1
|
Garoffolo G, Sluiter TJ, Thomas A, Piacentini L, Ruiter MS, Schiavo A, Salvi M, Saccu C, Zoli S, Chiesa M, Yokoyama T, Agrifoglio M, Soncini M, Fiore GB, Martelli F, Condorelli G, Madeddu P, Molinari F, Morbiducci U, Quax PHA, Spinetti G, de Vries MR, Pesce M. Blockade of YAP Mechanoactivation Prevents Neointima Formation and Adverse Remodeling in Arterialized Vein Grafts. J Am Heart Assoc 2025; 14:e037531. [PMID: 40118797 DOI: 10.1161/jaha.124.037531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Bypass surgery using saphenous vein (SV) grafts is commonly performed to revascularize the ischemic heart and lower limbs. These interventions have limited success due to adverse remodeling caused by overproliferation of smooth muscle cells in the intima layer, leading to progressive bypass stenosis. We previously showed that cyclic strain deriving from exposure to coronary flow induces the expression of the matricellular protein thrombospondin-1 in the human SV, promoting activation of progenitor cells normally residing in the adventitia. METHODS We analyzed the data of an RNA-sequencing profiling of human SV progenitors subjected to uniaxial strain we previously performed by. Experiments in cell culture, ex vivo, and in vivo vein arterialization models were performed to substantiate findings with particular reference to the role of mechanically activated transcription factors. Validation was performed in vitro and in ex vivo/in vivo models of vein graft disease. RESULTS Results of bioinformatic assessment of the RNA-sequencing data indicated Yes-associated protein (YAP) as a possible mechanically regulated effector in pathologic evolution of SV progenitors. Inhibition of YAP by verteprofin-a drug that abolishes the interaction of YAP with Tea Domain DNA-binding proteins-reduced the expression of pathologic markers in vitro and reduced intima hyperplasia in vivo. CONCLUSIONS Our results reveal that desensitizing the SV-resident cells to mechanoactivation of YAP is feasible to reduce the graft disease progression.
Collapse
MESH Headings
- Humans
- Vascular Remodeling/drug effects
- Saphenous Vein/transplantation
- Saphenous Vein/metabolism
- Saphenous Vein/pathology
- Animals
- YAP-Signaling Proteins
- Neointima/prevention & control
- Neointima/metabolism
- Neointima/pathology
- Graft Occlusion, Vascular/prevention & control
- Graft Occlusion, Vascular/metabolism
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/genetics
- Disease Models, Animal
- Male
- Mechanotransduction, Cellular/drug effects
- Cells, Cultured
- Mice
- Transcription Factors/metabolism
- Coronary Artery Bypass/adverse effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Cell Proliferation
Collapse
Affiliation(s)
| | - Thijs J Sluiter
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery Leiden University Medical Center (LUMC) Leiden The Netherlands
| | - Anita Thomas
- Bristol Medical School, University of Bristol United Kingdom
| | | | | | | | - Massimo Salvi
- Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino Turin Italy
| | | | | | | | - Takumi Yokoyama
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery Leiden University Medical Center (LUMC) Leiden The Netherlands
| | | | - Monica Soncini
- Dipartimento di Bioingegneria, Elettronica ed Informazione Politecnico di Milano Milan Italy
| | - Gianfranco B Fiore
- Dipartimento di Bioingegneria, Elettronica ed Informazione Politecnico di Milano Milan Italy
| | - Fabio Martelli
- Laboratorio di Cardiologica Molecolare IRCCS Policlinico San Donato Milan Italy
| | - Gianluigi Condorelli
- Humanitas Cardio-Center IRCCS Humanitas Research Hospital Rozzano Italy
- Department of Biomedical Sciences Humanitas University Pieve Emanuele Italy
| | - Paolo Madeddu
- Bristol Medical School, University of Bristol United Kingdom
| | - Filippo Molinari
- Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino Turin Italy
| | - Umberto Morbiducci
- Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino Turin Italy
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery Leiden University Medical Center (LUMC) Leiden The Netherlands
| | - Gaia Spinetti
- Unità di Ricerca Cardiovascolare IRCCS Multimedica Milan Italy
| | - Margreet R de Vries
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery Leiden University Medical Center (LUMC) Leiden The Netherlands
- Department of Surgery Brigham & Women's Hospital and Harvard Medical School Boston MA
| | - Maurizio Pesce
- Centro Cardiologico Monzino IRCCS Milan Italy
- Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino Turin Italy
- Department of Cell Biology King Faisal Specialist Hospital & Research Center Riyadh Saudi Arabia
