1
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
2
|
Yu Z, Gao L, Zang Y, Cheng L, Gao W, Xu Y. Adalimumab exhibits superiority over etanercept in terms of a numerically higher response rate and equivalent adverse events: A real-world finding. Immun Inflamm Dis 2024; 12:e1166. [PMID: 38415932 PMCID: PMC10832310 DOI: 10.1002/iid3.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION Adalimumab (ADA) and etanercept (ETN) are the most commonly applied biologics for rheumatoid arthritis (RA) management in China; however, the evidence regarding their superiority is controversial. In addition, in real-world clinical settings, many factors may affect the application of these agents, such as dosage and administration period. Therefore, the present real-world study aimed to compare the efficacy and safety of ADA and ETN treatment in RA patients via the propensity score matching method. METHODS In total, 105 RA patients receiving ADA (n = 66) or ETN (n = 39) were reviewed in this retrospective study. The propensity score matching method was used to eliminate discrepancies in baseline features. Clinical response, low disease activity (LDA), and remission were evaluated based on the DAS28. RESULTS Before propensity score matching, compared with ETN, ADA yielded higher rates of clinical response at W24 (97.0% vs. 84.6%, p = .021), LDA at W12 (78.8% vs. 51.3%, p = .003), and remission at W24 (75.8% vs. 46.2%, p = .002). After propensity score matching, compared with ETN, ADA only achieved a higher rate of clinical response at W24 (96.3% vs. 77.8%, p = .043), whereas the rates of LDA and remission were not different between ADA and ETN treatments at any time point (all p > .05). In addition, the incidence of adverse events was not significantly different between the ADA and ETN treatments (all p > .05). CONCLUSION ADA shows superiority over ETN in terms of a numerically greater response rate and equivalent adverse events.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Rheumatology & ImmunologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Ling Gao
- Department of Rheumatology & ImmunologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Yinshan Zang
- Department of Rheumatology & ImmunologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Lu Cheng
- Department of Rheumatology & ImmunologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Wenjia Gao
- Department of Rheumatology & ImmunologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| | - Yan Xu
- Department of Rheumatology & ImmunologyThe Affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianChina
| |
Collapse
|
3
|
Luo F, Gau SY, Wu YX, Liao HL, Tang F, Zhong Q, Huang Y, Hou L, Liu ZQ, Cai JL, Cao YP, Lu DM, An Y, Lan WY, Liu C, Chen CM, Jia ET, Yao XM, Wei JCC, Ma WK. Efficacy of adalimumab combined with Tripterygium wilfordii Hook F in the treatment of patient with rheumatoid arthritis: A multicenter, open-label, randomized-controlled trial. Int J Rheum Dis 2024; 27:e15031. [PMID: 38287544 DOI: 10.1111/1756-185x.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVES To evaluate the efficacy and safety of adalimumab (ADA) combined with Tripterygium wilfordii Hook F (TwHF) in the treatment of methotrexate (MTX)-inadequate response patients with rheumatoid arthritis (RA). METHODS In this multicenter, open-label, randomized controlled clinical trial, 64 RA patients with inadequate response to MTX were 1:1 randomly assigned into treatment or control groups. The treatment group was treated with ADA in combination with TwHF, and the control group was treated with ADA in combination with MTX for 24 weeks. The primary endpoint was the percentage of patients having low disease activity (2.6 ≤ DAS28-ESR < 3.2) and remission rates (DAS28-ESR < 2.6) at week 24. RESULTS In total, 53 of the 64 patients (82.8%) completed this 24-week clinical trial. By intent-to-treat (ITT) analysis, a comparable outcome was observed between the two groups. The percentage of patients achieving low disease activity in the treatment group and control group were 43.8% and 46.9% (95% CI, 21.28 to 27.48, p = .802). Percentage of patients achieving low disease activity rates were respectively 28.1% and 31.3% in the treatment group and control group (95% CI, 19.18 to 25.58, p = .784). In per-protocol (PP) analysis, the results were consistent with the ITT model. The incidence of adverse events was comparable between the two groups. CONCLUSIONS There were no significant differences in efficacy and safety between ADA combined with TwHF versus ADA combined with MTX in the treatment of RA. TwHF might be an alternative treatment for RA patients who are intolerant to MTX.
