1
|
Wang Y, Lin X, Li J, Huang G, Pan HJ. Design, Synthesis and Activity Evaluation of Methylene-H 4MPT Mimics. Chemistry 2025; 31:e202500234. [PMID: 40159382 DOI: 10.1002/chem.202500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/02/2025]
Abstract
Tetrahydromethanopterin (H4MPT) is a specialized coenzyme found in methanogenic archaea and methylotrophic bacteria, essential for one-carbon (C1) transfer and redox reactions in processes like methanogenesis. However, its structural complexity and limited availability hinder its use in studying archaeal metabolism and H4MPT-dependent enzymes. Inspired by the success of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) biomimetic compounds, we employed a similar structural simplification strategy for methylene-H4MPT, designing four mimics (mimics 1-4) that retain the crucial hydride-donating imidazolidine unit while modifying the pterin structure and hydrophilic tail. Structural and crystallographic analysis of methylene-H4MPT-bound enzymes, including H4MPT-dependent formaldehyde-activating enzyme MtdA and H4MPT-dependent formaldehyde-activating enzyme Fae, highlighted the importance of the pterin group in hydrogen bonding and active site interactions. Activity evaluation of the mimics in hydride transfer assays and relay reactions with MtdA and NADPH-dependent ketoreductase CgKR1 showed that the pterin structure is critical for enzymatic activity, and improving water solubility via hydrophilic tail modification enhances performance. This biomimetic approach offers functional substitutes for methylene-H4MPT and potentially valuable tools for studying archaeal metabolism and synthetic microbial systems for C1 compound utilization.
Collapse
Affiliation(s)
- Yutian Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBic), ChemBioMed Interdisciplinary Research Center at Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Xinhui Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBic), ChemBioMed Interdisciplinary Research Center at Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Jinsi Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBic), ChemBioMed Interdisciplinary Research Center at Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Gangfeng Huang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hui-Jie Pan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBic), ChemBioMed Interdisciplinary Research Center at Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Puiggené Ò, Favoino G, Federici F, Partipilo M, Orsi E, Alván-Vargas MVG, Hernández-Sancho JM, Dekker NK, Ørsted EC, Bozkurt EU, Grassi S, Martí-Pagés J, Volke DC, Nikel PI. Seven critical challenges in synthetic one-carbon assimilation and their potential solutions. FEMS Microbiol Rev 2025; 49:fuaf011. [PMID: 40175298 PMCID: PMC12010959 DOI: 10.1093/femsre/fuaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Synthetic C1 assimilation holds the promise of facilitating carbon capture while mitigating greenhouse gas emissions, yet practical implementation in microbial hosts remains relatively limited. Despite substantial progress in pathway design and prototyping, most efforts stay at the proof-of-concept stage, with frequent failures observed even under in vitro conditions. This review identifies seven major barriers constraining the deployment of synthetic C1 metabolism in microorganisms and proposes targeted strategies for overcoming these issues. A primary limitation is the low catalytic activity of carbon-fixing enzymes, particularly carboxylases, which restricts the overall pathway performance. In parallel, challenges in expressing multiple heterologous genes-especially those encoding metal-dependent or oxygen-sensitive enzymes-further hinder pathway functionality. At the systems level, synthetic C1 pathways often exhibit poor flux distribution, limited integration with the host metabolism, accumulation of toxic intermediates, and disruptions in redox and energy balance. These factors collectively reduce biomass formation and compromise product yields in biotechnological setups. Overcoming these interconnected challenges is essential for moving synthetic C1 assimilation beyond conceptual stages and enabling its application in scalable, efficient bioprocesses towards a circular bioeconomy.
Collapse
Affiliation(s)
- Òscar Puiggené
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Giusi Favoino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filippo Federici
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michele Partipilo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nienke K Dekker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sara Grassi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Martí-Pagés
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Orsi E, Hernández-Sancho JM, Remeijer MS, Kruis AJ, Volke DC, Claassens NJ, Paul CE, Bruggeman FJ, Weusthuis RA, Nikel PI. Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks. Curr Opin Biotechnol 2024; 90:103195. [PMID: 39288659 DOI: 10.1016/j.copbio.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maaike S Remeijer
- Amsterdam Institute for Life and Environment and Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nico J Claassens
- Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, the Netherlands
| | - Frank J Bruggeman
- Amsterdam Institute for Life and Environment and Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Hümmler LM, Lindner SN. Orthogonal redox control. Nat Chem Biol 2024; 20:1395-1396. [PMID: 39317846 DOI: 10.1038/s41589-024-01728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Affiliation(s)
- Lena M Hümmler
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Steffen N Lindner
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
| |
Collapse
|
5
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|