1
|
Orzeł U, Barreto CAV, Filipek S, Moreira IS. GPCR oligomerization across classes: A2AR-mediated regulation of mGlu5R activation. Int J Biol Macromol 2025; 299:139880. [PMID: 39842585 DOI: 10.1016/j.ijbiomac.2025.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
The adenosine A2A receptor (A2AR), a class A GPCR, is a known player in neurological diseases, including Parkinson's disease and Alzheimer's disease, and is also implicated in SARS-CoV-2 infection. Recent studies have revealed its oligomerization with metabotropic glutamate receptor type 5 (mGlu5R), a class C G protein coupled receptor (GPCR) that exists in the homodimeric form. Simultaneous activation of both receptors synergistically enhances mGlu5R-mediated effects in the hippocampus. Despite their importance, the molecular mechanisms governing these interactions remain unclear. In this study, we used molecular modelling techniques, including molecular docking, extensive molecular dynamics (MD) simulations, and detailed analysis, to elucidate the interactions between mGlu5R and A2AR in the inactive and active states. Our findings provide molecular-level insights into the permissive role of A2AR in mGlu5R activation, demonstrating that the inactive A2AR interface within the oligomer blocks the mGlu5R transmembrane helix 6 (TM6), which is crucial for activation. Upon A2AR activation, the oligomer interface undergoes conformational rearrangement, exposing mGlu5R-TM6 and allowing for mGlu5R activation. Furthermore, we identified a pivotal role of the mGlu5R-TM4:A2AR-TM4 interface in facilitating mGlu5R activation. These results highlight the intricate architecture of the mGlu5R:A2AR oligomer, advancing our understanding of GPCR oligomerization and its regulatory mechanisms on receptor activity.
Collapse
Affiliation(s)
- Urszula Orzeł
- PhD Programme in Biosciences, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Carlos A V Barreto
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Sławomir Filipek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
2
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
3
|
Kumar V, Lee KY, Acharya A, Babik MS, Christian-Hinman CA, Rhodes JS, Tsai NP. mGluR7 allosteric modulator AMN082 corrects protein synthesis and pathological phenotypes in FXS. EMBO Mol Med 2024; 16:506-522. [PMID: 38374465 PMCID: PMC10940663 DOI: 10.1038/s44321-024-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anirudh Acharya
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew S Babik
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
D'Antoni S, Schiavi S, Buzzelli V, Giuffrida S, Feo A, Ascone F, Busceti CL, Nicoletti F, Trezza V, Catania MV. Group I and group II metabotropic glutamate receptors are upregulated in the synapses of infant rats prenatally exposed to valproic acid. Psychopharmacology (Berl) 2023; 240:2617-2629. [PMID: 37707611 PMCID: PMC10640443 DOI: 10.1007/s00213-023-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. OBJECTIVES We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. METHODS We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. RESULTS The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. CONCLUSIONS Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Samuele Giuffrida
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Alessandro Feo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Ascone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
5
|
Li YJ, Zhang K, Sun T, Guo YY, Yang Q, Liu SB, Wu YM, Zhao MG. Improvement of Learning and Memory by Elevating Brain D-Aspartate in a Mouse Model of Fragile X Syndrome. Mol Neurobiol 2023; 60:6410-6423. [PMID: 37453994 PMCID: PMC10533629 DOI: 10.1007/s12035-023-03438-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023]
Abstract
Fragile X syndrome (FXS) is an inherited human mental retardation that arises from expansion of a CGG repeat in the Fmr1 gene, causing loss of the fragile X mental retardation protein (FMRP). It is reported that N-methyl-D-aspartate receptor (NMDAR)-mediated facilitation of long-term potentiation (LTP) and fear memory are impaired in Fmr1 knockout (KO) mice. In this study, biological, pharmacological, and electrophysiological techniques were performed to determine the roles of D-aspartate (D-Asp), a modulator of NMDAR, and its metabolizing enzyme D-aspartate oxidase (DDO) in Fmr1 KO mice. Levels of D-Asp were decreased in the medial prefrontal cortex (mPFC ); however, the levels of its metabolizing enzyme DDO were increased. Electrophysiological recordings indicated that oral drinking of D-Asp recovered LTP induction in mPFC from Fmr1 KO mice. Moreover, chronic oral administration of D-Asp reversed behavioral deficits of cognition and locomotor coordination in Fmr1 KO mice. The therapeutic action of D-Asp was partially through regulating functions of NMDARs and mGluR5/mTOR/4E-BP signaling pathways. In conclusion, supplement of D-Asp may benefit for synaptic plasticity and behaviors in Fmr1 KO mice and offer a potential therapeutic strategy for FXS.
Collapse
Affiliation(s)
- Yu-Jiao Li
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
- Department of Pharmacy, General Hospital of Eastern Theater Command/Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ting Sun
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Yan-Yan Guo
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Qi Yang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
6
|
Matrisciano F, Locci V, Dong E, Nicoletti F, Guidotti A, Grayson DR. Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders. Curr Neuropharmacol 2022; 20:2354-2368. [PMID: 35139800 PMCID: PMC9890299 DOI: 10.2174/1567202619999220209112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valentina Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dennis R. Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Jeon SJ, Kwon H, Bae HJ, Gonzales EL, Kim J, Chung HJ, Kim DH, Ryu JH, Shin CY. Agmatine relieves behavioral impairments in Fragile X mice model. Neuropharmacology 2022; 219:109234. [PMID: 36057317 DOI: 10.1016/j.neuropharm.2022.109234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/25/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common heritable form of neurodevelopmental disorder, which is caused by the loss of fragile X mental retardation protein (FMRP) expression. Despite the unceasing efforts to develop therapeutic agents against FXS based on the pathophysiological changes observed in animal models of FXS and human patients, therapeutic candidates including mGluR signaling modulators have failed to provide sufficient effects. Based on the recent successful demonstration of an endogenous polyamine, agmatine, to improve the autism-like symptoms in the valproic acid animal model of autism, we investigated the effects of agmatine against FXS symptoms using Fmr1 knockout (KO) mice. METHODS We used male Fmr1 KO mice for behavioral tests such as marble burying, open-field test, memory tasks, social interaction tests and startle response to confirm the symptoms of FXS. We also checked the electrophysiological profile of neural activity in agmatine-treated Fmr1 KO mice. RESULTS Agmatine reversed the compulsion, learning and memory deficits, hyperactivity, aberrant social interaction, and communication deficit in Fmr1 KO mice while it normalized the aberrant LTP and LTD in the hippocampus. CONCLUSIONS The results highlight the potential of agmatine's novel disease-ameliorating effects in FXS, which warrants further studies to ascertain whether these findings translate into clinical effects in FXS patients.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Huiyoung Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Edson Luck Gonzales
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Junhyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Gómez-Santacana X, Panarello S, Rovira X, Llebaria A. Photoswitchable allosteric modulators for metabotropic glutamate receptors. Curr Opin Pharmacol 2022; 66:102266. [PMID: 35870289 DOI: 10.1016/j.coph.2022.102266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
Metabotropic glutamate receptors (mGlu) are a family of class C G protein-coupled receptors (GPCRs) with important biological functions and widespread expression. The mechanisms of mGlu activation and the development of allosteric modulators for these dimeric proteins have attracted singular attention including the use of light regulated ligands. Photopharmacology involves the integration of a photoactive moiety into the ligand structure that following specific illumination undergoes a structural rearrangement and changes its biological activity. The use of light-regulated allosteric ligands offers the opportunity to manipulate mGlu signalling with spatiotemporal precision, unattainable with classical pharmacological approaches. In this review, we will discuss some of the innovations that have been made in the allosteric photopharmacology of mGlu receptors to date. We discuss the prospects of these molecular tools in the control of mGluRs and the new perspectives in understanding mGlu mechanisms, pharmacology and (patho)physiology that can ultimately result in innovative drug discovery concepts.