Collapse
Affiliation(s)
- Feng Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Xia Wu
- Department of Rheumatology and Immunology, QiandongnanZhou People's Hospital, Kaili, China
| | - Hou-Li Liao
- Department of Rheumatism and Immunology, Xingyi People's Hospital, Xingyi, China
| | - Fang Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qin Zhong
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lei Hou
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zheng-Qi Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jin-Long Cai
- Department of Rheumatology and Immunology, QiandongnanZhou People's Hospital, Kaili, China
| | - Yue-Peng Cao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dao-Min Lu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang An
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei-Ya Lan
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Can Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chang-Ming Chen
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Er-Tao Jia
- The Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xue-Ming Yao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Liupanshui Hospital of Traditional Chinese Medicine, Liupanshui, China
| | - James Cheng-Chung Wei
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Rheumatology & Immunology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Wu-Kai Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Zeng Y, Ng JPL, Wang L, Xu X, Law BYK, Chen G, Lo HH, Yang L, Yang J, Zhang L, Qu L, Yun X, Zhong J, Chen R, Zhang D, Wang Y, Luo W, Qiu C, Huang B, Liu W, Liu L, Wong VKW. Mutant p53 R211* ameliorates inflammatory arthritis in AIA rats via inhibition of TBK1-IRF3 innate immune response. Inflamm Res 2023; 72:2199-2219. [PMID: 37935918 PMCID: PMC10656327 DOI: 10.1007/s00011-023-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammation disease characterized by imbalance of immune homeostasis. p53 mutants are commonly described as the guardian of cancer cells by conferring them drug-resistance and immune evasion. Importantly, p53 mutations have also been identified in RA patients, and this prompts the investigation of its role in RA pathogenesis. METHODS The cytotoxicity of disease-modifying anti-rheumatic drugs (DMARDs) against p53 wild-type (WT)/mutant-transfected RA fibroblast-like synoviocytes (RAFLSs) was evaluated by MTT assay. Adeno-associated virus (AAV) was employed to establish p53 WT/R211* adjuvant-induced arthritis (AIA) rat model. The arthritic condition of rats was assessed by various parameters such as micro-CT analysis. Knee joint samples were isolated for total RNA sequencing analysis. The expressions of cytokines and immune-related genes were examined by qPCR, ELISA assay and immunofluorescence. The mechanistic pathway was determined by immunoprecipitation and Western blotting in vitro and in vivo. RESULTS Among p53 mutants, p53R213* exhibited remarkable DMARD-resistance in RAFLSs. However, AAV-induced p53R211* overexpression ameliorated inflammatory arthritis in AIA rats without Methotrexate (MTX)-resistance, and our results discovered the immunomodulatory effect of p53R211* via suppression of T-cell activation and T helper 17 cell (Th17) infiltration in rat joint, and finally downregulated expressions of pro-inflammatory cytokines. Total RNA sequencing analysis identified the correlation of p53R211* with immune-related pathways. Further mechanistic studies revealed that p53R213*/R211* instead of wild-type p53 interacted with TANK-binding kinase 1 (TBK1) and suppressed the innate immune TBK1-Interferon regulatory factor 3 (IRF3)-Stimulator of interferon genes (STING) cascade. CONCLUSIONS This study unravels the role of p53R213* mutant in RA pathogenesis, and identifies TBK1 as a potential anti-inflammatory target.
