurement of FVIII-mediated FXa generation. Experiments with the FVIIIlum, performed with the microfluidic cartridge with dried-in reagents, showed high level of precision. In addition, the FVIIIlum was capable to distinguish FVIII deficient plasma from plasma with only 0.017 IU/mL activity, demonstrating its applicability for Hemophilia A management. Finally, proof-of-principle was obtained by pharmacokinetic monitoring of FVIII activity in patient samples, demonstrating good agreement with the reference method. This study successfully presents a new miniaturized chemiluminescent platform, incorporating microfluidics and photon sensors, designed to detect multiple parameters in parallel per cartridge.
Collapse
Affiliation(s)
- T J Steeghs
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands; Department of Haematology, Radboud university medical centre, Nijmegen, the Netherlands.
| | | | - S P L Kuijpers
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands
| | - N M M Coolen
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands
| | | | - M van Geffen
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands
| | - E J Lous
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands
| | - S E M Schols
- Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Radboudumc, Nijmegen, the Netherlands; Department of Haematology, Radboud university medical centre, Nijmegen, the Netherlands
| | - C Van't Veer
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands
| | - W L van Heerde
- Enzyre B.V, Novio Tech Campus, Nijmegen, the Netherlands; Hemophilia Treatment Centre Nijmegen-Eindhoven-Maastricht, Radboudumc, Nijmegen, the Netherlands; Department of Haematology, Radboud university medical centre, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Narváez A, Jiménez J, Rodríguez-Núñez M, Torre M, Carro E, Marco MP, Domínguez E. A Fast Immunosensor Based on Biohybrid Self-Assembled Nanostructures for the Detection of KYNA as a Cerebrospinal Fluid Biomarker for Alzehimer's Disease. ACS MEASUREMENT SCIENCE AU 2025; 5:242-249. [PMID: 40255604 PMCID: PMC12006949 DOI: 10.1021/acsmeasuresciau.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Although the role of kynurenic acid (KYNA) is not yet fully understood, recent research has implicated this tryptophan (Trp) metabolite as a significant biomarker in neurodegenerative diseases. In this study, we developed an immunosensor platform based on self-assembled polyelectrolyte multilayers (PEMs), employing an enzyme-labeled immunoreagent in a competitive displacement format that requires only a single wash step. This immunosensor enables the detection of KYNA and Trp with detection limits (LOD) of 9 pg/mL and 1.2 ng/mL, respectively. Results validated by traditional ELISA methods indicated elevated levels of KYNA and an increased KYNA/Trp ratio in the cerebrospinal fluid (CSF) of Alzheimer's patients compared to controls, consistent with previous findings. Additionally, this immunosensor platform can be readily adapted to detect other neuroactive Trp metabolites by substituting specific immunoreagents, supporting a flexible profile-based approach. This platform could serve as a rapid, cost-effective clinical tool for monitoring neurological and psychiatric disorders, potentially advancing therapeutic strategy development.
Collapse
Affiliation(s)
- A. Narváez
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| | - J. Jiménez
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| | - M. Rodríguez-Núñez
- Surfactants
and Nanobiotechnology Department, Nanobiotechnology for Diagnostics
(Nb4D) Group, Institute for Advanced Chemistry
of Catalonia (IQAC) of the Spanish National Research Council (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - M. Torre
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| | - E. Carro
- Group
of Neurodegenerative Diseases, Hospital
12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- CIBER
de Enfermedades Neurodegenerativas (CIBERNED)s, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - M.-P. Marco
- Surfactants
and Nanobiotechnology Department, Nanobiotechnology for Diagnostics
(Nb4D) Group, Institute for Advanced Chemistry
of Catalonia (IQAC) of the Spanish National Research Council (CSIC), 08034 Barcelona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E. Domínguez
- Bioanalysis
and Biosensor group, University of Alcalá, 28805 Alcalá
de Henares, Spain
| |
Collapse
|
3
|
Hueso L, Martorell S, Sena-Torralba A, Ferrando M, Ferri M, Maquieira A, Ntoumi F, Morais S. Recombinase polymerase amplification technology for point-of-care diagnosis of neglected tropical diseases. Int J Infect Dis 2025; 153:107831. [PMID: 39900222 DOI: 10.1016/j.ijid.2025.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Recombinase Polymerase Amplification (RPA) technology significantly advances the diagnostics of neglected tropical diseases (NTDs), providing rapid, isothermal, and minimally preparative testing ideally suited for under-resourced countries. This review critically assesses the current applications, limitations, and potential of RPA for detecting a broad spectrum of NTD pathogens, including viruses, bacteria, helminths, and fungi. The ability of RPA to operate under constant temperature conditions without the need for complex thermal cycling facilitates rapid pathogen detection within minutes, enhancing its utility for decentralized point-of-care testing in remote and underserved regions. RPA, however, faces limitations, including the labor-intensive and costly validation of primer design, especially for multiplex assays, and a susceptibility to nonspecific amplification. These challenges highlight the need for continuous refinement to ensure reliable and consistent performance across diverse environmental conditions. Despite these constraints, the scalability of RPA assays and their compatibility with portable detection platforms make them well-suited for deployment in field settings without access to traditional laboratory infrastructure. This review emphasizes the transformative potential of RPA in NTD diagnostics, enhancing accessibility, precision, and timeliness of interventions, ultimately contributing to improved global public health outcomes.