Collapse
Affiliation(s)
| | - Silvia Panarello
- MCS, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Xavier Rovira
- MCS, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
9
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
10
|
Afshar S, Lule S, Yuan G, Qu X, Pan C, Whalen M, Brownell AL, Mody M. Longitudinal PET studies of mGluR5 in FXS using an FMR1 knockout mouse model. Transl Neurosci 2022; 13:80-92. [PMID: 35582646 PMCID: PMC9055256 DOI: 10.1515/tnsci-2022-0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Fragile X syndrome (FXS) is a monogenic disorder characterized by intellectual disability and behavioral challenges. It is caused by aberrant methylation of the fragile X mental retardation 1 (FMR1) gene. Given the failure of clinical trials in FXS and growing evidence of a role of metabotropic glutamate subtype 5 receptors (mGluR5) in the pathophysiology of the disorder, we investigated mGluR5 function in FMR1 Knockout (FMR1-KO) mice and age- and sex-matched control mice using longitudinal positron emission tomography (PET) imaging to better understand the disorder. The studies were repeated at four time points to examine age- and disease-induced changes in mGluR5 availability using 3-fluoro-[18F]5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB). We found that the binding potential (BP) of [18F]FPEB was significantly lower in the KO mice in mGluR5-implicated brain areas including striatum, cortex, hippocampus, thalamus, and olfactory bulb. The BP also changed with age, regardless of disorder status, increasing in early adulthood in male but not in female mice before decreasing later in both sexes. The difference in mGluR5 availability between the FMR1-KO and control mice and the change in BP in the KO mice as a function of age and sex illustrate the nature of the disorder and its progression, providing mechanistic insights for treatment design.
Collapse
Affiliation(s)
- Sepideh Afshar
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Sevda Lule
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Xiying Qu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Chuzhi Pan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , United States of America
| | - Maria Mody
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , Charlestown , 02129 MA , USA
| |
Collapse
|
11
|
Nomura T. Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome. Cells 2021; 10:2610. [PMID: 34685590 PMCID: PMC8534049 DOI: 10.3390/cells10102610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
The alteration of excitatory-inhibitory (E-I) balance has been implicated in various neurological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysiology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E-I balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the developmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several developmental alterations in the functional properties of interneurons. Correcting disrupted E-I balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron dysfunction in ASD and FXS and will discuss the future directions of this field.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Ozlu C, Bailey RM, Sinnett S, Goodspeed KD. Gene Transfer Therapy for Neurodevelopmental Disorders. Dev Neurosci 2021; 43:230-240. [PMID: 33882495 DOI: 10.1159/000515434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of disorders that disrupt normal brain development. Though some NDDs are caused by acquired insults (i.e., toxic or infectious encephalopathy) or may be cryptogenic, many NDDs are caused by variants in a single gene or groups of genes that disrupt neuronal development or function. In this review, we will focus on those NDDs with a genetic etiology. The exact mechanism, timing, and progression of the molecular pathology are seldom well known; however, the abnormalities in development typically manifest in similar patterns such as delays or regression in motor function, social skills, and language or cognitive abilities. Severity of impairment can vary widely. At present, only symptomatic treatments are available to manage seizures and behavioral problems commonly seen in NDDs. In recent years, there has been a rapid expansion of research into gene therapy using adeno-associated viruses (AAVs). Using AAVs as vectors to replace the non- or dysfunctional gene in vivo is a relatively simple model which has created an unprecedented opportunity for the future of NDD treatment. Advances in this field are of paramount importance as NDDs lead to a massive lifelong burden of disease on the affected individuals and families. In this article, we review the unique advantages and challenges of AAV gene therapies. We then look at potential applications of gene therapy for 3 of the more common NDDs (Rett syndrome, fragile X syndrome, and Angelman syndrome), as well as 2 less common NDDs (SLC13A5 deficiency disorder and SLC6A1-related disorder). We will review the available natural history of each disease and current state of preclinical studies including a discussion on the application of AAV gene therapies for each disease.
Collapse
Affiliation(s)
- Can Ozlu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel M Bailey
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly D Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Westmark CJ, Kiso M, Halfmann P, Westmark PR, Kawaoka Y. Repurposing Fragile X Drugs to Inhibit SARS-CoV-2 Viral Reproduction. Front Cell Dev Biol 2020; 8:856. [PMID: 32984339 PMCID: PMC7479061 DOI: 10.3389/fcell.2020.00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic is a global health crisis that requires the application of interdisciplinary research to address numerous knowledge gaps including molecular strategies to prevent viral reproduction in affected individuals. In response to the Frontiers Research Topic, "Coronavirus disease (COVID-19): Pathophysiology, Epidemiology, Clinical Management, and Public Health Response," this Hypothesis article proposes a novel therapeutic strategy to repurpose metabotropic glutamate 5 receptor (mGluR5) inhibitors to interfere with viral hijacking of the host protein synthesis machinery. We review pertinent background on SARS-CoV-2, fragile X syndrome (FXS) and metabotropic glutamate receptor 5 (mGluR5) and provide a mechanistic-based hypothesis and preliminary data to support testing mGluR5 inhibitors in COVID-19 research.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Arsova A, Møller TC, Vedel L, Hansen JL, Foster SR, Gregory KJ, Bräuner-Osborne H. Detailed In Vitro Pharmacological Characterization of Clinically Tested Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5. Mol Pharmacol 2020; 98:49-60. [PMID: 32358164 PMCID: PMC7705108 DOI: 10.1124/mol.119.119032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Negative allosteric modulation of the metabotropic glutamate 5 (mGlu5) receptor has emerged as a potential strategy for the treatment of neurologic disorders. Despite the success in preclinical studies, many mGlu5 negative allosteric modulators (NAMs) that have reached clinical trials failed due to lack of efficacy. In this study, we provide a detailed in vitro pharmacological characterization of nine clinically and preclinically tested NAMs. We evaluated inhibition of l-glutamate-induced signaling with Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and real-time receptor internalization assays on rat mGlu5 expressed in HEK293A cells. Moreover, we determined association rates (kon) and dissociation rates (koff), as well as NAM affinities with [3H]methoxy-PEPy binding experiments. kon and koff values varied greatly between the nine NAMs (34- and 139-fold, respectively) resulting in long receptor residence times (>400 min) for basimglurant and mavoglurant, medium residence times (10-30 min) for AZD2066, remeglurant, and (RS)-remeglurant, and low residence times (<10 mins) for dipraglurant, F169521, F1699611, and STX107. We found that all NAMs inhibited l-glutamate-induced mGlu5 receptor internalization, generally with a similar potency to IP1 accumulation and ERK1/2 phosphorylation, whereas Ca2+ mobilization was less potently inhibited. Operational model of allosterism analyses revealed that dipraglurant and (RS)-remeglurant were biased toward (affinity) receptor internalization and away (cooperativity) from the ERK1/2 phosphorylation pathway, respectively. Our study is the first to measure mGlu5 NAM binding kinetics and negative allosteric modulation of mGlu5 receptor internalization and adds significant new knowledge about the molecular pharmacology of a diverse range of clinically relevant NAMs. SIGNIFICANCE STATEMENT: The metabotropic glutamate 5 (mGlu5) receptor is important in many brain functions and implicated in several neurological pathologies. Negative allosteric modulators (NAMs) have shown promising results in preclinical models but have so far failed in human clinical trials. Here we provide the most comprehensive and comparative molecular pharmacological study to date of nine preclinically/clinically tested NAMs at the mGlu5 receptor, which is also the first study to measure ligand binding kinetics and negative allosteric modulation of mGlu5 receptor internalization.