Collapse
Affiliation(s)
- Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Dingqi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Congling Qiu
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
5
|
Ceballos FC, Chamizo-Carmona E, Mata-Martín C, Carrasco-Cubero C, Aznar-Sánchez JJ, Veroz-González R, Rojas-Herrera S, Dorado P, LLerena A. Pharmacogenetic Sex-Specific Effects of Methotrexate Response in Patients with Rheumatoid Arthritis. Pharmaceutics 2023; 15:1661. [PMID: 37376109 DOI: 10.3390/pharmaceutics15061661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Methotrexate (MTX) is a commonly used drug for the treatment of rheumatoid arthritis (RA), but its effectiveness can vary greatly among patients. Pharmacogenetics, the study of how genetic variations can affect drug response, has the potential to improve the personalized treatment of RA by identifying genetic markers that can predict a patient's response to MTX. However, the field of MTX pharmacogenetics is still in its early stages and there is a lack of consistency among studies. This study aimed to identify genetic markers associated with MTX efficacy and toxicity in a large sample of RA patients, and to investigate the role of clinical covariates and sex-specific effects. Our results have identified an association of ITPA rs1127354 and ABCB1 rs1045642 with response to MTX, polymorphisms of FPGS rs1544105, GGH rs1800909, and MTHFR genes with disease remission, GGH rs1800909 and MTHFR rs1801131 polymorphisms with all adverse events, and ADA rs244076 and MTHFR rs1801131 and rs1801133, However, clinical covariates were more important factors to consider when building predictive models. These findings highlight the potential of pharmacogenetics to improve personalized treatment of RA, but also emphasize the need for further research to fully understand the complex mechanisms involved.
Collapse
Affiliation(s)
| | | | - Carmen Mata-Martín
- MEPER Group-Clinical and Translational Research in Pharmacogenetics and Personalized Medicine, Biosanitary Research Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Hospital Universitario de Badajoz, 06080 Badajoz, Spain
| | | | | | | | | | - Pedro Dorado
- MEPER Group-Clinical and Translational Research in Pharmacogenetics and Personalized Medicine, Biosanitary Research Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- Faculty of Medicine, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Adrián LLerena
- MEPER Group-Clinical and Translational Research in Pharmacogenetics and Personalized Medicine, Biosanitary Research Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Hospital Universitario de Badajoz, 06080 Badajoz, Spain
- Faculty of Medicine, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
6
|
Islam MT, Sarkar C, Hossain R, Bhuia MS, Mardare I, Kulbayeva M, Ydyrys A, Calina D, Habtemariam S, Kieliszek M, Sharifi-Rad J, Cho WC. Therapeutic strategies for rheumatic diseases and disorders: targeting redox imbalance and oxidative stress. Biomed Pharmacother 2023; 164:114900. [PMID: 37216707 DOI: 10.1016/j.biopha.2023.114900] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatic diseases and disorders (RDDs) are a group of chronic autoimmune diseases that are collectively called "multicausal diseases". They have resulted from predisposing genetic profiles and exposure to a range of environmental, occupational and lifestyle risk factors. Other causative factors include bacterial and viral attacks, sexual habits, trauma, etc. In addition, numerous studies reported that redox imbalance is one of the most serious consequences of RDDs. For example, rheumatoid arthritis (RA) as a classic example of chronic RDDs is linked to oxidative stress. This paper summarizes the contributions of redox imbalance to RDDs. The findings suggest that establishing direct or indirect therapeutic strategies for RDDs requires a more in-depth understanding of the redox dysregulation in these diseases. For example, the recent awareness of the roles of peroxiredoxins (Prdxs, e.g. Prdx2, Prdx3) in RDDs provided one potential route of therapeutic intervention of these pathologies. Changes in stressful lifestyles and dietary habits may also provide additional benefits in the management of RDDs. Future studies should be directed to explore molecular interactions in redox regulations associated with RDDS and potential therapeutic interventions.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ileana Mardare
- Department of Public Health and Management, Carol Davila University of Medicine and Pharmacy of Bucharest, Bucharest, Romania
