1
|
Lu H, Chen G, Zhao M, Gu H, Zheng W, Li X, Huang M, Geng D, Yu M, Guan X, Zhang L, Song H, Li Y, Wu M, Zhang F, Li D, Wu Q, Shang C, Xie Z, Cao P. Brainstem opioid peptidergic neurons regulate cough reflexes in mice. Innovation (N Y) 2024; 5:100721. [PMID: 39529953 PMCID: PMC11551472 DOI: 10.1016/j.xinn.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Cough is a vital defensive reflex for expelling harmful substances from the airway. The sensory afferents for the cough reflex have been intensively studied. However, the brain mechanisms underlying the cough reflex remain poorly understood. Here, we developed a paradigm to quantitatively measure cough-like reflexes in mice. Using this paradigm, we found that prodynorphin-expressing (Pdyn+) neurons in the nucleus of the solitary tract (NTS) are critical for capsaicin-induced cough-like reflexes. These neurons receive cough-related neural signals from Trpv1+ vagal sensory neurons. The activation of Pdyn+ NTS neurons triggered respiratory responses resembling cough-like reflexes. Among the divergent projections of Pdyn+ NTS neurons, a glutamatergic pathway projecting to the caudal ventral respiratory group (cVRG), the canonical cough center, was necessary and sufficient for capsaicin-induced cough-like reflexes. These results reveal that Pdyn+ NTS neurons, as a key neuronal population at the entry point of the vagus nerve to the brainstem, initiate cough-like reflexes in mice.
Collapse
Affiliation(s)
- Haicheng Lu
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Guoqing Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Miao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenxuan Zheng
- National Institute of Biological Sciences, Beijing 102206, China
- Peking University–Tsinghua University–NIBS Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiating Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Meizhu Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dandan Geng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Minhui Yu
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuyan Guan
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huimeng Song
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yaning Li
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Menghua Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fan Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050011, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congping Shang
- School of Basic Medical Sciences, Guangzhou National Laboratory, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510799, China
| | - Zhiyong Xie
- Department of Psychological Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Chronic cough comes of age. Ann Allergy Asthma Immunol 2023; 130:4-5. [PMID: 36596612 DOI: 10.1016/j.anai.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/03/2023]
|
3
|
Chen Z, Lin MT, Zhan C, Zhong NS, Mu D, Lai KF, Liu MJ. A descending pathway emanating from the periaqueductal gray mediates the development of cough-like hypersensitivity. iScience 2022; 25:103641. [PMID: 35028531 PMCID: PMC8741493 DOI: 10.1016/j.isci.2021.103641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic cough is a common refractory symptom of various respiratory diseases. However, the neural mechanisms that modulate the cough sensitivity and mediate chronic cough remain elusive. Here, we report that GABAergic neurons in the lateral/ventrolateral periaqueductal gray (l/vlPAG) suppress cough processing via a descending pathway. We found that l/vlPAG neurons are activated by coughing-like behaviors and that tussive agent-evoked coughing-like behaviors are impaired after activation of l/vlPAG neurons. In addition, we showed that l/vlPAG neurons form inhibitory synapses with the nucleus of the solitary tract (NTS) neurons. The synaptic strength of these inhibitory projections is weaker in cough hypersensitivity model mice than in naïve mice. Important, activation of l/vlPAG GABAergic neurons projecting to the NTS decreases coughing-like behaviors. In contrast, suppressing these neurons enhances cough sensitivity. These results support the notion that l/vlPAG GABAergic neurons play important roles in cough hypersensitivity and chronic cough through disinhibition of cough processing at the medullary level. GABAergic neurons in the l/vlPAG inhibit coughing-like behaviors The l/vlPAG sends predominately inhibitory projections to the NTS l/vlPAG GABAergic neurons modulate coughing-like behaviors via descending projections l/vlPAG-NTS projections mediate cough hypersensitivity via disinhibitory mechanisms
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China.,Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, China
| | - Ming-Tong Lin
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Ke-Fang Lai
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Mingzhe J Liu