Collapse
Affiliation(s)
- Angela Arsova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| | - Thor C Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| | - Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| | - Jakob Lerche Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| | - Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| | - Karen J Gregory
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
| |
Collapse
|
15
|
Telias M. Pharmacological Treatments for Fragile X Syndrome Based on Synaptic Dysfunction. Curr Pharm Des 2020; 25:4394-4404. [PMID: 31682210 DOI: 10.2174/1381612825666191102165206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment, including intellectual disability, autism, hyperactivity, and epilepsy. METHODS This article reviews the literature pertaining to the role of synaptic dysfunction in FXS. RESULTS In FXS, synaptic dysfunction alters the excitation-inhibition ratio, dysregulating molecular and cellular processes underlying cognition, learning, memory, and social behavior. Decades of research have yielded important hypotheses that could explain, at least in part, the development of these neurological disorders in FXS patients. However, the main goal of translating lab research in animal models to pharmacological treatments in the clinic has been so far largely unsuccessful, leaving FXS a still incurable disease. CONCLUSION In this concise review, we summarize and analyze the main hypotheses proposed to explain synaptic dysregulation in FXS, by reviewing the scientific evidence that led to pharmaceutical clinical trials and their outcome.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
16
|
Blood-Based Biomarkers Predictive of Metformin Target Engagement in Fragile X Syndrome. Brain Sci 2020; 10:brainsci10060361. [PMID: 32531912 PMCID: PMC7349631 DOI: 10.3390/brainsci10060361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in neurobiology have provided several molecular entrees for targeted treatments for Fragile X syndrome (FXS). However, the efficacy of these treatments has been demonstrated mainly in animal models and has not been consistently predictive of targeted drugs' response in the preponderance of human clinical trials. Because of the heterogeneity of FXS at various levels, including the molecular level, phenotypic manifestation, and drug response, it is critically important to identify biomarkers that can help in patient stratification and prediction of therapeutic efficacy. The primary objective of this study was to assess the ability of molecular biomarkers to predict phenotypic subgroups, symptom severity, and treatment response to metformin in clinically treated patients with FXS. We specifically tested a triplex protein array comprising of hexokinase 1 (HK1), RAS (all isoforms), and Matrix Metalloproteinase 9 (MMP9) that we previously demonstrated were dysregulated in the FXS mouse model and in blood samples from patient with FXS. Seventeen participants with FXS, 12 males and 5 females, treated clinically with metformin were included in this study. The disruption in expression abundance of these proteins was normalized and associated with significant self-reported improvement in clinical phenotypes (CGI-I in addition to BMI) in a subset of participants with FXS. Our preliminary findings suggest that these proteins are of strong molecular relevance to the FXS pathology that could make them useful molecular biomarkers for this syndrome.
Collapse
|
17
|
McCamphill PK, Stoppel LJ, Senter RK, Lewis MC, Heynen AJ, Stoppel DC, Sridhar V, Collins KA, Shi X, Pan JQ, Madison J, Cottrell JR, Huber KM, Scolnick EM, Holson EB, Wagner FF, Bear MF. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Sci Transl Med 2020; 12:eaam8572. [PMID: 32434848 PMCID: PMC8095719 DOI: 10.1126/scitranslmed.aam8572] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/15/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Fragile X syndrome is caused by FMR1 gene silencing and loss of the encoded fragile X mental retardation protein (FMRP), which binds to mRNA and regulates translation. Studies in the Fmr1-/y mouse model of fragile X syndrome indicate that aberrant cerebral protein synthesis downstream of metabotropic glutamate receptor 5 (mGluR5) signaling contributes to disease pathogenesis, but clinical trials using mGluR5 inhibitors were not successful. Animal studies suggested that treatment with lithium might be an alternative approach. Targets of lithium include paralogs of glycogen synthase kinase 3 (GSK3), and nonselective small-molecule inhibitors of these enzymes improved disease phenotypes in a fragile X syndrome mouse model. However, the potential therapeutic use of GSK3 inhibitors has been hampered by toxicity arising from inhibition of both α and β paralogs. Recently, we developed GSK3 inhibitors with sufficient paralog selectivity to avoid a known toxic consequence of dual inhibition, that is, increased β-catenin stabilization. We show here that inhibition of GSK3α, but not GSK3β, corrected aberrant protein synthesis, audiogenic seizures, and sensory cortex hyperexcitability in Fmr1-/y mice. Although inhibiting either paralog prevented induction of NMDA receptor-dependent long-term depression (LTD) in the hippocampus, only inhibition of GSK3α impaired mGluR5-dependent and protein synthesis-dependent LTD. Inhibition of GSK3α additionally corrected deficits in learning and memory in Fmr1-/y mice; unlike mGluR5 inhibitors, there was no evidence of tachyphylaxis or enhanced psychotomimetic-induced hyperlocomotion. GSK3α selective inhibitors may have potential as a therapeutic approach for treating fragile X syndrome.
Collapse
Affiliation(s)
- Patrick K McCamphill
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura J Stoppel
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca K Senter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael C Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Arnold J Heynen
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David C Stoppel
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vinay Sridhar
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390, USA
| | - Katie A Collins
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xi Shi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jon Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390, USA
| | - Edward M Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ. Gaboxadol Normalizes Behavioral Abnormalities in a Mouse Model of Fragile X Syndrome. Front Behav Neurosci 2019; 13:141. [PMID: 31293404 PMCID: PMC6603241 DOI: 10.3389/fnbeh.2019.00141] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.