| | - Marzhan Kulbayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040 Almaty, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Wang C, Tang H, Wang Y, Chang Y, Wu YJ, Wang B, Sun W, Xiao F, Wei W. CP-25 enhances OAT1-mediated absorption of methotrexate in synoviocytes of collagen-induced arthritis rats. Acta Pharmacol Sin 2023; 44:81-91. [PMID: 35732708 PMCID: PMC9813221 DOI: 10.1038/s41401-022-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
Organic anion transporter 1 (OAT1) plays a major role in mediating the absorption, distribution and excretion of drugs and other xenobiotics in the human body. In this study we explored the OAT1 status in rheumatoid arthritis (RA) patients and arthritic animals and its role in regulating the anti-arthritic activity of methotrexate (MTX). We showed that OAT1 expression was significantly downregulated in synovial tissues from RA patients compared with that in the control patients. In collagen-induced arthritis (CIA) rats, synovial OAT1 expression was significantly decreased compared with the control rats. In synoviocytes isolated from CIA rats, PGE2 (0.003-1.75 μM) dose-dependently downregulated OAT1 expression, resulting in decreased absorption of MTX. Silencing OAT1 in synoviocytes caused a 43.7% reduction in the uptake of MTX. Furthermore, knockdown of OAT1 impaired MTX-induced inhibitory effects on the viability and migration of synoviocytes isolated from CIA rats. Moreover, injection of OAT1-shRNA into articular cavity of CIA rats significantly decreased synovial OAT1 expression and impaired the anti-arthritic action of MTX, while injection of lentivirus containing OAT1 sequences led to the opposite results. Interestingly, we found that paeoniflorin-6'-O-benzene sulfonate (CP-25) upregulated OAT1 expression both in vitro and in vivo and promoted MTX uptake by synoviocytes via regulating OAT1 expression and function. Taken together, OAT1 plays a major role in regulating MTX uptake by synoviocytes and the anti-arthritic activity of MTX. OAT1 is downregulated in RA and CIA rats, which can be improved by CP-25.
Collapse
Affiliation(s)
- Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hao Tang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yong Wang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yi-Jin Wu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Bin Wang
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Sun
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
8
|
Babaahmadi M, Tayebi B, Gholipour NM, Bendele P, Pheneger J, Kheimeh A, Kamali A, Molazem M, Baharvand H, Eslaminejad MB, Hajizadeh-Saffar E, Hassani SN. Long-term passages of human clonal mesenchymal stromal cells can alleviate the disease in the rat model of collagen-induced arthritis resembling early passages of different heterogeneous cells. J Tissue Eng Regen Med 2022; 16:1261-1275. [PMID: 36437574 DOI: 10.1002/term.3368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of unknown cause. The interaction of immune system cells and the secretion of inflammatory cytokines with synovial cells leads to severe inflammation in the affected joints. Currently, medications, including non-steroidal anti-inflammatory drugs, glucocorticoids, and more recently, disease-modifying anti-rheumatic drugs, are used to reduce inflammation. However, long-term use of these drugs causes adverse effects or resistance in a considerable number of RA patients. Recent findings revealed the safety and efficacy of mesenchymal stromal cells (MSCs)-based therapies both in RA animal models and clinical trials. Here, the beneficial effects of bone marrow-derived heterogeneous MSCs (BM-hMSCs) and Wharton jelly-derived MSCs (WJ-MSCs) at early passages were compared to BM-derived clonal MSCs (BM-cMSCs) at high passage number on a rat model of collagen-induced arthritis. Results showed that systemic delivery of MSCs significantly reversed adverse changes in body weight, paw swelling, and arthritis score in all MSC-treated groups. Radiological images and histological evaluation demonstrated the therapeutic effects of MSCs. There was a decrease in serum level of anti-collagen type II immunoglobulin G and the inflammatory cytokines interleukin (IL)-1β, IL-6, IL-17, and tumor necrosis factor-α in all MSC-treated groups. In contrast, an increase in inhibitory cytokines transforming growth factor-β and IL-10 was seen. Notably, the long-term passages of BM-cMSCs could alleviate RA symptoms similar to the early passages of WJ-MSCs and BM-hMSCs. The importance of BM-cMSCs is the potential to establish cell banks with billions of cells derived from a single donor that could be a competitive cell-based therapy to treat RA.