Collapse
Affiliation(s)
- Luisa Hueso
- Kveloce (Senior Europa S.L.), Plaza de la Reina 19, Valencia, Spain
| | - Sara Martorell
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
| | - Maite Ferrando
- Kveloce (Senior Europa S.L.), Plaza de la Reina 19, Valencia, Spain
| | - Mireia Ferri
- Kveloce (Senior Europa S.L.), Plaza de la Reina 19, Valencia, Spain
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Francine Ntoumi
- Institute for Tropical Medicine, University of Tübingen, Germany; Congolese Foundation for Medical Research (FCRM), Brazzaville, Republic of Congo
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
4
|
Wilkirson E, Li D, Lillehoj PB. Lateral Flow-Based Skin Patch for Rapid Detection of Protein Biomarkers in Human Dermal Interstitial Fluid. ACS Sens 2024; 9:5792-5801. [PMID: 39455057 PMCID: PMC11590092 DOI: 10.1021/acssensors.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024]
Abstract
Rapid diagnostic tests (RDTs) offer valuable diagnostic information in a quick, easy-to-use and low-cost format. While RDTs are one of the most commonly used tools for in vitro diagnostic testing, they require the collection of a blood sample, which is painful, poses risks of infection and can lead to complications. We introduce a blood-free point-of-care diagnostic test for the rapid detection of protein biomarkers in dermal interstitial fluid (ISF). This device consists of a lateral flow immunochromatographic assay (LFIA) integrated within a microfluidic skin patch. ISF is collected from the skin using a microneedle array and vacuum-assisted extraction system integrated in the patch, and transported through the lateral flow strip via surface tension. Using this skin patch platform, we demonstrate in situ detection of anti-tetanus toxoid IgG and SARS-CoV-2 neutralizing antibodies, which could be accurately detected in human ISF in <20 min. We envision that this device can be readily modified to detect other protein biomarkers in dermal ISF, making it a promising tool for rapid diagnostic testing.
Collapse
Affiliation(s)
- Elizabeth
C. Wilkirson
- Department
of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
| | - Danika Li
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Peter B. Lillehoj
- Department
of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Shao F, Hu J, Zhang P, Akarapipad P, Park JS, Lei H, Hsieh K, Wang TH. Enhanced CRISPR/Cas-Based Immunoassay through Magnetic Proximity Extension and Detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313206. [PMID: 39314939 PMCID: PMC11419220 DOI: 10.1101/2024.09.06.24313206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated systems have recently emerged as a focal point for developing next-generation molecular diagnosis, particularly for nucleic acid detection. However, the detection of proteins is equally critical across diverse applications in biology, medicine, and the food industry, especially for diagnosing and prognosing diseases like cancer, Alzheimer's and cardiovascular conditions. Despite recent efforts to adapt CRISPR/Cas systems for protein detection with immunoassays, these methods typically achieved sensitivity only in the femtomolar to picomolar range, underscoring the need for enhanced detection capabilities. To address this, we developed CRISPR-AMPED, an innovative CRISPR/Cas-based immunoassay enhanced by magnetic proximity extension and detection. This approach combines proximity extension assay (PEA) with magnetic beads that converts protein into DNA barcodes for quantification with effective washing steps to minimize non-specific binding and hybridization, therefore reducing background noise and increasing detection sensitivity. The resulting DNA barcodes are then detected through isothermal nucleic acid amplification testing (NAAT) using recombinase polymerase amplification (RPA) coupled with the CRISPR/Cas12a system, replacing the traditional PCR. This integration eliminates the need for thermocycling and bulky equipment, reduces amplification time, and provides simultaneous target and signal amplification, thereby significantly boosting detection sensitivity. CRISPR-AMPED achieves attomolar level sensitivity, surpassing ELISA by over three orders of magnitude and outperforming existing CRISPR/Cas-based detection systems. Additionally, our smartphone-based detection device demonstrates potential for point-of-care applications, and the digital format extends dynamic range and enhances quantitation precision. We believe CRISPR-AMPED represents a significant advancement in the field of protein detection.