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| |
Collapse
|
4
|
Olsen WL, Rose M, Golder FJ, Wang C, Hammond JC, Bolser DC. Intra-Arterial, but Not Intrathecal, Baclofen and Codeine Attenuates Cough in the Cat. Front Physiol 2021; 12:640682. [PMID: 33746778 PMCID: PMC7973226 DOI: 10.3389/fphys.2021.640682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022] Open
Abstract
Centrally-acting antitussive drugs are thought to act solely in the brainstem. However, the role of the spinal cord in the mechanism of action of these drugs is unknown. The purpose of this study was to determine if antitussive drugs act in the spinal cord to reduce the magnitude of tracheobronchial (TB) cough-related expiratory activity. Experiments were conducted in anesthetized, spontaneously breathing cats (n = 22). Electromyograms (EMG) were recorded from the parasternal (PS) and transversus abdominis (TA) or rectus abdominis muscles. Mechanical stimulation of the trachea or larynx was used to elicit TB cough. Baclofen (10 and 100 μg/kg, GABA-B receptor agonist) or codeine (30 μg/kg, opioid receptor agonist) was administered into the intrathecal (i.t.) space and also into brainstem circulation via the vertebral artery. Cumulative doses of i.t. baclofen or codeine had no effect on PS, abdominal muscle EMGs or cough number during the TB cough. Subsequent intra-arterial (i.a.) administration of baclofen or codeine significantly reduced magnitude of abdominal and PS muscles during TB cough. Furthermore, TB cough number was significantly suppressed by i.a. baclofen. The influence of these drugs on other behaviors that activate abdominal motor pathways was also assessed. The abdominal EMG response to noxious pinch of the tail was suppressed by i.t. baclofen, suggesting that the doses of baclofen that were employed were sufficient to affect spinal pathways. However, the abdominal EMG response to expiratory threshold loading was unaffected by i.t. administration of either baclofen or codeine. These results indicate that neither baclofen nor codeine suppress cough via a spinal action and support the concept that the antitussive effect of these drugs is restricted to the brainstem.
Collapse
Affiliation(s)
- Wendy L. Olsen
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | | | | | | | | | | |
Collapse
|
5
|
Abubakar AB, Bautista TG, Dimmock MR, Mazzone SB, Farrell MJ. Behavioral and Regional Brain Responses to Inhalation of Capsaicin Modified by Painful Conditioning in Humans. Chest 2020; 159:1136-1146. [PMID: 32926869 DOI: 10.1016/j.chest.2020.08.2105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Cough is a defense mechanism that protects the airways and lungs in response to airway irritation. The sensory neurons involved in detecting airway irritants and the neural pathways mediating cough share similarities with those that encode pain from the body. Painful conditioning stimuli applied to one body site are known to reduce the perception of pain at another. However, whether the neural regulation of cough is influenced by painful stimuli is not known. RESEARCH QUESTION What are the behavioral and neural outcomes of painful conditioning stimuli on urge-to-cough (UTC) and cough evoked by inhaled capsaicin? STUDY DESIGN AND METHODS Sixteen healthy participants underwent psychophysical testing and functional MRI while completing a series of capsaicin inhalations to induce UTC and cough. The responses associated with capsaicin inhalation without pain were compared with those after the application of painful conditioning stimuli. RESULTS Significant decreases were seen behaviorally of 18.7% ± 17.3% (P < .001) and 47.0% ± 30.8% (P < .001) in participants' UTC ratings and cough frequencies, respectively, during the application of pain. UTC ratings were reduced by 24.2% ± 36.5% (P < .005) and increased by 67% ± 40% (P < .001) for capsaicin and saline inhalation, respectively, during the scanning session. Painful conditioning stimuli were associated with widespread decreases in regional brain responses to capsaicin inhalation (P < .001). Several brain regions showed levels of reduced activation attributable to painful conditioning that correlated with related changes in behavioral responses during scanning (R2 = 0.53). INTERPRETATION Pain-related decreases of cough and UTC are accompanied by widespread changes in brain activity during capsaicin inhalation, suggesting that pain can modify the central processing of inputs arising from the airways. A mechanistic understanding of how cough and pain processing interact within the brain may help develop more effective therapies to reduce unwanted coughing.
Collapse
Affiliation(s)
- Abubakar B Abubakar
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Tara G Bautista
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - Matthew R Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia.