Collapse
Affiliation(s)
- Mahnaz Babaahmadi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnoosh Tayebi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Makvand Gholipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Abolfazl Kheimeh
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | | | - Mohammad Molazem
- Department of Radiology and Surgery, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Han H, Feng X, Guo Y, Cheng M, Cui Z, Guo S, Zhou W. Identification of potential target genes of breast cancer in response to Chidamide treatment. Front Mol Biosci 2022; 9:999582. [PMID: 36425653 PMCID: PMC9679413 DOI: 10.3389/fmolb.2022.999582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Chidamide, a new chemically structured HDACi-like drug, has been shown to inhibit breast cancer, but its specific mechanism has not been fully elucidated. In this paper, we selected ER-positive breast cancer MCF-7 cells and used RNA-seq technique to analyze the gene expression differences of Chidamide-treated breast cancer cells to identify the drug targets of Chidamide's anti-breast cancer effect and to lay the foundation for the development of new drugs for breast cancer treatment. The results showed that the MCF-7 CHID group expressed 320 up-regulated genes and 222 down-regulated genes compared to the control group; Gene Ontology functional enrichment analysis showed that most genes were enriched to biological processes. Subsequently, 10 hub genes for Chidamide treatment of breast cancer were identified based on high scores using CytoHubba, a plug-in for Cytoscape: TP53, JUN, CAD, ACLY, IL-6, peroxisome proliferator-activated receptor gamma, THBS1, CXCL8, IMPDH2, and YARS. Finally, a combination of the Gene Expression Profiling Interactive Analysis database and Kaplan Meier mapper to compare the expression and survival analysis of these 10 hub genes, TP53, ACLY, PPARG, and JUN were found to be potential candidate genes significantly associated with Chidamide for breast cancer treatment. Among them, TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. Therefore, we identified four genes central to the treatment of breast cancer with Chidamide by bioinformatics analysis, and clarified that TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. This study lays a solid experimental and theoretical foundation for the treatment of breast cancer at the molecular level with Chidamide and for the combination of Chidamide.
Collapse
Affiliation(s)
- Han Han
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Yarui Guo
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Meijia Cheng
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
10
|
Yang J, Li Z, Wang L, Yun X, Zeng Y, Ng JP, Lo H, Wang Y, Zhang K, Law BYK, Wong VKW. The role of non-coding RNAs (miRNA and lncRNA) in the clinical management of rheumatoid arthritis. Pharmacol Res 2022; 186:106549. [DOI: 10.1016/j.phrs.2022.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
11
|
Roodenrijs NMT, Welsing PMJ, van Roon J, Schoneveld JLM, van der Goes MC, Nagy G, Townsend MJ, van Laar JM. Mechanisms underlying DMARD inefficacy in difficult-to-treat rheumatoid arthritis: a narrative review with systematic literature search. Rheumatology (Oxford) 2022; 61:3552-3566. [PMID: 35238332 PMCID: PMC9434144 DOI: 10.1093/rheumatology/keac114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Management of RA patients has significantly improved over the past decades. However, a substantial proportion of patients is difficult-to-treat (D2T), remaining symptomatic after failing biological and/or targeted synthetic DMARDs. Multiple factors can contribute to D2T RA, including treatment non-adherence, comorbidities and co-existing mimicking diseases (e.g. fibromyalgia). Additionally, currently available biological and/or targeted synthetic DMARDs may be truly ineffective ('true' refractory RA) and/or lead to unacceptable side effects. In this narrative review based on a systematic literature search, an overview of underlying (immune) mechanisms is presented. Potential scenarios are discussed including the influence of different levels of gene expression and clinical characteristics. Although the exact underlying mechanisms remain largely unknown, the heterogeneity between individual patients supports the assumption that D2T RA is a syndrome involving different pathogenic mechanisms.