Collapse
|
6
|
Jiang X, Wilkirson EC, Bailey AO, Russell WK, Lillehoj PB. Microneedle-based sampling of dermal interstitial fluid using a vacuum-assisted skin patch. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101975. [PMID: 38947182 PMCID: PMC11211974 DOI: 10.1016/j.xcrp.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 07/02/2024]
Abstract
Interstitial fluid (ISF) contains a wealth of biomolecules, yet it is underutilized for diagnostic testing due to a lack of rapid and simple techniques for collecting abundant amounts of fluid. Here, we report a simple and minimally invasive technique for rapidly sampling larger quantities of ISF from human skin. A microneedle array is used to generate micropores in skin from which ISF is extracted using a vacuum-assisted skin patch. Using this technique, an average of 20.8 μL of dermal ISF is collected in 25 min, which is an ∼6-fold improvement over existing sampling methods. Proteomic analysis of collected ISF reveals that it has nearly identical protein composition as blood, and >600 medically relevant biomarkers are identified. Toward this end, we demonstrate the detection of SARS-CoV-2 neutralizing antibodies in ISF collected from COVID-19 vaccinees using two commercial immunoassays, showcasing the utility of this technique for diagnostic testing.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Mechanical Engineering, Rice University, Houston 77005, TX, USA
| | | | - Aaron O. Bailey
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston 77550, TX, USA
| | - William K. Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston 77550, TX, USA
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston 77005, TX, USA
- Department of Bioengineering, Rice University, Houston 77030, TX, USA
| |
Collapse
|
7
|
de la Rica-Martinez A, Martínez-Muñoz G, Sanjuan MA, Conesa-Celdrán A, Garcia-Moreno L, Estan-Cerezo G, Oates MJ, Gonzalo-Jimenez N, Ruiz-Canales A. Low-Cost Electronic Nose for the Determination of Urinary Infections. SENSORS (BASEL, SWITZERLAND) 2023; 24:157. [PMID: 38203029 PMCID: PMC10781376 DOI: 10.3390/s24010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Currently, urine samples for bacterial or fungal infections require a long diagnostic period (48 h). In the present work, a point-of-care device known as an electronic nose (eNose) has been designed based on the "smell print" of infections, since each one emits various volatile organic compounds (VOC) that can be registered by the electronic systems of the device and recognized in a very short time. Urine samples were analyzed in parallel using urine culture and eNose technology. A total of 203 urine samples were analyzed, of which 106 were infected and 97 were not infected. A principal component analysis (PCA) was performed using these data. The algorithm was initially capable of correctly classifying 49% of the total samples. By using SVM-based models, it is possible to improve the accuracy of the classification up to 74% when randomly using 85% of the data for training and 15% for validation. The model is evaluated as having a correct classification rate of 74%. In conclusion, the diagnostic accuracy of the eNose in urine samples is high, promising and amenable for further improvement, and the eNose has the potential to become a feasible, reproducible, low-cost and high-precision device to be applied in clinical practice for the diagnosis of urinary tract infections.
Collapse
Affiliation(s)
- Alba de la Rica-Martinez
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Gemma Martínez-Muñoz
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| | - Marta Amoros Sanjuan
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Agustín Conesa-Celdrán
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| | - Lucía Garcia-Moreno
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Gabriel Estan-Cerezo
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Martin J. Oates
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| | - Nieves Gonzalo-Jimenez
- Servicio de Microbiología, Hospital General Universitario de Elche, 03202 Elche, Spain; (A.d.l.R.-M.); (M.A.S.); (L.G.-M.); (G.E.-C.); (N.G.-J.)
| | - Antonio Ruiz-Canales
- Engineering Department, Miguel Hernández University of Elche, 03312 Orihuela, Spain (A.C.-C.); (M.J.O.)
| |
Collapse
|
8
|
Saleh RI, Kim S, Lee SH, Kwon H, Jeong HE, Cha C. Manipulating Physicochemical Properties of Biosensor Platform with Polysuccinimide-Silica Nanocomposite for Enhanced Protein Detection. Adv Healthc Mater 2023; 12:e2301774. [PMID: 37485740 DOI: 10.1002/adhm.202301774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Indexed: 07/25/2023]
Abstract
As point-of-care testing (POCT) is becoming the new paradigm of medical diagnostics, there is a growing need to develop reliable POCT devices that can be conveniently operated in a minimally invasive manner. However, the clinical potential of POCT diagnostics is yet to be realized, mainly due to the limited and inconsistent amount of collected samples on these devices, undermining their accuracy. This study proposes a new biosensing platform modified with a functional polysuccinimide (PSI)-silica nanoparticle (SNP) composite system that can substantially increase the protein conjugation efficiency by modulating physicochemical interaction with proteins by several hundred percent from an unmodified device. The efficacy of this PSI-SNP system is further validated by applying it on the surface of a microneedle array (MN), which has emerged as a promising POCT device capable of accessing interstitial fluid through minimal penetration of the skin. This PSI-SNP MN is demonstrated to detect a wide array of proteins with high sensitivity on par with conventional whole serum analysis, validated by in vivo animal testing, effectively displaying broad applicability in biomedical engineering.