| |
Collapse
|
2
|
Zhou Z, Chen W, Cao Y, Abdi R, Tao W. Nanomedicine-based strategies for the treatment of vein graft disease. Nat Rev Cardiol 2025; 22:255-272. [PMID: 39501093 PMCID: PMC11925677 DOI: 10.1038/s41569-024-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
Abstract
Autologous saphenous veins are the most frequently used conduits for coronary and peripheral artery bypass grafting. However, vein graft failure rates of 40-50% within 10 years of the implantation lead to poor long-term outcomes after bypass surgery. Currently, only a few therapeutic approaches for vein graft disease have been successfully translated into clinical practice. Building on the past two decades of advanced understanding of vein graft biology and the pathophysiological mechanisms underlying vein graft disease, nanomedicine-based strategies offer promising opportunities to address this important unmet clinical need. In this Review, we provide deep insight into the latest developments in the rational design and applications of nanoparticles that have the potential to target specific cells during various pathophysiological stages of vein graft disease, including early endothelial dysfunction, intermediate intimal hyperplasia and late-stage accelerated atherosclerosis. Additionally, we underscore the convergence of nanofabricated biomaterials, with a particular focus on hydrogels, external graft support devices and cell-based therapies, alongside bypass surgery to improve local delivery efficiency and therapeutic efficacy. Finally, we provide a specific discussion on the considerations, challenges and novel perspectives for the future clinical translation of nanomedicine for the treatment of vein graft disease.
Collapse
Affiliation(s)
- Zhuoming Zhou
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reza Abdi
- Transplantation Research Center and Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Chlupac J, Frank J, Sedmera D, Fabian O, Simunkova Z, Mrazova I, Novak T, Vanourková Z, Benada O, Pulda Z, Adla T, Kveton M, Lodererova A, Voska L, Pirk J, Fronek J. External Support of Autologous Internal Jugular Vein Grafts with FRAME Mesh in a Porcine Carotid Artery Model. Biomedicines 2024; 12:1335. [PMID: 38927542 PMCID: PMC11201386 DOI: 10.3390/biomedicines12061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Autologous vein grafts are widely used for bypass procedures in cardiovascular surgery. However, these grafts are susceptible to failure due to vein graft disease. Our study aimed to evaluate the impact of the latest-generation FRAME external support on vein graft remodeling in a preclinical model. METHODS We performed autologous internal jugular vein interposition grafting in porcine carotid arteries for one month. Four grafts were supported with a FRAME mesh, while seven unsupported grafts served as controls. The conduits were examined through flowmetry, angiography, macroscopy, and microscopy. RESULTS The one-month patency rate of FRAME-supported grafts was 100% (4/4), whereas that of unsupported controls was 43% (3/7, Log-rank p = 0.071). On explant angiography, FRAME grafts exhibited significantly more areas with no or mild stenosis (9/12) compared to control grafts (3/21, p = 0.0009). Blood flow at explantation was higher in the FRAME grafts (145 ± 51 mL/min) than in the controls (46 ± 85 mL/min, p = 0.066). Area and thickness of neo-intimal hyperplasia (NIH) at proximal anastomoses were similar for the FRAME and the control groups: 5.79 ± 1.38 versus 6.94 ± 1.10 mm2, respectively (p = 0.558) and 480 ± 95 vs. 587 ± 52 μm2/μm, respectively (p = 0.401). However, in the midgraft portions, the NIH area and thickness were significantly lower in the FRAME group than in the control group: 3.73 ± 0.64 vs. 6.27 ± 0.64 mm2, respectively (p = 0.022) and 258 ± 49 vs. 518 ± 36 μm2/μm, respectively (p = 0.0002). CONCLUSIONS In our porcine model, the external mesh FRAME improved the patency of vein-to-carotid artery grafts and protected them from stenosis, particularly in the mid regions. The midgraft neo-intimal hyperplasia was two-fold thinner in the meshed grafts than in the controls.
Collapse
Affiliation(s)
- Jaroslav Chlupac
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (J.F.); (T.N.); (J.F.)
- Department of Anatomy, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Jan Frank
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (J.F.); (T.N.); (J.F.)
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, Praha 2, 128 00 Prague, Czech Republic;
| | - Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (O.F.); (M.K.); (A.L.); (L.V.)