Collapse
Affiliation(s)
- Patricia Cogram
- FRAXA-DVI, FRAXA Research Foundation, Boston, MA, United States.,Centre for Systems Biotechnology, Biomedicine Division, Fraunhofer-Gesellschaft, Santiago, Chile.,GEN.DDI Limited, London, United Kingdom.,Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Robert M J Deacon
- FRAXA-DVI, FRAXA Research Foundation, Boston, MA, United States.,Centre for Systems Biotechnology, Biomedicine Division, Fraunhofer-Gesellschaft, Santiago, Chile.,GEN.DDI Limited, London, United Kingdom.,Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | | | | | - Brett S Abrahams
- Ovid Therapeutics, New York, NY, United States.,Department of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matthew J During
- Ovid Therapeutics, New York, NY, United States.,Department of Neurological Surgery and Molecular Virology, Immunology and Medical Genetics, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
19
|
Zafarullah M, Tassone F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci 2019; 9:E96. [PMID: 31035599 PMCID: PMC6562871 DOI: 10.3390/brainsci9050096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and a known monogenic cause of autism spectrum disorder (ASD). It is a trinucleotide repeat disorder, in which more than 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene causes methylation of the promoter with consequent silencing of the gene, ultimately leading to the loss of the encoded fragile X mental retardation 1 protein, FMRP. FMRP is an RNA binding protein that plays a primary role as a repressor of translation of various mRNAs, many of which are involved in the maintenance and development of neuronal synaptic function and plasticity. In addition to intellectual disability, patients with FXS face several behavioral challenges, including anxiety, hyperactivity, seizures, repetitive behavior, and problems with executive and language performance. Currently, there is no cure or approved medication for the treatment of the underlying causes of FXS, but in the past few years, our knowledge about the proteins and pathways that are dysregulated by the loss of FMRP has increased, leading to clinical trials and to the path of developing molecular biomarkers for identifying potential targets for therapies. In this paper, we review candidate molecular biomarkers that have been identified in preclinical studies in the FXS mouse animal model and are now under validation for human applications or have already made their way to clinical trials.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
20
|
Llinas Del Torrent C, Pérez-Benito L, Tresadern G. Computational Drug Design Applied to the Study of Metabotropic Glutamate Receptors. Molecules 2019; 24:molecules24061098. [PMID: 30897742 PMCID: PMC6470756 DOI: 10.3390/molecules24061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.
Collapse
Affiliation(s)
- Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain.
| | - Laura Pérez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
21
|
Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V, Zimprich CA, Kutil Z, Zhang G, Bařinka C, Robers MB, Van Den Bosch L, Eubanks JH, Jope RS. Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chem Neurosci 2019; 10:1679-1695. [PMID: 30511829 DOI: 10.1021/acschemneuro.8b00600] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Maurício T. Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Dora Szarics
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Veronick Benoy
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | | | - Zsófia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guiping Zhang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - James H. Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
22
|
Zoicas I, Kornhuber J. The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents. Int J Mol Sci 2019; 20:ijms20061412. [PMID: 30897826 PMCID: PMC6470515 DOI: 10.3390/ijms20061412] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023] Open
Abstract
The appropriate display of social behavior is critical for the well-being and survival of an individual. In many psychiatric disorders, including social anxiety disorder, autism spectrum disorders, depression and schizophrenia social behavior is severely impaired. Selective targeting of metabotropic glutamate receptors (mGluRs) has emerged as a novel treatment strategy for these disorders. In this review, we describe some of the behavioral paradigms used to assess different types of social behavior, such as social interaction, social memory, aggressive behavior and sexual behavior. We then focus on the effects of pharmacological modulation of mGluR1-8 on these types of social behavior. Indeed, accumulating evidence indicates beneficial effects of selective ligands of specific mGluRs in ameliorating innate or pharmacologically-induced deficits in social interaction and social memory as well as in reducing aggression in rodents. We emphasize the importance of future studies investigating the role of selective mGluR ligands on different types of social behavior to provide a better understanding of the neural mechanisms involved which, in turn, might promote the development of selective mGluR-targeted tools for the improved treatment of psychiatric disorders associated with social deficits.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91054, Germany.
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91054, Germany.
| |
Collapse
|
23
|
Gross C, Banerjee A, Tiwari D, Longo F, White AR, Allen AG, Schroeder-Carter LM, Krzeski JC, Elsayed NA, Puckett R, Klann E, Rivero RA, Gourley SL, Bassell GJ. Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model. Neuropsychopharmacology 2019; 44:324-333. [PMID: 30061744 PMCID: PMC6300538 DOI: 10.1038/s41386-018-0150-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/07/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
Defects in the phosphoinositide 3-kinase (PI3K) pathway are shared characteristics in several brain disorders, including the inherited intellectual disability and autism spectrum disorder, fragile X syndrome (FXS). PI3K signaling therefore could serve as a therapeutic target for FXS and other brain disorders. However, broad inhibition of such a central signal transduction pathway involved in essential cellular functions may produce deleterious side effects. Pharmacological strategies that selectively correct the overactive components of the PI3K pathway while leaving other parts of the pathway intact may overcome these challenges. Here, we provide the first evidence that disease mechanism-based PI3K isoform-specific inhibition may be a viable treatment option for FXS. FXS is caused by loss of the fragile X mental retardation protein (FMRP), which translationally represses specific messenger RNAs, including the PI3K catalytic isoform p110β. FMRP deficiency increases p110β protein levels and activity in FXS mouse models and in cells from subjects with FXS. Here, we show that a novel, brain-permeable p110β-specific inhibitor, GSK2702926A, ameliorates FXS-associated phenotypes on molecular, cellular, behavioral, and cognitive levels in two different FMRP-deficient mouse models. Rescued phenotypes included increased PI3K downstream signaling, protein synthesis rates, and dendritic spine density, as well as impaired social interaction and higher-order cognition. Several p110β-selective inhibitors, for example, a molecule from the same chemotype as GSK2702926A, are currently being evaluated in clinical trials to treat cancer. Our results suggest that repurposing p110β inhibitors to treat cognitive and behavioral defects may be a promising disease-modifying strategy for FXS and other brain disorders.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA.
| | - Anwesha Banerjee
- 0000 0001 0941 6502grid.189967.8Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Durgesh Tiwari
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Francesco Longo
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Angela R. White
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - A. G. Allen
- 0000 0001 0941 6502grid.189967.8Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Lindsay M. Schroeder-Carter
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Joseph C. Krzeski
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Nada A. Elsayed
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Rosemary Puckett
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Eric Klann
- 0000 0004 1936 8753grid.137628.9Center for Neural Science, New York University, New York, NY 10003 USA
| | - Ralph A. Rivero
- 0000 0004 0393 4335grid.418019.5GlaxoSmithKline, Collegeville, PA 19426 USA
| | - Shannon L. Gourley
- 0000 0001 0941 6502grid.189967.8Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Gary J. Bassell
- 0000 0001 0941 6502grid.189967.8Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA ,0000 0001 0941 6502grid.189967.8Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
24
|
Sandoval GM, Shim S, Hong DS, Garrett AS, Quintin EM, Marzelli MJ, Patnaik S, Lightbody AA, Reiss AL. Neuroanatomical abnormalities in fragile X syndrome during the adolescent and young adult years. J Psychiatr Res 2018; 107:138-144. [PMID: 30408626 PMCID: PMC6249038 DOI: 10.1016/j.jpsychires.2018.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Abnormal brain development and cognitive dysfunction have been reported both in children and in adults with fragile X syndrome (FXS). However, few studies have examined neuroanatomical abnormalities in FXS during adolescence. In this study we focus on adolescent subjects with FXS (N = 54) as compared to age- and sex-matched subjects with idiopathic intellectual disability (Comparison Group) (N = 32), to examine neuroanatomical differences during this developmental period. Brain structure was assessed with voxel-based morphometry and independent groups t-test in SPM8 software. Results showed that the FXS group, relative to the comparison group, had significantly larger gray matter volume (GMV) in only one region: the bilateral caudate nucleus, but have smaller GMV in several regions including bilateral medial frontal, pregenual cingulate, gyrus rectus, insula, and superior temporal gyrus. Group differences also were noted in white matter regions. Within the FXS group, lower FMRP levels were associated with less GMV in several regions including cerebellum and gyrus rectus, and less white matter volume (WMV) in pregenual cingulate, middle frontal gyrus, and other regions. Lower full scale IQ within the FXS group was associated with larger right caudate nucleus GMV. In conclusion, adolescents and young adults with FXS demonstrate neuroanatomical abnormalities consistent with those previously reported in children and adults with FXS. These brain variations likely result from reduced FMRP during early neurodevelopment and mediate downstream deleterious effects on cognitive function.