Collapse
Affiliation(s)
- Nadia M T Roodenrijs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Paco M J Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | - Joël van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| | | | - Marlies C van der Goes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
- Department of Rheumatology, Meander Medical Center, Amersfoort, The Netherlands
| | - György Nagy
- Department of Rheumatology & Clinical Immunology
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Michael J Townsend
- Biomarker Discovery OMNI, Genentech Research & Early Development, South San Francisco, CA, USA
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht
| |
Collapse
|
12
|
AXL Inhibits Proinflammatory Factors to Relieve Rheumatoid Arthritis Pain by Regulating the TLR4/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7625739. [PMID: 35983008 PMCID: PMC9381196 DOI: 10.1155/2022/7625739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Objective This study aims to explore the role and mechanism of AXL receptor tyrosine kinase (AXL) in relieving inflammatory pain caused by rheumatoid arthritis (RA). Methods RA mouse model was constructed by collagen antibody induction. RT-qPCR and Western blot were used to detect the level of AXL in RA fibroblast-like synovial cells (RA-FLS) and joint synovium. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) were detected by ELISA. The inflammatory infiltration in joints was determined via HE staining. The mechanical abnormal pain and hyperalgesia were detected by the Von Frey microfilament test. The protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (3COX-2), toll-like receptor 4 (TLR4), p65, and phosphor (p)-p65 were detected by Western blotting. Results The expression of AXL in RA-FLS and RA mice was downregulated, while the expression of iNOS and COX-2 was upregulated. The levels of inflammatory cytokines IL-6, TNF-α, and NO were increased in RA-FLS and RA mice. RA mice presented inflammatory cell infiltration, bone and cartilage destruction, and joint space stenosis. AXL overexpression alleviated inflammatory cell infiltration, inflammatory cytokine secretion, and pathological injury in RA mice. Additionally, AXL overexpression inhibited the expression of TLR4 and p-p65. Conclusion AXL inhibits inflammatory pain in RA mice by suppressing TLR4/NF-κB pathway.
Collapse
|
13
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
14
|
Zhao Z, He S, Yu X, Lai X, Tang S, Mariya M. EA, Wang M, Yan H, Huang X, Zeng S, Zha D. Analysis and Experimental Validation of Rheumatoid Arthritis Innate Immunity Gene CYFIP2 and Pan-Cancer. Front Immunol 2022; 13:954848. [PMID: 35898498 PMCID: PMC9311328 DOI: 10.3389/fimmu.2022.954848] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 01/22/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, heterogeneous autoimmune disease. Its high disability rate has a serious impact on society and individuals, but there is still a lack of effective and reliable diagnostic markers and therapeutic targets for RA. In this study, we integrated RA patient information from three GEO databases for differential gene expression analysis. Additionally, we also obtained pan-cancer-related genes from the TCGA and GTEx databases. For RA-related differential genes, we performed functional enrichment analysis and constructed a weighted gene co-expression network (WGCNA). Then, we obtained 490 key genes by intersecting the significant module genes selected by WGCNA and the differential genes. After using the RanddomForest, SVM-REF, and LASSO three algorithms to analyze these key genes and take the intersection, based on the four core genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) that we found, we constructed an RA diagnosis. The nomogram model showed good reliability and validity after evaluation, and the ROC curves of the four genes showed that these four genes played an important role in the pathogenesis of RA. After further gene correlation analysis, immune infiltration analysis, and mouse gene expression validation, we finally selected CYFIP2 as the cut-in gene for pan-cancer analysis. The results of the pan-cancer analysis showed that CYFIP2 was closely related to the prognosis of patients with various tumors, the degree of immune cell infiltration, as well as TMB, MSI, and other indicators, suggesting that this gene may be a potential intervention target for human diseases including RA and tumors.
Collapse
Affiliation(s)
- ZhenYu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - ShaoJie He
- Department of Orthopaedics, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - XinCheng Yu
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - XiaoFeng Lai
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Sheng Tang
- Department of Orthopedics, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China
| | - El Akkawi Mariya M.