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer University Hospital, Ruska 87, 100 00 Prague, Czech Republic
| | - Zuzana Simunkova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (Z.S.); (I.M.); (Z.V.)
| | - Iveta Mrazova
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (Z.S.); (I.M.); (Z.V.)
| | - Tomas Novak
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (J.F.); (T.N.); (J.F.)
| | - Zdenka Vanourková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (Z.S.); (I.M.); (Z.V.)
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic;
| | - Zdenek Pulda
- Department of Imaging Methods, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (Z.P.); (T.A.)
| | - Theodor Adla
- Department of Imaging Methods, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (Z.P.); (T.A.)
| | - Martin Kveton
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (O.F.); (M.K.); (A.L.); (L.V.)
- Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic
| | - Alena Lodererova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (O.F.); (M.K.); (A.L.); (L.V.)
| | - Ludek Voska
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (O.F.); (M.K.); (A.L.); (L.V.)
| | - Jan Pirk
- Cardiovascular Surgery Department, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic;
| | - Jiri Fronek
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21 Prague, Czech Republic; (J.F.); (T.N.); (J.F.)
- Department of Anatomy, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
- First Surgical Clinic, First Faculty of Medicine, Charles University, U Nemocnice 499/2, 128 08 Prague, Czech Republic
| |
Collapse
|
4
|
Jang EH, Kim JH, Ryu JY, Lee J, Kim HH, Youn YN. Time-dependent pathobiological and physiological changes of implanted vein grafts in a canine model. J Cardiovasc Transl Res 2022; 15:1108-1118. [PMID: 35244875 DOI: 10.1007/s12265-022-10226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Although autologous vein grafting is essential, the high vein failure rate and specific clinical interventions are not clear, so a potential treatment is critically needed; thus, complex analyses of the relationship between pathobiological and physiological processes in preclinical are essential. The interposition of the femoral vein was performed in a canine model. Maximized expansion and velocity were measured at 8 weeks post-implantation, and a relative decrease was observed at 12 weeks. However, NI formation and NI/Media ratio significantly increased time dependently, and differences between the mechanical properties were observed. Additionally, RhoA-mediated TNF-α induced by rapid structural changes and high shear stress was confirmed. After adaptation to the arterial environment, vascular remodeling occurred by SMC proliferation and differentiation, apoptosis and autophagy were induced through YAP activity without vasodilation and RhoA activity. Our results show that understanding pathobiological processes in which time-dependent physiological changes contribute to vein failure can lead to a potential strategy. The implanted vein graft within the arterial environment undergoes pathobiological processes through RhoA and YAP activity, leading to pathophysiological changes.
Collapse
Affiliation(s)
- Eui Hwa Jang
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Yeon Ryu
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jiyong Lee
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
| | - Hyo-Hyun Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
miRNA-126-3p carried by human umbilical cord mesenchymal stem cell enhances endothelial function through exosome-mediated mechanisms in vitro and attenuates vein graft neointimal formation in vivo. Stem Cell Res Ther 2020; 11:464. [PMID: 33138861 PMCID: PMC7607661 DOI: 10.1186/s13287-020-01978-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to determine whether the combination of MSC implantation with miRNA-126-3p overexpression would further improve the surgical results after vein grafting. METHODS human umbilical cord MSCs (hucMSCs) and human umbilical vein endothelial cells (HUVECs) were isolated from human umbilical cords and characterized by a series of experiments. Lentivirus vector encoding miRNA-126-3p was transfected into hucMSCs and verified by PCR. We analyzed the miRNA-126-3p-hucMSC function in vascular endothelial cells by using a series of co-culture experiments. miRNA-126-3p-hucMSCs-exosomes were separated from cell culture supernatants and identified by WB and TEM. We validated the role of miRNA-126-3p-hucMSCs-exosomes on HUVECs proliferative and migratory and angiogenic activities by using a series of function experiments. We further performed co-culture experiments to detect downstream target genes and signaling pathways of miRNA-126-3p-hucMSCs in HUVECs. We established a rat vein grafting model, CM-Dil-labeled hucMSCs were injected intravenously into rats, and the transplanted cells homing to the vein grafts were detected by fluorescent microscopy. We performed historical and immunohistochemical experiments to exam miRNA-126-3p-hucMSC transplantation on vein graft neointimal formation and reendothelialization in vitro. RESULTS We successfully isolated and identified primary hucMSCs and HUVECs. Primary hucMSCs were transfected with lentiviral vectors carrying miRNA-126-3p at a MOI 75. Co-culture studies indicated that overexpression of miRNA-126-3p in hucMSCs enhanced HUVECs proliferation, migration, and tube formation in vivo. We successfully separated hucMSCs-exosomes and found that miRNA-126-3p-hucMSCs-exosomes can strengthen the proliferative, migratory, and tube formation capacities of HUVECs. Further PCR and WB analysis indicated that, SPRED-1/PIK3R2/AKT/ERK1/2 pathways are involved in this process. In the rat vein arterialization model, reendothelialization analysis showed that transplantation with hucMSCs modified with miRNA-126-3p had a higher reendothelialization of the vein grafts. The subsequent historical and immunohistochemical examination revealed that delivery with miRNA-126-3p overexpressed hucMSCs significantly reduced vein graft intimal hyperplasia in rats. CONCLUSION These results suggest hucMSC-based miRNA-126-3p gene therapy may be a novel option for the treatment of vein graft disease after CABG.