Collapse
|
25
|
Belhocine A, Veglianese P, Hounsou C, Dupuis E, Acher F, Durroux T, Goudet C, Pin JP. Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-lite ® assays. Neuropharmacology 2018; 140:233-245. [PMID: 30099051 DOI: 10.1016/j.neuropharm.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
Group-III metabotropic glutamate (mGlu) receptors are important synaptic regulators and are potential druggable targets for Parkinson disease, autism and pain. Potential drugs include orthosteric agonists in the glutamate binding extracellular domain and positive allosteric modulators interacting with seven-pass transmembrane domains. Orthosteric agonists are rarely completely specific for an individual group-III mGlu subtype. Furthermore they often fail to pass the blood-brain barrier and they constitutively activate their target receptor. These properties limit the potential therapeutic use of orthosteric agonists. Allosteric modulators are more specific and maintain the biological activity of the targeted receptor. However, they bind in a hydrophobic pocket and this limits their bio-availability and increases possible off-target action. It is therefore important to characterize the action of potential drug targets with a multifaceted and deeply informative assay. Here we aimed at multifaceted deep profiling of the effect of seven different agonists, and seven positive allosteric modulators on 34 different G protein-coupled receptors by a Tag-lite® assay. Our results did not reveal off-target activity of mGlu orthosteric agonists. However, five allosteric modulators had either positive or negative effects on non-cognate G protein-coupled receptors. In conclusion, we demonstrate the power of the Tag-lite® assay for potential drug ligand profiling on G protein-coupled receptors and its potential to identify positive allosteric compounds.
Collapse
Affiliation(s)
| | | | | | | | - Francine Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Cyril Goudet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
26
|
Westmark PR, Dekundy A, Gravius A, Danysz W, Westmark CJ. Rescue of Fmr1 KO phenotypes with mGluR 5 inhibitors: MRZ-8456 versus AFQ-056. Neurobiol Dis 2018; 119:190-198. [PMID: 30125640 DOI: 10.1016/j.nbd.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is a drug target for central nervous system disorders such as fragile X syndrome that involve excessive glutamate-induced excitation. We tested the efficacy of a novel negative allosteric modulator of mGluR5 developed by Merz Pharmaceuticals, MRZ-8456, in comparison to MPEP and AFQ-056 (Novartis, a.k.a. mavoglurant) in both in vivo and in vitro assays in a mouse model of fragile X syndrome, Fmr1KO mice. The in vivo assays included susceptibility to audiogenic-induced seizures and pharmacokinetic measurements of drug availability. The in vitro assays included dose response assessments of biomarker expression and dendritic spine length and density in cultured primary neurons. Both MRZ-8456 and AFQ-056 attenuated wild running and audiogenic-induced seizures in Fmr1KO mice with similar pharmacokinetic profiles. Both drugs significantly reduced dendritic expression of amyloid-beta protein precursor (APP) and rescued the ratio of mature to immature dendritic spines. These findings demonstrate that MRZ-8456, a drug being developed for the treatment of motor complications of L-DOPA in Parkinson's disease and which completed a phase I clinical trial, is effective in attenuating both well-established (seizures and dendritic spine maturity) and exploratory biomarker (APP expression) phenotypes in a mouse model of fragile X syndrome.
Collapse
Affiliation(s)
- Pamela R Westmark
- University of Wisconsin-Madison, Department of Neurology, Madison, WI, USA; University of Wisconsin-Madison, Department of Medicine, Madison, WI, USA
| | - Andrzej Dekundy
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Andreas Gravius
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | - Cara J Westmark
- University of Wisconsin-Madison, Department of Neurology, Madison, WI, USA.
| |
Collapse
|
27
|
Smart K, Cox SML, Nagano-Saito A, Rosa-Neto P, Leyton M, Benkelfat C. Test-retest variability of [ 11 C]ABP688 estimates of metabotropic glutamate receptor subtype 5 availability in humans. Synapse 2018; 72:e22041. [PMID: 29935121 DOI: 10.1002/syn.22041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
[11 C]ABP688 is a positron emission tomography (PET) radioligand that binds selectively to metabotropic glutamate type 5 receptors (mGluR5). The use of this tracer has identified receptor binding changes in clinical populations, and has been informative in drug occupancy studies. However, previous studies have found significant increases in [11 C]ABP688 binding in the later scan of same-day comparisons, and estimates of test-retest reliability under consistent scanning conditions are not available. The objective of this study was to assess the variability of [11 C]ABP688 binding in healthy people in scans performed at the same time of day. Two [11 C]ABP688 scans were acquired in eight healthy volunteers (6 women, 2 men) using a high-resolution research tomograph (HRRT). Scans were acquired 3 weeks apart with start times between 10:00am and 1:30pm. Mean mGluR5 binding potential (BPND ) values were calculated across cortical, striatal and limbic brain regions. Participants reported on subjective mood state after each scan and blood samples were drawn for cortisol analysis. No significant change in BPND between scans was observed. Variability in BPND values of 11-21% was observed across regions, with the greatest change in the hippocampus and amygdala. Reliability was low to moderate. BPND was not statistically related to scan start time, subjective anxiety, serum cortisol levels, or menstrual phase in women. Overall, [11 C]ABP688 BPND estimates show moderate variability in healthy people. Reliability is fair in cortical and striatal regions, and lower in limbic regions. Future research using this ligand should account for this in study design and analysis.