- Department of Plastic and Reconstructive Surgery, ZhuJiang Hospital of Southern Medical University, GuangZhou, China
| | - MoHan Wang
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hai Yan
- Department of Medicine, Flushing Hospital Medical Center, Flushing, NY, United States
| | - XingQi Huang
- Department of Neurosurgery , General Hospital of Tianjin Medical University, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Dingsheng Zha, ; Shan Zeng,
| | - DingSheng Zha
- Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Dingsheng Zha, ; Shan Zeng,
| |
Collapse
|
15
|
Zhang W, Chen Y, Liu Q, Zhou M, Wang K, Wang Y, Nie J, Gui S, Peng D, He Z, Li Z. Emerging nanotherapeutics alleviating rheumatoid arthritis by readjusting the seeds and soils. J Control Release 2022; 345:851-879. [DOI: 10.1016/j.jconrel.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
|
16
|
Li J, Wu Y, Ma Y, Bai L, Li Q, Zhou X, Xu P, Li X, Xue M. A UPLC-MS/MS method reveals the pharmacokinetics and metabolism characteristics of kaempferol in rats under hypoxia. Drug Metab Pharmacokinet 2022; 43:100440. [PMID: 35051732 DOI: 10.1016/j.dmpk.2021.100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
As a natural flavonoid, kaempferol is widely distributed in natural medicines. Our study was aimed at analyzing and comparing the pharmacokinetic differences of kaempferol between normoxia and hypoxia in rats, to further explore the effect of hypoxia on drug metabolism enzymes. A sensitive UPLC-MS/MS method was established and validated for the determination of kaempferol in rat plasma. The results indicated that AUC, MRT, t1/2 and Cmax of kaempferol significantly increased and the clearance reduced in hypoxic rats. Based on the comparison of pharmacokinetics, the metabolites of kaempferol in hypoxic rats were identified by using UPLC-QTOF-MS and UNIFI 1.8 software. Then we explored the effect of hypoxia on the mRNA and protein expression of CYP1A2 and UGT1A9. The study revealed that hypoxia could markedly reduce the mRNA and protein expression of CYP1A2 and UGT1A9, resulting in the reduction of metabolic rate and enhancement of systematic exposure. Our data also indicated that we should pay attention to adjusting the dosage regimen and reducing drug interactions when drugs metabolized by CYP1A2 and UGT1A9 are used in combination with kaempferol. Our findings suggested the potential requirement for dose adjustment of kaempferol or its structural analogs in hypoxic condition.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yi Ma
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lu Bai
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qiang Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing, 100053, China
| | - Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing, 100053, China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing, 100053, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Engineering Research Center for Nerve System Drugs, Beijing, 100053, China.
| |
Collapse
|
17
|
Wei K, Jiang P, Zhao J, Jin Y, Zhang R, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. Biomarkers to Predict DMARDs Efficacy and Adverse Effect in Rheumatoid Arthritis. Front Immunol 2022; 13:865267. [PMID: 35418971 PMCID: PMC8995470 DOI: 10.3389/fimmu.2022.865267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA), one of the most common immune system diseases, mainly affects middle-aged and elderly individuals and has a serious impact on the quality of life of patients. Pain and disability caused by RA are significant symptoms negatively affecting patients, and they are especially seen when inappropriate treatment is administered. Effective therapeutic strategies have evolved over the past few decades, with many new disease-modifying antirheumatic drugs (DMARDs) being used in the clinic. Owing to the breakthrough in the treatment of RA, the symptoms of patients who could not be treated effectively in the past few years have been relieved. However, some patients complain about symptoms that have not been reported, implying that there are still some limitations in the RA treatment and evaluation system. In recent years, biomarkers, an effective means of diagnosing and evaluating the condition of patients with RA, have gradually been used in clinical practice to evaluate the therapeutic effect of RA, which is constantly being improved for accurate application of treatment in patients with RA. In this article, we summarize a series of biomarkers that may be helpful in evaluating the therapeutic effect and improving the efficiency of clinical treatment for RA. These efforts may also encourage researchers to devote more time and resources to the study and application of biomarkers, resulting in a new evaluation system that will reduce the inappropriate use of DMARDs, as well as patients' physical pain and financial burden.