Collapse
|
6
|
Wan S, Cao H, Zhao Y, Guo Y, Li C, Li N, Cao C, Hua Z, Li Z. Differentially Expressed MicroRNAs Associated with Vein Graft Restenosis in Rats. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2020. [DOI: 10.15212/cvia.2019.0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective: Intimal hyperplasia is the main cause of restenosis of vein grafts after venous transplantation. MicroRNAs are considered to play a role in vein graft restenosis; however, the expression profile of microRNAs in neointima has not been reported in detail. We wanted to
investigate the differentially expressed microRNAs in the restenosis of vein grafts in rats.Methods: We established a rat model for vein transplantation to explore the pathogenic roles of microRNAs during intimal hyperplasia. Hematoxylin and eosin staining was used to confirm intimal
hyperplasia in the vein grafts. Changes in microRNA expression in the vein grafts were detected 3 and 14 days after surgery by sequencing, reverse transcription‐quantitative polymerase chain reaction, and bioinformatics analyses for functional annotation.Results: We detected
711 newly predicted microRNAs among all the comparisons. Among these comparisons, 437 differentially expressed microRNAs were detected in the postoperative day 3 group versus the control group, 265 were detected in the postoperative day 14 group versus the control group, and 158 were detected
in the postoperative day 14 group versus the postoperative day 3 group. Pathway analysis revealed significant enrichment of target genes that mediate Wnt, mitogen-activated protein kinase, vascular smooth muscle contraction, and regulation of actin cytoskeleton signaling.Conclusion:
Our results provide insight into the pathogenesis of restenosis and will help develop novel targets in the prevention and treatment of vein graft restenosis.
Collapse
Affiliation(s)
- Shuwei Wan
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Hui Cao
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Yubo Zhao
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Yaming Guo
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Chuang Li
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Nan Li
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Can Cao
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Zhaohui Hua
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000 Henan, People’s Republic of China
| |
Collapse
|
7
|
Fouquet O, Blossier JD, Dang Van S, Robert P, Barbelivien A, Pinaud F, Binuani P, Eid M, Henrion D, Baufreton C, Loufrani L. Do storage solutions protect endothelial function of arterialized vein graft in an experimental rat model? J Cardiothorac Surg 2020; 15:34. [PMID: 32041642 PMCID: PMC7011455 DOI: 10.1186/s13019-020-1077-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This study aims to compare the effects of storage solutions commonly used in coronary artery bypass grafting on the vascular reactivity in vein graft interposed in arterial position in syngeneic rats. METHODS Twenty-seven male Lewis rats were sacrified to sample a vein graft implanted 6 weeks ago into abdominal aorta position. The vein grafts were inferior venae cavae initially pretreated with heparinized saline solution (HS) or autologous heparinized blood (AHB) or our referent solution, GALA. The endothelial functionality, the in situ Reactive Oxygen Species (ROS) levels and the histological characteristics were conducted from segments of arterialized vein graft. RESULTS At 6 weeks, graft thrombosis occurred respectively in 22% of AHB group, 62.5% in the HS group and 82.5% in the GALA group. In each group, significative intimal hyperplasia was observed. After 6 weeks, an endothelium-remodeling layer associated with an increase of wall thickness was observed in each group. Endothelium-dependent tone was reduced in the vein graft regardless of the group. No difference was observed concerning the ROS in vein graft between the different groups. In distal aortic sections, ROS levels were increased in HS and GALA groups. CONCLUSIONS Storage solutions used in this experimental model of vein graft implanted in arterial position cause graft injury and a complete disappearance of vascular reactivity. GALA solution did not reduce intimal risk hyperplasia when the vein graft was exposed to arterial flow in a rat model.