Collapse
Affiliation(s)
- Kelly Smart
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada.,Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Quebec, H4H 1R3, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
28
|
Dockendorff TC, Labrador M. The Fragile X Protein and Genome Function. Mol Neurobiol 2018; 56:711-721. [PMID: 29796988 DOI: 10.1007/s12035-018-1122-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Mariano Labrador
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
29
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Liu DC, Seimetz J, Lee KY, Kalsotra A, Chung HJ, Lu H, Tsai NP. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity. Hum Mol Genet 2018; 26:3895-3908. [PMID: 29016848 DOI: 10.1093/hmg/ddx276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program
| | - Joseph Seimetz
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R.Woese Institute of Genomic Biology, University of Illinois, Champaign, IL 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
32
|
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, Keserű GM. Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem 2018; 62:207-222. [DOI: 10.1021/acs.jmedchem.7b01722] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- John A. Christopher
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - Miles Congreve
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S. Doré
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C. Errey
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H. Marshall
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Prakash Rucktooa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | | | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| |
Collapse
|
33
|
Effect of the mGluR5-NAM Basimglurant on Behavior in Adolescents and Adults with Fragile X Syndrome in a Randomized, Double-Blind, Placebo-Controlled Trial: FragXis Phase 2 Results. Neuropsychopharmacology 2018; 43:503-512. [PMID: 28816242 PMCID: PMC5770759 DOI: 10.1038/npp.2017.177] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
Preclinical data suggest that inhibition of the metabotropic glutamate receptor 5 (mGluR5) receptor might hold therapeutic benefits in Fragile X syndrome (FXS). Treatment of Fmr1 knockout mice with mGluR5-negative allosteric modulators (NAMs) has been reported to correct a broad range of phenotypes related to FXS. The early short-term clinical trials with mGluR5 NAMs, including basimglurant, assessing the effects in individuals with FXS, were supportive of further exploration in larger, well-controlled trials. We evaluated basimglurant, a potent and selective mGluR5 NAM, in a 12-week, double-blind, parallel-group study of 183 adults and adolescents (aged 14-50, mean 23.4 years) with FXS. Individuals with an FMR1 full mutation were randomized to placebo or one of two doses of basimglurant. The primary efficacy endpoint was the change from baseline in behavioral symptoms using the Anxiety Depression and Mood Scale (ADAMS) total score. All treatment arms showed marked behavioral improvements from baseline to week 12 with less improvement in the basimglurant 1.5 mg arm than placebo; however, basimglurant 0.5 mg was inferior to placebo in the ADAMs total score. Treatment with basimglurant was overall well-tolerated. A higher incidence of adverse events classified as psychiatric disorders were reported in patients treated with basimglurant, including three patients with hallucinations or psychosis. In this phase 2 clinical trial, basimglurant did not demonstrate improvement over placebo. Evaluation of the overall risk-benefit in younger patient populations is an important consideration for the design of potential further investigations of efficacy with this class of medications.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Autoantibodies to Central nervous system (CNS) metabotropic receptors are associated with a growing family of autoimmune brain diseases, including encephalitis, basal ganglia encephalitis, Ophelia syndrome, and cerebellitis. The purpose of this review is to summarize the state of knowledge regarding the target receptors, the neurological autoimmune disorders, and the pathogenic mechanisms. RECENT FINDINGS Antibodies to the γ-aminobutyric acid B receptor are associate with limbic encephalitis and severe seizures, often with small cell lung cancers. Metabotropic glutamate receptor 5 (mGluR5) antibodies associate with Ophelia syndrome, a relatively mild form of encephalitis linked to Hodgkin lymphoma. mGluR1 antibodies associate with a form of cerebellar degeneration, and also Hodgkin lymphoma. Antibodies to Homer 3, a protein associated with mGluR1, have also been reported in two patients with cerebellar syndromes. Dopamine-2 receptor antibodies have been reported by one group in children with basal ganglia encephalitis and other disorders. SUMMARY CNS metabotropic receptor antibodies may exert direct inhibitory effects on their target receptors, but the evidence is more limited than with autoantibodies to ionotropic glutamate receptors. In the future, improved recognition of these patients may lead to better outcomes. Understanding the molecular mechanisms of the diseases may uncover novel treatment strategies.
Collapse
|
35
|
Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov 2017; 17:280-299. [PMID: 29217836 DOI: 10.1038/nrd.2017.221] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders such as fragile X syndrome (FXS) result in lifelong cognitive and behavioural deficits and represent a major public health burden. FXS is the most frequent monogenic form of intellectual disability and autism, and the underlying pathophysiology linked to its causal gene, FMR1, has been the focus of intense research. Key alterations in synaptic function thought to underlie this neurodevelopmental disorder have been characterized and rescued in animal models of FXS using genetic and pharmacological approaches. These robust preclinical findings have led to the implementation of the most comprehensive drug development programme undertaken thus far for a genetically defined neurodevelopmental disorder, including phase IIb trials of metabotropic glutamate receptor 5 (mGluR5) antagonists and a phase III trial of a GABAB receptor agonist. However, none of the trials has been able to unambiguously demonstrate efficacy, and they have also highlighted the extent of the knowledge gaps in drug development for FXS and other neurodevelopmental disorders. In this Review, we examine potential issues in the previous studies and future directions for preclinical and clinical trials. FXS is at the forefront of efforts to develop drugs for neurodevelopmental disorders, and lessons learned in the process will also be important for such disorders.
Collapse
|
36
|
Stoppel LJ, Auerbach BD, Senter RK, Preza AR, Lefkowitz RJ, Bear MF. β-Arrestin2 Couples Metabotropic Glutamate Receptor 5 to Neuronal Protein Synthesis and Is a Potential Target to Treat Fragile X. Cell Rep 2017; 18:2807-2814. [PMID: 28329674 DOI: 10.1016/j.celrep.2017.02.075] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/31/2017] [Accepted: 02/24/2017] [Indexed: 10/19/2022] Open
Abstract
Synaptic protein synthesis is essential for modification of the brain by experience and is aberrant in several genetically defined disorders, notably fragile X (FX), a heritable cause of autism and intellectual disability. Neural activity directs local protein synthesis via activation of metabotropic glutamate receptor 5 (mGlu5), yet how mGlu5 couples to the intracellular signaling pathways that regulate mRNA translation is poorly understood. Here, we provide evidence that β-arrestin2 mediates mGlu5-stimulated protein synthesis in the hippocampus and show that genetic reduction of β-arrestin2 corrects aberrant synaptic plasticity and cognition in the Fmr1-/y mouse model of FX. Importantly, reducing β-arrestin2 does not induce psychotomimetic activity associated with full mGlu5 inhibitors and does not affect Gq signaling. Thus, in addition to identifying a key requirement for mGlu5-stimulated protein synthesis, these data suggest that β-arrestin2-biased negative modulators of mGlu5 offer significant advantages over first-generation inhibitors for the treatment of FX and related disorders.
Collapse
Affiliation(s)
- Laura J Stoppel
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin D Auerbach
- The Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Rebecca K Senter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony R Preza
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert J Lefkowitz
- Departments of Medicine and Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Zeidler S, de Boer H, Hukema RK, Willemsen R. Combination Therapy in Fragile X Syndrome; Possibilities and Pitfalls Illustrated by Targeting the mGluR5 and GABA Pathway Simultaneously. Front Mol Neurosci 2017; 10:368. [PMID: 29163043 PMCID: PMC5681991 DOI: 10.3389/fnmol.2017.00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism. The disorder is characterized by altered synaptic plasticity in the brain. Synaptic plasticity is tightly regulated by a complex balance of different synaptic pathways. In FXS, various synaptic pathways are disrupted, including the excitatory metabotropic glutamate receptor 5 (mGluR5) and the inhibitory γ-aminobutyric acid (GABA) pathways. Targeting each of these pathways individually, has demonstrated beneficial effects in animal models, but not in patients with FXS. This lack of translation might be due to oversimplification of the disease mechanisms when targeting only one affected pathway, in spite of the complexity of the many pathways implicated in FXS. In this report we outline the hypothesis that targeting more than one pathway simultaneously, a combination therapy, might improve treatment effects in FXS. In addition, we present a glance of the first results of chronic combination therapy on social behavior in Fmr1 KO mice. In contrast to what we expected, targeting both the mGluR5 and the GABAergic pathways simultaneously did not result in a synergistic effect, but in a slight worsening of the social behavior phenotype. This does implicate that both pathways are interconnected and important for social behavior. Our results underline the tremendous fine-tuning that is needed to reach the excitatory-inhibitory balance in the synapse in relation to social behavior. We believe that alternative strategies focused on combination therapy should be further explored, including targeting pathways in different cellular compartments or cell-types.