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Ando A, Mazzone SB, Farrell MJ. Altered neural activity in brain cough suppression networks in cigarette smokers. Eur Respir J 2019; 54:13993003.00362-2019. [PMID: 31248952 DOI: 10.1183/13993003.00362-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 11/05/2022]
Abstract
Cough is important for airway defence, and studies in healthy animals and humans have revealed multiple brain networks intimately involved in the perception of airway irritation, cough induction and cough suppression. Changes in cough sensitivity and/or the ability to suppress cough accompany pulmonary pathologies, suggesting a level of plasticity is possible in these central neural circuits. However, little is known about how persistent inputs from the lung might modify the brain processes regulating cough.In the present study, we used human functional brain imaging to investigate the central neural responses that accompany an altered cough sensitivity in cigarette smokers.In nonsmokers, inhalation of the airway irritant capsaicin induced a transient urge-to-cough associated with the activation of a distributed brain network that included sensory, prefrontal and motor cortical regions. Cigarette smokers demonstrated significantly higher thresholds for capsaicin-induced urge-to-cough, consistent with a reduced sensitivity to airway irritation. Intriguingly, this was accompanied by increased activation in brain regions known to be involved in both cough sensory processing (primary sensorimotor cortex) and cough suppression (dorsolateral prefrontal cortex and the midbrain nucleus cuneiformis). Activations in the prefrontal cortex were highest among participants with the least severe smoking behaviour, whereas those in the midbrain correlated with more severe smoking behaviour.These outcomes suggest that smoking-induced sensitisation of central cough neural circuits is offset by concurrently enhanced central suppression. Furthermore, central suppression mechanisms may evolve with the severity of smoke exposure, changing from initial prefrontal inhibition to more primitive midbrain processes as exposure increases.
Collapse
Affiliation(s)
- Ayaka Ando
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Stuart B Mazzone
- Dept of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Michael J Farrell
- Dept of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging Research Centre, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Mazzone SB. Chronic cough: a disorder of response inhibition? Eur Respir J 2019; 53:53/5/1900254. [DOI: 10.1183/13993003.00254-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 11/05/2022]
|
8
|
Mazzone SB, Farrell MJ. Heterogeneity of cough neurobiology: Clinical implications. Pulm Pharmacol Ther 2019; 55:62-66. [DOI: 10.1016/j.pupt.2019.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/24/2022]
|
9
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
El‐Hashim AZ, Mathews S, Al‐Shamlan F. Central adenosine A 1 receptors inhibit cough via suppression of excitatory glutamatergic and tachykininergic neurotransmission. Br J Pharmacol 2018; 175:3162-3174. [PMID: 29767468 PMCID: PMC6031887 DOI: 10.1111/bph.14360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A1 receptor is reported to mediate several excitatory effects in the airways and has inhibitory effects in the CNS. In this study, we investigated the role of peripheral and central A1 receptors in regulating cough and airway obstruction. EXPERIMENTAL APPROACH Drugs were administered to guinea pigs via inhalation or i.c.v. infusion. Following the administration of different drugs, cough was induced by exposing guinea pigs to aerosolized 0.4 M citric acid. An automated analyser recorded both cough and airway obstruction simultaneously using whole-body plethysmography. KEY RESULTS The A1 receptor agonist, cyclopentyladenosine (CPA, administered by inhalation), dose-dependently inhibited cough and also inhibited airway obstruction. Similarly, CPA, administered i.c.v., inhibited both the citric acid-induced cough and airway obstruction; this was prevented by pretreatment with the A1 receptor antagonist DPCPX (i.c.v.). Treatment with DPCPX alone dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was reversed following treatment with either the glutamate GluN1 receptor antagonist D-AP5 or the neurokinin NK1 receptor antagonist FK-888. CONCLUSIONS AND IMPLICATIONS These findings suggest that activation of either peripheral or central adenosine A1 receptors inhibits citric acid-induced cough and airway obstruction. The data also suggest that tonic activation of central adenosine A1 receptors serves as a negative regulator of cough and airway obstruction, secondary to inhibition of excitatory glutamatergic and tachykininergic neurotransmission.
Collapse
Affiliation(s)
- Ahmed Z El‐Hashim
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| | - Seena Mathews
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| | - Fajer Al‐Shamlan
- Department of Pharmacology and Therapeutics, Faculty of PharmacyKuwait UniversityKuwait
| |
Collapse
|
11
|
Mazzone SB, Chung KF, McGarvey L. The heterogeneity of chronic cough: a case for endotypes of cough hypersensitivity. THE LANCET RESPIRATORY MEDICINE 2018; 6:636-646. [DOI: 10.1016/s2213-2600(18)30150-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
|
12
|
McGovern AE, Ajayi IE, Farrell MJ, Mazzone SB. A neuroanatomical framework for the central modulation of respiratory sensory processing and cough by the periaqueductal grey. J Thorac Dis 2017; 9:4098-4107. [PMID: 29268420 DOI: 10.21037/jtd.2017.08.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sensory information arising from the airways is processed in a distributed brain network that encodes for the discriminative and affective components of the resultant sensations. These higher brain networks in turn regulate descending motor control circuits that can both promote or suppress behavioural responses. Here we explore the existence of possible descending neural control pathways that regulate airway afferent processing in the brainstem, analogous to the endogenous descending analgesia system described for noxious somatosensation processing and placebo analgesia. A key component of this circuitry is the midbrain periaqueductal grey, a region of the brainstem recently highlighted for its altered activity in patients with chronic cough. Understanding the nature and plasticity of descending neural control may help identify novel central therapeutic targets to alleviate the neuronal hypersensitivity underpinning many symptoms of respiratory disease.