Collapse
Affiliation(s)
- Olivier Fouquet
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France.
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France.
| | - Jean-David Blossier
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
- Department of Cardiac Surgery, CHU Dupuytren, Limoges, France
| | - Simon Dang Van
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | - Pauline Robert
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | | | - Frédéric Pinaud
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | - Patrice Binuani
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
| | - Maroua Eid
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
| | - Daniel Henrion
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
- University Hospital of Angers, Angers, France
| | - Christophe Baufreton
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | - Laurent Loufrani
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
- University Hospital of Angers, Angers, France
| |
Collapse
|
8
|
Garoffolo G, Ruiter MS, Piola M, Brioschi M, Thomas AC, Agrifoglio M, Polvani G, Coppadoro L, Zoli S, Saccu C, Spinetti G, Banfi C, Fiore GB, Madeddu P, Soncini M, Pesce M. Coronary artery mechanics induces human saphenous vein remodelling via recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Am J Cancer Res 2020; 10:2597-2611. [PMID: 32194822 PMCID: PMC7052885 DOI: 10.7150/thno.40595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale: Despite the preferred application of arterial conduits, the greater saphenous vein (SV) remains indispensable for coronary bypass grafting (CABG), especially in multi-vessel coronary artery disease (CAD). The objective of the present work was to address the role of mechanical forces in the activation of maladaptive vein bypass remodeling, a process determining progressive occlusion and recurrence of ischemic heart disease. Methods: We employed a custom bioreactor to mimic the coronary shear and wall mechanics in human SV vascular conduits and reproduce experimentally the biomechanical conditions of coronary grafting and analyzed vein remodeling process by histology, histochemistry and immunofluorescence. We also subjected vein-derived cells to cyclic uniaxial mechanical stimulation in culture, followed by phenotypic and molecular characterization using RNA and proteomic methods. We finally validated our results in vitro and using a model of SV carotid interposition in pigs. Results: Exposure to pulsatile flow determined a remodeling process of the vascular wall involving reduction in media thickness. Smooth muscle cells (SMCs) underwent conversion from contractile to synthetic phenotype. A time-dependent increase in proliferating cells expressing mesenchymal (CD44) and early SMC (SM22α) markers, apparently recruited from the SV adventitia, was observed especially in CABG-stimulated vessels. Mechanically stimulated SMCs underwent transition from contractile to synthetic phenotype. MALDI-TOF-based secretome analysis revealed a consistent release of Thrombospondin-1 (TSP-1), a matricellular protein involved in TGF-β-dependent signaling. TSP-1 had a direct chemotactic effect on SV adventitia resident progenitors (SVPs); this effects was inhibited by blocking TSP-1 receptor CD47. The involvement of TSP-1 in adventitial progenitor cells differentiation and graft intima hyperplasia was finally contextualized in the TGF-β-dependent pathway, and validated in a saphenous vein into carotid interposition pig model. Conclusions: Our results provide the evidence of a matricellular mechanism involved in the human vein arterialization process controlled by alterations in tissue mechanics, and open the way to novel potential strategies to block VGD progression based on targeting cell mechanosensing-related effectors.
Collapse
|
9
|
Wu Y, Su SA, Xie Y, Shen J, Zhu W, Xiang M. Murine models of vascular endothelial injury: Techniques and pathophysiology. Thromb Res 2018; 169:64-72. [PMID: 30015230 DOI: 10.1016/j.thromres.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.