Collapse
Affiliation(s)
- Rabi Ibrahim Saleh
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suntae Kim
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyukjoo Kwon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
9
|
Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem 2023:10.1007/s00216-023-04627-5. [PMID: 36917265 PMCID: PMC10011785 DOI: 10.1007/s00216-023-04627-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/15/2023]
Abstract
The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.
Collapse
Affiliation(s)
- Elizabeth C Wilkirson
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kavya L Singampalli
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jiran Li
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Desh Deepak Dixit
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xue Jiang
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Diego H Gonzalez
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA
| | - Peter B Lillehoj
- Department of Mechanical Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA.
- Department of Bioengineering, Rice University, 6500 Main St., Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Méndez Hernández R, Ramasco Rueda F. Biomarkers as Prognostic Predictors and Therapeutic Guide in Critically Ill Patients: Clinical Evidence. J Pers Med 2023; 13:jpm13020333. [PMID: 36836567 PMCID: PMC9965041 DOI: 10.3390/jpm13020333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
A biomarker is a molecule that can be measured in a biological sample in an objective, systematic, and precise way, whose levels indicate whether a process is normal or pathological. Knowing the most important biomarkers and their characteristics is the key to precision medicine in intensive and perioperative care. Biomarkers can be used to diagnose, in assessment of disease severity, to stratify risk, to predict and guide clinical decisions, and to guide treatments and response to them. In this review, we will analyze what characteristics a biomarker should have and how to ensure its usefulness, and we will review the biomarkers that in our opinion can make their knowledge more useful to the reader in their clinical practice, with a future perspective. These biomarkers, in our opinion, are lactate, C-Reactive Protein, Troponins T and I, Brain Natriuretic Peptides, Procalcitonin, MR-ProAdrenomedullin and BioAdrenomedullin, Neutrophil/lymphocyte ratio and lymphopenia, Proenkephalin, NefroCheck, Neutrophil gelatinase-associated lipocalin (NGAL), Interleukin 6, Urokinase-type soluble plasminogen activator receptor (suPAR), Presepsin, Pancreatic Stone Protein (PSP), and Dipeptidyl peptidase 3 (DPP3). Finally, we propose an approach to the perioperative evaluation of high-risk patients and critically ill patients in the Intensive Care Unit (ICU) based on biomarkers.
Collapse
|
11
|
Piorino F, Styczynski MP. Harnessing Escherichia coli's Native Machinery for Detection of Vitamin C (Ascorbate) Deficiency. ACS Synth Biol 2022; 11:3592-3600. [PMID: 36300901 PMCID: PMC9807260 DOI: 10.1021/acssynbio.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vitamin C (l-ascorbate) deficiency is a global public health issue most prevalent in resource-limited regions, creating a need for an inexpensive detection platform. Here, we describe efforts to engineer whole-cell and cell-free ascorbate biosensors. Both sensors used the protein UlaR, which binds to a metabolite of ascorbate and regulates transcription. The whole-cell sensor could detect lower, physiologically relevant concentrations of ascorbate, which we attributed to intact functionality of a phosphotransferase system (PTS) that transports ascorbate across the cell membrane and phosphorylates it to form UlaR's ligand. We used multiple strategies to enhance cell-free PTS functionality (which has received little previous attention), improving the cell-free sensor's performance, but the whole-cell sensor remained more sensitive. These efforts demonstrated an advantage of whole-cell sensors for detection of molecules─like ascorbate─transformed by a PTS, but also proof of principle for cell-free sensors requiring membrane-bound components like the PTS. In addition, the cell-free sensor was functional in plasma, setting the stage for future implementation of ascorbate sensors for clinically relevant biofluids in field-deployable formats.
Collapse
Affiliation(s)
- Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
12
|
Xu P, Zhou K. Editorial overview: Analytical biotechnology for healthcare, strain engineering, biosensing and synthetic biology. Curr Opin Biotechnol 2022; 77:102765. [PMID: 35988531 DOI: 10.1016/j.copbio.2022.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Xu
- Department of Chemical Engineering, Guangdong - Technion, Israel Institute of Technology, Shantou 515063, China.
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|