Collapse
Affiliation(s)
- Shimriet Zeidler
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Helen de Boer
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
38
|
Goniotaki D, Lakkaraju AKK, Shrivastava AN, Bakirci P, Sorce S, Senatore A, Marpakwar R, Hornemann S, Gasparini F, Triller A, Aguzzi A. Inhibition of group-I metabotropic glutamate receptors protects against prion toxicity. PLoS Pathog 2017; 13:e1006733. [PMID: 29176838 PMCID: PMC5720820 DOI: 10.1371/journal.ppat.1006733] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/07/2017] [Accepted: 11/04/2017] [Indexed: 12/29/2022] Open
Abstract
Prion infections cause inexorable, progressive neurological dysfunction and neurodegeneration. Expression of the cellular prion protein PrPC is required for toxicity, suggesting the existence of deleterious PrPC-dependent signaling cascades. Because group-I metabotropic glutamate receptors (mGluR1 and mGluR5) can form complexes with the cellular prion protein (PrPC), we investigated the impact of mGluR1 and mGluR5 inhibition on prion toxicity ex vivo and in vivo. We found that pharmacological inhibition of mGluR1 and mGluR5 antagonized dose-dependently the neurotoxicity triggered by prion infection and by prion-mimetic anti-PrPC antibodies in organotypic brain slices. Prion-mimetic antibodies increased mGluR5 clustering around dendritic spines, mimicking the toxicity of Aβ oligomers. Oral treatment with the mGluR5 inhibitor, MPEP, delayed the onset of motor deficits and moderately prolonged survival of prion-infected mice. Although group-I mGluR inhibition was not curative, these results suggest that it may alleviate the neurological dysfunctions induced by prion diseases.
Collapse
Affiliation(s)
| | | | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Pamela Bakirci
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS) INSERM CNRS PSL Research University, Paris, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
40
|
Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun 2017; 8:1103. [PMID: 29062097 PMCID: PMC5653653 DOI: 10.1038/s41467-017-01191-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics. Dysfunction of mGluR5 has been implicated in Fragile X syndrome. Here, using a single-molecule tracking technique, the authors found an increased lateral mobility of mGluR5 at the synaptic site in Fmr1 KO hippocampal neurons, leading to abnormal NMDAR-mediated synaptic plasticity and cognitive deficits.
Collapse
|
41
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
42
|
Borrie SC, Brems H, Legius E, Bagni C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 2017; 18:115-142. [DOI: 10.1146/annurev-genom-091416-035332] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Borrie
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| |
Collapse
|
43
|
Parkin Deficiency Reduces Hippocampal Glutamatergic Neurotransmission by Impairing AMPA Receptor Endocytosis. J Neurosci 2017; 36:12243-12258. [PMID: 27903732 DOI: 10.1523/jneurosci.1473-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Parkin, an E3 ubiquitin ligase, lead to juvenile-onset Parkinson's disease by inducing the selective death of midbrain dopaminergic neurons. Accumulating evidence indicates that Parkin also has an important role in excitatory glutamatergic neurotransmission, although its precise mechanism of action remains unclear. Here, we investigate Parkin's role at glutamatergic synapses of rat hippocampal neurons. We find that Parkin-deficient neurons exhibit significantly reduced AMPA receptor (AMPAR)-mediated currents and cell-surface expression, and that these phenotypes result from decreased postsynaptic expression of the adaptor protein Homer1, which is necessary for coupling AMPAR endocytic zones with the postsynaptic density. Accordingly, Parkin loss of function leads to the reduced density of postsynaptic endocytic zones and to impaired AMPAR internalization. These findings demonstrate a novel and essential role for Parkin in glutamatergic neurotransmission, as a stabilizer of postsynaptic Homer1 and the Homer1-linked endocytic machinery necessary for maintaining normal cell-surface AMPAR levels. SIGNIFICANCE STATEMENT Mutations in Parkin, a ubiquitinating enzyme, lead to the selective loss of midbrain dopaminergic neurons and juvenile-onset Parkinson's disease (PD). Parkin loss of function has also been shown to alter hippocampal glutamatergic neurotransmission, providing a potential explanation for PD-associated cognitive impairment. However, very little is known about Parkin's specific sites or mechanisms of action at glutamatergic synapses. Here, we show that Parkin deficiency leads to decreased AMPA receptor-mediated activity due to disruption of the postsynaptic endocytic zones required for maintaining proper cell-surface AMPA receptor levels. These findings demonstrate a novel role for Parkin in synaptic AMPA receptor internalization and suggest a Parkin-dependent mechanism for hippocampal dysfunction that may explain cognitive deficits associated with some forms of PD.