Collapse
Affiliation(s)
- Yue Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Sheng-An Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Yao Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Jian Shen
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Wei Zhu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| |
Collapse
|
10
|
Ramachandra AB, Humphrey JD, Marsden AL. Gradual loading ameliorates maladaptation in computational simulations of vein graft growth and remodelling. J R Soc Interface 2018; 14:rsif.2016.0995. [PMID: 28566510 DOI: 10.1098/rsif.2016.0995] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Vein graft failure is a prevalent problem in vascular surgeries, including bypass grafting and arteriovenous fistula procedures in which veins are subjected to severe changes in pressure and flow. Animal and clinical studies provide significant insight, but understanding the complex underlying coupled mechanisms can be advanced using computational models. Towards this end, we propose a new model of venous growth and remodelling (G&R) based on a constrained mixture theory. First, we identify constitutive relations and parameters that enable venous adaptations to moderate perturbations in haemodynamics. We then fix these relations and parameters, and subject the vein to a range of combined loads (pressure and flow), from moderate to severe, and identify plausible mechanisms of adaptation versus maladaptation. We also explore the beneficial effects of gradual increases in load on adaptation. A gradual change in flow over 3 days plus an initial step change in pressure results in fewer maladaptations compared with step changes in both flow and pressure, or even a gradual change in pressure and flow over 3 days. A gradual change in flow and pressure over 8 days also enabled a successful venous adaptation for loads as severe as the arterial loads. Optimization is used to accelerate parameter estimation and the proposed framework is general enough to provide a good starting point for parameter estimations in G&R simulations.
Collapse
Affiliation(s)
- Abhay B Ramachandra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, Institute for Computational and Mathematical Engineering, Stanford, CA, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alison L Marsden
- Department of Pediatrics, Institute for Computational and Mathematical Engineering, Stanford, CA, USA .,Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Wang XW, Zhang C, Lee KC, He XJ, Lu ZQ, Huang C, Wu QC. Adenovirus-Mediated Gene Transfer of microRNA-21 Sponge Inhibits Neointimal Hyperplasia in Rat Vein Grafts. Int J Biol Sci 2017; 13:1309-1319. [PMID: 29104497 PMCID: PMC5666529 DOI: 10.7150/ijbs.20254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background:Vein graft failure due to neointimal hyperplasia remains an important and unresolved complication of cardiovascular surgery. microRNA-21 (miR-21) plays a major role in regulating vascular smooth muscle cell (VSMC) proliferation and phenotype transformation. Thus, the purpose of this study was to determine whether adenovirus-mediated miR-21 sponge gene therapy was able to inhibit neointimal hyperplasia in rat vein grafts. Methods:Adenovirus-mediated miR-21 sponge was used to inhibit VSMC proliferation in vitro and neointimal formation in vivo. To improve efficiency of delivery gene transfer to the vein grafts, 20% poloxamer F-127 gel was used to increase virus contact time and 0.25% trypsin to increase virus penetration. Morphometric analyses and cellular proliferation were assessed for neointimal hyperplasia and VSMC proliferation. Results:miR-21 sponge can significantly decrease the expression of miR-21 and proliferation in cultured VSMCs. Cellular proliferation rates were significantly reduced in miR-21 sponge-treated grafts compared with controls at 28 days after bypass surgery (14.6±9.4 vs 34.9±10.8%, P=0.0032). miR-21 sponge gene transfer therapy reduced the intimal/media area ratio in vein grafts compared with the controls (1.38±0.08 vs. 0.6±0.10, P<0.0001). miR-21 sponge treatment also improved vein graft hemodynamics. We further identified that phosphatase and tensin homolog (PTEN) is a potential target gene that was involved in the miR-21-mediated effect on neointimal hyperplasia in vein grafts. Conclusions:Adenovirus-mediated miR-21 sponge gene therapy effectively reduced neointimal formation in vein grafts. These results suggest that there is potential for miR-21 sponge to be used to prevent vein graft failure.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Department of Cardiothoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Kai-Chuen Lee
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang-Jun He
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Qian Lu
- Department of Cardiothoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chun Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
12
|
Wang D, Tediashvili G, Pecha S, Reichenspurner H, Deuse T, Schrepfer S. Vein Interposition Model: A Suitable Model to Study Bypass Graft Patency. J Vis Exp 2017. [PMID: 28117809 DOI: 10.3791/54839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bypass grafting is an established treatment method for coronary artery disease. Graft patency continues to be the Achilles heel of saphenous vein grafts. Research models for bypass graft failure are essential for a better understanding of pathobiological and pathophysiological processes during graft patency loss. Large animal models, such as pigs or sheep, resemble human anatomical structures but require special facilities and equipment. This video describes a rat vein interposition model to investigate vein graft patency loss. Rats are inexpensive and easy to handle. Compared to mouse models, the convenient size of rats permits better operability and enables a sufficient amount of material to be obtained for further diverse analysis. In brief, the inferior epigastric vein of a donor rat is harvested and used to replace a segment of the femoral artery. Anastomosis is conducted via single stitches and sealed with fibrin glue. Graft patency can be monitored non-invasively using duplex sonography. Myointimal hyperplasia, which is the main cause for graft patency loss, develops progressively over time and can be calculated from histological cross sections.