Collapse
Affiliation(s)
- Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Runrun Zhang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- The Second Affiliated Hospital of the Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
18
|
Wang Q, Zhang SX, Chang MJ, Qiao J, Wang CH, Li XF, Yu Q, He PF. Characteristics of the Gut Microbiome and Its Relationship With Peripheral CD4+ T Cell Subpopulations and Cytokines in Rheumatoid Arthritis. Front Microbiol 2022; 13:799602. [PMID: 35185845 PMCID: PMC8851473 DOI: 10.3389/fmicb.2022.799602] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
This study investigated the association between intestinal microbiota abundance and diversity and cluster of differentiation (CD)4+ T cell subpopulations, cytokine levels, and disease activity in rheumatoid arthritis RA. A total of 108 rheumatoid arthritis (RA) patients and 99 healthy control (HC) subjects were recruited. PICRUSt2 was used for functional metagenomic predictions. Absolute counts of peripheral CD4+ T cell subpopulations and cytokine levels were detected by flow cytometry and with a cytokine bead array, respectively. Correlations were analyzed with the Spearman rank correlation test. The results showed that the diversity of intestinal microbiota was decreased in RA patients compared to HCs. At the phylum level, the abundance of Firmicutes, Fusobacteriota, and Bacteroidota was decreased while that of Actinobacteria and Proteobacteria was increased and at the genus level, the abundance of Faecalibacterium, Blautia, and Escherichia-Shigella was increased while that of Bacteroides and Coprococcus was decreased in RA patients compared to HC subjects. The linear discriminant analysis effect size indicated that Bifidobacterium was the most significant genus in RA. The most highly enriched Kyoto Encyclopedia of Genes and Genomes pathway in RA patients was amino acid metabolism. The relative abundance of Megamonas, Monoglobus, and Prevotella was positively correlated with CD4+ T cell counts and cytokine levels; and the relative numbers of regulatory T cells (Tregs) and T helper (Th17)/Treg ratio were negatively correlated with disease activity in RA. These results suggest that dysbiosis of certain bacterial lineages and alterations in gut microbiota metabolism lead to changes in the host immune profile that contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Sheng-Xiao Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Min-Jing Chang
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Jun Qiao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Wang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Feng Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- *Correspondence: Qi Yu,
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Pei-Feng He,
| |
Collapse
|
19
|
Zhu Z, Ma L. Sevoflurane induces inflammation in primary hippocampal neurons by regulating Hoxa5/Gm5106/miR-27b-3p positive feedback loop. Bioengineered 2021; 12:12215-12226. [PMID: 34783294 PMCID: PMC8810152 DOI: 10.1080/21655979.2021.2005927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/27/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a normal condition that develops after surgery with anesthesia, leading to deterioration of cognitive functions. However, the mechanism of POCD still remains unknown. To elucidate the POCD molecular mechanism, sevoflurane was employed in the present study to generate neuroinflammation mice model. Sevoflurane treatment caused inflammatory markers IL6, IL-10 and TNF-α high expression in primary hippocampal neurons and blood samples. Long non-coding RNA Gm5106 was found to be increased after being stimulated with sevoflurane. Silencing Gm5106 inhibited neuron inflammation. In the meanwhile, Gm5106 was identified as a direct target of miR-27b-3p that was inhibited by sevoflurane and related to inflammation suppression. In addition, transcription factor (TF) Hoxa5 was validated to activate Gm5106 through two binding motifs in the promoter region after sevoflurane exposure. Furthermore, miR-27b-3p also directly targeted Hoxa5 3'UTR, which affected nuclear Hoxa5 protein served as TF. Hoxa5 protein instead of 3'UTR reduced miR-27b-3p, in which Gm5106 knocking down abrogated this effect. In conclusion, sevoflurane induces neuroinflammation through increasing long non-coding RNA Gm5106, which is transcriptionally activated by Hoxa5 and directly targeted by miR-27-3p. Apart from that, Hoxa5, Gm5106, and miR-27b-3p form a positive feedback loop in sevoflurane stimulation.
Collapse
Affiliation(s)
- Zifu Zhu
- Huizhou Municipal Central Hospital, Huizhou, Guangdong, PR China
| | - Li Ma
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| |
Collapse
|
20
|
Wong VKW. Editorial overview: New technologies in 2020: Drug resistance. Curr Opin Pharmacol 2020; 54:iii-vi. [PMID: 33357714 DOI: 10.1016/j.coph.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincent Kam Wai Wong
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau
| |
Collapse
|