Collapse
Affiliation(s)
- Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| | - Itopa E Ajayi
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| | - Michael J Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton VIC 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
13
|
Hight DF, Voss LJ, García PS, Sleigh JW. Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia. J Clin Monit Comput 2016; 31:813-823. [PMID: 27444893 DOI: 10.1007/s10877-016-9911-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (CeMAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher CeMACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. We determined CeMAC at time of EMG activation and at return of consciousness. Pain was assessed immediately after return of consciousness using an 11 point numerical rating scale. The onset of EMG activation during emergence was associated with neither discernible muscle movement nor with the presence of exogenous stimulation in half the patients. EMG activation could be modelled as two distinct processes; termed high- and low-CeMAC (occurring higher or lower than 0.07 CeMAC). Low-CeMAC activation was typically associated with simultaneous EMG activation and consciousness, and the presence of a laryngeal mask. In contrast, high-CeMAC EMG activation occurred independently of return of consciousness, and was not associated with severe post-operative pain, but was more common in the presence of an endotracheal tube. Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher CeMAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low CeMAC, and is closely temporally associated with return of consciousness.
Collapse
Affiliation(s)
- Darren F Hight
- Department of Anaesthesiology, Waikato Clinical Campus, University of Auckland, Pembroke Street, Hamilton, 3240, New Zealand
| | - Logan J Voss
- Waikato District Health Board, Hamilton, 3240, New Zealand
| | - Paul S García
- Department of Anesthesiology, Atlanta VA Medical Center/Emory University, 1670 Clairmont Road, Atlanta, GA, 30033, USA
| | - Jamie W Sleigh
- Department of Anaesthesiology, Waikato Clinical Campus, University of Auckland, Pembroke Street, Hamilton, 3240, New Zealand.
| |
Collapse
|
14
|
Ando A, Smallwood D, McMahon M, Irving L, Mazzone SB, Farrell MJ. Neural correlates of cough hypersensitivity in humans: evidence for central sensitisation and dysfunctional inhibitory control. Thorax 2016; 71:323-9. [DOI: 10.1136/thoraxjnl-2015-207425] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
|
15
|
Chung KF, Canning B, McGarvey L. Eight International London Cough Symposium 2014: Cough hypersensitivity syndrome as the basis for chronic cough. Pulm Pharmacol Ther 2015; 35:76-80. [PMID: 26341666 DOI: 10.1016/j.pupt.2015.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 02/01/2023]
Abstract
At the Eighth International London Cough Conference held in London in July 2014, the focus was on the relatively novel concept of cough hypersensitivity syndrome (CHS) as forming the basis of chronic cough. This concept has been formulated following understanding of the neuronal pathways for cough and a realisation that not all chronic cough is usually associated with a cause. The CHS is defined by troublesome coughing triggered by low level of thermal, mechanical or chemical exposure. It also encompasses other symptoms or sensations such as laryngeal hypersensitivity, nasal hypersensitivity and possibly also symptoms related to gastrooesopahgeal reflux. The pathophysiologic basis of the CHS is now being increasingly linked to an enhancement of the afferent pathways of the cough reflex both at the peripheral and central levels. Mechanisms involved include the interactions of inflammatory mechanisms with cough sensors in the upper airways and with neuronal pathways of cough, associated with a central component. Tools for assessing CHS in the clinic need to be developed. New drugs may be developed to control CHS. A roadmap is suggested from the inception of the CHS concept towards the development of newer antitussives at the Symposium.
Collapse
Affiliation(s)
- Kian Fan Chung
- Experimental Studies, National Heart and Lung Institute, Imperial College London, UK; Royal Brompton NIHR Biomedical Research Unit, London, UK.
| | - Brendan Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| | - Lorcan McGarvey
- Department of Respiratory Medicine, Centre for Infection and Immunity, Queen's University Belfast, UK
| |
Collapse
|
16
|
Undem BJ, Zaccone E, McGarvey L, Mazzone SB. Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity. Pulm Pharmacol Ther 2015; 33:52-6. [PMID: 26141017 DOI: 10.1016/j.pupt.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 02/03/2023]
Abstract
Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity.
Collapse
Affiliation(s)
- Bradley J Undem
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Eric Zaccone
- Department of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Lorcan McGarvey
- Centre of Infection and Immunity, The Queen's University of Belfast, Belfast, Northern Ireland, BT12 6BJ, UK.
| | - Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|