Collapse
Affiliation(s)
- Dong Wang
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck; Cardiovascular Surgery, University Heart Center Hamburg
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck
| | - Simon Pecha
- Cardiovascular Surgery, University Heart Center Hamburg
| | | | - Tobias Deuse
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck; Cardiovascular Surgery, University Heart Center Hamburg
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, University Heart Center Hamburg; Department of Surgery, Transplant and Stem Cell Immunobiology Lab, University of California San Francisco (UCSF); Cardiovascular Research Center (CVRC) and DZHK German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck; Cardiovascular Surgery, University Heart Center Hamburg;
| |
Collapse
|
13
|
Teixeira RKC, Yamaki VN, Valente AL, Feitosa Júnior DJS, Pinheiro MF, Reis JMCD, Silveira EL, Barros RSMD. Existem válvulas na veia femoral em ratas Wistar? J Vasc Bras 2015. [DOI: 10.1590/1677-5449.004515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo As veias femorais de 30 ratas da linhagem Wistar foram estudadas por método histológico com objetivo de investigar a presença de válvulas. Na análise histológica não foram identificadas projeções do endotélio ou recessos valvares que poderiam sugerir a presença de válvulas venosas nessa espécie de animal.
Collapse
|
14
|
Prandi F, Piola M, Soncini M, Colussi C, D’Alessandra Y, Penza E, Agrifoglio M, Vinci MC, Polvani G, Gaetano C, Fiore GB, Pesce M. Adventitial vessel growth and progenitor cells activation in an ex vivo culture system mimicking human saphenous vein wall strain after coronary artery bypass grafting. PLoS One 2015; 10:e0117409. [PMID: 25689822 PMCID: PMC4331547 DOI: 10.1371/journal.pone.0117409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/21/2014] [Indexed: 01/09/2023] Open
Abstract
Saphenous vein graft disease is a timely problem in coronary artery bypass grafting. Indeed, after exposure of the vein to arterial blood flow, a progressive modification in the wall begins, due to proliferation of smooth muscle cells in the intima. As a consequence, the graft progressively occludes and this leads to recurrent ischemia. In the present study we employed a novel ex vivo culture system to assess the biological effects of arterial-like pressure on the human saphenous vein structure and physiology, and to compare the results to those achieved in the presence of a constant low pressure and flow mimicking the physiologic vein perfusion. While under both conditions we found an activation of Matrix Metallo-Proteases 2/9 and of microRNAs-21/146a/221, a specific effect of the arterial-like pressure was observed. This consisted in a marked geometrical remodeling, in the suppression of Tissue Inhibitor of Metallo-Protease-1, in the enhanced expression of TGF-β1 and BMP-2 mRNAs and, finally, in the upregulation of microRNAs-138/200b/200c. In addition, the veins exposed to arterial-like pressure showed an increase in the density of the adventitial vasa vasorum and of cells co-expressing NG2, CD44 and SM22α markers in the adventitia. Cells with nuclear expression of Sox-10, a transcription factor characterizing multipotent vascular stem cells, were finally found in adventitial vessels. Our findings suggest, for the first time, a role of arterial-like wall strain in the activation of pro-pathologic pathways resulting in adventitial vessels growth, activation of vasa vasorum cells, and upregulation of specific gene products associated to vascular remodeling and inflammation.