Collapse
|
44
|
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2017; 47:534-548. [PMID: 28452083 DOI: 10.1111/ejn.13595] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) and epilepsy are common neurological diseases of childhood, with an estimated incidence of approximately 0.5-1% of the worldwide population. Several genetic, neuroimaging and neuropathological studies clearly showed that both ASD and epilepsy have developmental origins and a substantial degree of heritability. Most importantly, ASD and epilepsy frequently coexist in the same individual, suggesting a common neurodevelopmental basis for these disorders. Genome-wide association studies recently allowed for the identification of a substantial number of genes involved in ASD and epilepsy, some of which are mutated in syndromes presenting both ASD and epilepsy clinical features. At the cellular level, both preclinical and clinical studies indicate that the different genetic causes of ASD and epilepsy may converge to perturb the excitation/inhibition (E/I) balance, due to the dysfunction of excitatory and inhibitory circuits in various brain regions. Metabolic and immune dysfunctions, as well as environmental causes also contribute to ASD pathogenesis. Thus, an E/I imbalance resulting from neurodevelopmental deficits of multiple origins might represent a common pathogenic mechanism for both diseases. Here, we will review the most significant studies supporting these hypotheses. A deeper understanding of the molecular and cellular determinants of autism-epilepsy comorbidity will pave the way to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy.,CNR Neuroscience Institute, Pisa, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- CNR Neuroscience Institute, Pisa, Italy.,Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
45
|
Jeon SJ, Ryu JH, Bahn GH. Altered Translational Control of Fragile X Mental Retardation Protein on Myelin Proteins in Neuropsychiatric Disorders. Biomol Ther (Seoul) 2017; 25:231-238. [PMID: 27829268 PMCID: PMC5424632 DOI: 10.4062/biomolther.2016.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 06/28/2016] [Accepted: 07/28/2016] [Indexed: 01/07/2023] Open
Abstract
Myelin is a specialized structure of the nervous system that both enhances electrical conductance and insulates neurons from external risk factors. In the central nervous system, polarized oligodendrocytes form myelin by wrapping processes in a spiral pattern around neuronal axons through myelin-related gene regulation. Since these events occur at a distance from the cell body, post-transcriptional control of gene expression has strategic advantage to fine-tune the overall regulation of protein contents in situ. Therefore, many research interests have been focused to identify RNA binding proteins and their regulatory mechanism in myelinating compartments. Fragile X mental retardation protein (FMRP) is one such RNA binding protein, regulating its target expression by translational control. Although the majority of works on FMRP have been performed in neurons, it is also found in the developing or mature glial cells including oligodendrocytes, where its function is not well understood. Here, we will review evidences suggesting abnormal translational regulation of myelin proteins with accompanying white matter problem and neurological deficits in fragile X syndrome, which can have wider mechanistic and pathological implication in many other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
46
|
Esbensen AJ, Hooper SR, Fidler D, Hartley S, Edgin J, d’Ardhuy XL, Capone G, Conners F, Mervis CB, Abbeduto L, Rafii M, Krinsky-McHale SJ, Urv T. Outcome Measures for Clinical Trials in Down Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2017; 122:247-281. [PMID: 28452584 PMCID: PMC5424621 DOI: 10.1352/1944-7558-122.3.247] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Increasingly individuals with intellectual and developmental disabilities, including Down syndrome, are being targeted for clinical trials. However, a challenge exists in effectively evaluating the outcomes of these new pharmacological interventions. Few empirically evaluated, psychometrically sound outcome measures appropriate for use in clinical trials with individuals with Down syndrome have been identified. To address this challenge, the National Institutes of Health (NIH) assembled leading clinicians and scientists to review existing measures and identify those that currently are appropriate for trials; those that may be appropriate after expansion of age range addition of easier items, and/or downward extension of psychometric norms; and areas where new measures need to be developed. This article focuses on measures in the areas of cognition and behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Leonard Abbeduto
- MIND Institute, University of California, Davis School of Medicine
| | | | | | - Tiina Urv
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | | |
Collapse
|
47
|
Zhang D, Qi Y, Klyubin I, Ondrejcak T, Sarell CJ, Cuello AC, Collinge J, Rowan MJ. Targeting glutamatergic and cellular prion protein mechanisms of amyloid β-mediated persistent synaptic plasticity disruption: Longitudinal studies. Neuropharmacology 2017; 121:231-246. [PMID: 28390893 DOI: 10.1016/j.neuropharm.2017.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease amyloid-β (Aβ) oligomers are synaptotoxic, inappropriately increasing extracellular glutamate concentration and glutamate receptor activation to thereby rapidly disrupt synaptic plasticity. Thus, acutely promoting brain glutamate homeostasis with a blood-based scavenging system, glutamate-oxaloacetate transaminase (GOT), and blocking metabotropic glutamate 5 (mGlu5) receptor or its co-receptor cellular prion protein (PrP), prevent the acute inhibition of long-term potentiation (LTP) by exogenous Aβ. Here, we evaluated the time course of the effects of such interventions in the persistent disruptive effects of Aβ oligomers, either exogenously injected in wild type rats or endogenously generated in transgenic rats that model Alzheimer's disease amyloidosis. We report that repeated, but not acute, systemic administration of recombinant GOT type 1, with or without the glutamate co-substrate oxaloacetate, reversed the persistent deleterious effect of exogenous Aβ on synaptic plasticity. Moreover, similar repetitive treatment reversibly abrogated the inhibition of LTP monitored longitudinally in freely behaving transgenic rats. Remarkably, brief repeated treatment with an mGlu5 receptor antagonist, basimglurant, or an antibody that prevents Aβ oligomer binding to PrP, ICSM35, also had similar reversible ameliorative effects in the transgenic rat model. Overall, the present findings support the ongoing development of therapeutics for early Alzheimer's disease based on these complementary approaches.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yingjie Qi
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Claire J Sarell
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, Department of Neurology and Neurosurgery, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
48
|
Dalmau J, Geis C, Graus F. Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physiol Rev 2017; 97:839-887. [PMID: 28298428 PMCID: PMC5539405 DOI: 10.1152/physrev.00010.2016] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Investigations in the last 10 years have revealed a new category of neurological diseases mediated by antibodies against cell surface and synaptic proteins. There are currently 16 such diseases all characterized by autoantibodies against neuronal proteins involved in synaptic signaling and plasticity. In clinical practice these findings have changed the diagnostic and treatment approach to potentially lethal, but now treatable, neurological and psychiatric syndromes previously considered idiopathic or not even suspected to be immune-mediated. Studies show that patients' antibodies can impair the surface dynamics of the target receptors eliminating them from synapses (e.g., NMDA receptor), block the function of the antigens without changing their synaptic density (e.g., GABAb receptor), interfere with synaptic protein-protein interactions (LGI1, Caspr2), alter synapse formation (e.g., neurexin-3α), or by unclear mechanisms associate to a new form of tauopathy (IgLON5). Here we first trace the process of discovery of these diseases, describing the triggers and symptoms related to each autoantigen, and then review in detail the structural and functional alterations caused by the autoantibodies with special emphasis in those (NMDA receptor, amphiphysin) that have been modeled in animals.
Collapse
Affiliation(s)
- Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Christian Geis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Graus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Servei de Neurologia, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Duy PQ, Budimirovic DB. Fragile X Syndrome: Lessons Learned from the Most Translated Neurodevelopmental Disorder in Clinical Trials. Transl Neurosci 2017; 8:7-8. [PMID: 28400977 PMCID: PMC5382936 DOI: 10.1515/tnsci-2017-0002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading genetic cause of autism spectrum disorder (ASD) and inherited intellectual disability (ID) worldwide. Preclinical successes in understanding the biology of FXS have led to numerous translational attempts in human clinical trials of therapeutics that target the excitatory/inhibitory neural signaling imbalances thought to underlie FXS. Despite the preclinical success story, the negative results of the human clinical trials have been deemed to be at least in part disappointing by the field. In this commentary, we contend that such negative studies results in clinical trials may actually propel the FXS field forward by serving as important lessons for designing and implementing improved future clinical trials such that can objectively assess the full range of responses to new therapeutics.
Collapse
Affiliation(s)
- Phan Q. Duy
- Department of Biology Johns Hopkins University Baltimore, MD 21218, USA
- E-mail:
| | - Dejan B. Budimirovic
- Clinical Research Center, Clinical Trials Unit & Fragile X Clinic, Kennedy Krieger Institute, Johns Hopkins Medical Institutions Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Genetic and Pharmacological Reversibility of Phenotypes in Mouse Models of Autism Spectrum Disorder. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:189-211. [PMID: 28551757 DOI: 10.1007/978-3-319-52498-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As autism spectrum disorder (ASD) is largely regarded as a neurodevelopmental condition, long-time consensus was that its hallmark features are irreversible. However, several studies from recent years using defined mouse models of ASD have provided clear evidence that in mice neurobiological and behavioural alterations can be ameliorated or even reversed by genetic restoration or pharmacological treatment either before or after symptom onset. Here, we review findings on genetic and pharmacological reversibility of phenotypes in mouse models of ASD. Our review should give a comprehensive overview on both aspects and encourage future studies to better understand the underlying molecular mechanisms that might be translatable from animals to humans.
Collapse
|