Collapse
Affiliation(s)
- Francesca Prandi
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Piola
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Monica Soncini
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Claudia Colussi
- Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Yuri D’Alessandra
- Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Eleonora Penza
- II Divisione di Cardiochirurgia, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Agrifoglio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | | | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Goethe University, Frankfurt-am-Main, Germany
| | | | - Maurizio Pesce
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- * E-mail:
| |
Collapse
|
15
|
Li R, Lan B, Zhu T, Yang Y, Wang M, Ma C, Chen S. Establishment of an animal model of vascular restenosis with bilateral carotid artery grafting. Med Sci Monit 2014; 20:2846-54. [PMID: 25549796 PMCID: PMC4286978 DOI: 10.12659/msm.891303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Vascular restenosis occurring after CABG is a major clinical problem that needs to be addressed. Vein grafts are associated with a higher degree of stenosis than artery grafts. However, the mechanism responsible for this effect has not been elucidated. We aimed to establish a rabbit model of vascular restenosis after bilateral carotid artery grafting, and to investigate the associated spatiotemporal changes of intimal hyperplasia in carotid artery and jugular vein grafts after surgery. Material/Methods Twenty adult New Zealand white rabbits (10 males; 10 females), weighing 2.0–2.5 kg, were obtained from the Experimental Animal Center of Southern Medical University, Guangzhou, China (License No.: scxk-Guangdong-2006-0015). We quantitatively analyzed intimal thickness, area, and degree of stenosis in carotid artery and jugular vein bridges. Results After 8 weeks of a high-fat diet, rabbit carotid arteries showed early atherosclerotic lesions. With increasing time after surgery, carotid artery and jugular vein grafts showed histopathological and morphological changes, including smooth muscle cell migration, lipid deposition, intimal hyperplasia, and vascular stenosis. The degree of vascular stenosis was significantly higher in vein grafts than in artery grafts at all time points – 35.1±6.7% vs. 16.1±2.6% at Week 12, 56.2±8.5% vs. 23.4±3.4% at Week 16, and 71.2±1.3% vs. 25.2±5.3% at Week 20. Conclusions Rabbit bilateral carotid arteries were grafted with carotid artery and jugular vein bridges to simulate pathophysiological processes that occur in people after CABG surgery.
Collapse
Affiliation(s)
- Ruixiong Li
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| | - Bin Lan
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| | - Tianxiang Zhu
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| | - Yanlong Yang
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| | - Muting Wang
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| | - Chensheng Ma
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| | - Shu Chen
- Department of Cardiac-Thoracic Surgery, Shantou Central Hospital / Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China (mainland)
| |
Collapse
|
16
|
Lee N, Daley RA, Cooley BC. Rat posterior facial vein interpositional graft: A more relevant training model. Microsurgery 2014; 34:653-6. [DOI: 10.1002/micr.22278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Nicolas Lee
- Department of Orthopaedic Surgery; Medical College of Wisconsin; Milwaukee WI
| | - Roger A. Daley
- Department of Orthopaedic Surgery; Medical College of Wisconsin; Milwaukee WI
| | - Brian C. Cooley
- Department of Orthopaedic Surgery; Medical College of Wisconsin; Milwaukee WI
| |
Collapse
|
17
|
Southerland KW, Frazier SB, Bowles DE, Milano CA, Kontos CD. Gene therapy for the prevention of vein graft disease. Transl Res 2013; 161:321-38. [PMID: 23274305 PMCID: PMC3602161 DOI: 10.1016/j.trsl.2012.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
Abstract
Ischemic cardiovascular disease remains the leading cause of death worldwide. Despite advances in the medical management of atherosclerosis over the past several decades, many patients require arterial revascularization to reduce mortality and alleviate ischemic symptoms. Technological advancements have led to dramatic increases in the use of percutaneous and endovascular approaches, yet surgical revascularization (bypass surgery) with autologous vein grafts remains a mainstay of therapy for both coronary and peripheral artery disease. Although bypass surgery is highly efficacious in the short term, long-term outcomes are limited by relatively high failure rates as a result of intimal hyperplasia, which is a common feature of vein graft disease. The supply of native veins is limited, and many individuals require multiple grafts and repeat procedures. The need to prevent vein graft failure has led to great interest in gene therapy approaches to this problem. Bypass grafting presents an ideal opportunity for gene therapy, as surgically harvested vein grafts can be treated with gene delivery vectors ex vivo, thereby maximizing gene delivery while minimizing the potential for systemic toxicity and targeting the pathogenesis of vein graft disease at its onset. Here we will review the pathogenesis of vein graft disease and discuss vector delivery strategies and potential molecular targets for its prevention. We will summarize the preclinical and clinical literature on gene therapy in vein grafting and discuss additional considerations for future therapies to prevent vein graft disease.
Collapse
Affiliation(s)
- Kevin W Southerland
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
18
|
Guzeloglu M, Aykut K, Albayrak G, Atmaca S, Oktar S, Bagriyanik A, Hazan E. Effect of Tadalafil on Neointimal Hyperplasia in a Rabbit Carotid Artery Anastomosis Model. Ann Thorac Cardiovasc Surg 2013; 19:468-74. [DOI: 10.5761/atcs.oa.12.02017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|