1
|
Brida KL, Day JJ. Molecular and genetic mechanisms of plasticity in addiction. Curr Opin Neurobiol 2025; 93:103032. [PMID: 40311544 DOI: 10.1016/j.conb.2025.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Drugs of abuse result in well-characterized changes in synapse function and number in brain reward regions such as the nucleus accumbens. However, recent reports demonstrate that only a small fraction of neurons in the nucleus accumbens are activated in response to psychostimulants such as cocaine. While these "ensemble" neurons are marked by drug-related transcriptional changes in immediate early genes, the mechanisms that ultimately link these early changes to enduring molecular alterations in the same neurons are less clear. In this review, we 1) describe potential mechanisms underlying regulation of diverse plasticity-related gene programs across drug-activated ensembles, 2) discuss factors conferring ensemble recruitment bias within seemingly homogeneous populations, and 3) speculate on the role of chromatin and epigenetic modifiers in gating metaplastic state transitions that contribute to addiction.
Collapse
Affiliation(s)
- Kasey L Brida
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Jones JL. Harnessing neuroplasticity with psychoplastogens: the essential role of psychotherapy in psychedelic treatment optimization. Front Psychiatry 2025; 16:1565852. [PMID: 40264517 PMCID: PMC12011830 DOI: 10.3389/fpsyt.2025.1565852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Affiliation(s)
- Jennifer L. Jones
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Hrickova M, Ruda-Kucerova J. Do AMPA/kainate antagonists possess potential in the treatment of addiction? Evidence from animal behavioural studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111355. [PMID: 40187601 DOI: 10.1016/j.pnpbp.2025.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Substance addiction is a complex mental disorder with significant unmet treatment needs, especially in terms of effective medications. Craving in addiction is closely linked to the interaction between dopamine and glutamate in the brain's reward pathway. Therefore, drugs targeting glutamatergic signaling may have potential for treatment. This review examines the potential of AMPA/kainate glutamatergic receptor antagonists in reducing addictive-like behaviours in experimental rodents. To this end, the text summarizes the behavioural results of preclinical studies on stimulant substances (cocaine, amphetamine, methamphetamine, MDMA), nicotine, opioids (morphine and heroin), and alcohol. These experiments employ various protocols and routes of administration, using different strains of mice and rats. The main behavioural methods used in the research include behavioural sensitization protocols, drug-induced locomotor activity assessments, conditioned behaviours, and operant self-administration models. The reviewed literature demonstrates the benefit of AMPA/kainate antagonists, mainly in the most studied cocaine dependence, and particularly in attenuating cocaine-seeking behaviour via microinjection into the nucleus accumbens core. Regarding other addictive substances, despite some conflicting results, there is a substantial body of literature showing promising outcomes following systemic or intracerebral administration of AMPA/kainate antagonists. The main issue is the variability of the research protocols used across laboratories, including differences in animal species, strains, sex and environmental conditions. Moreover, each addictive substance exhibits distinct mechanisms of action and addiction development, rendering the pursuit of a universal drug for addiction treatment unrealistic. Nevertheless, AMPA/kainate antagonists seem to have potential as a supportive treatment in addiction to cocaine as well as other substances.
Collapse
Affiliation(s)
- Maria Hrickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025; 569:331-353. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Yin J, Zhang T, Li D, Xu F, Li H, Pan X, Liu F, Zhao Y, Weng X. Behavioral video coding analysis of chronic morphine administration in rats. Biomed Rep 2024; 21:168. [PMID: 39345955 PMCID: PMC11428083 DOI: 10.3892/br.2024.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
The present study assessed the behavior of morphine-addicted rats using behavioral video coding technology, to evaluate effective methods for identifying morphine addiction. Rats were divided into a control group (n=15) and a morphine addiction group (n=15). The morphine addiction model was established with a 14-day increasing dose scheme, confirmed using a conditional place preference (CPP) experiment. After successful modeling, the rats' behavior was recorded for 12 h, then coded and analyzed using Observer XT behavior analysis software. Compared with the control group, morphine-addicted rats showed increased heat pain tolerance time (P=0.039) and spent more time in the white box during the CPP experiment (P<0.001). Video coding analysis revealed significant behavioral changes in morphine-addicted rats compared to controls. In addition to being lighter, morphine-addicted rats showed decreased water intake, reduced licking of forelimbs and hind limbs, and altered sleeping posture (sleeping curled up) during the day (all P<0.05). In conclusion, chronic morphine administration in rats leads to distinctive behavioral changes, including decreased licking frequency, reduced water intake and altered sleep posture. Video coding analysis, as a safe and non-invasive method, may provide a convenient and efficient approach for studying morphine addiction in rats.
Collapse
Affiliation(s)
- Jie Yin
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Tiecheng Zhang
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Dan Li
- Jingnan Medical Area of the General Hospital of the People's Liberation Army, Beijing 100850, P.R. China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Huan Li
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Xinyu Pan
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Fang Liu
- Department of Public Health, Chengdu Medical College, Sichuan 610500, P.R. China
| | - Yongqi Zhao
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| |
Collapse
|
6
|
Yin J, Li Y, Li D, Chang C, Weng X. Upregulation of HCN2 in ventral tegmental area is involved in morphine-induced conditioned place preference in rats. FEBS Open Bio 2024. [PMID: 39267158 DOI: 10.1002/2211-5463.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Morphine is an opioid commonly used to treat pain in clinic, but it also has the potential to be highly addictive, which can lead to abuse. Despite these known risks, the cellular and molecular mechanism of morphine conditioned place preference (CPP) is still unclear. In this study, using a rat model of chronic morphine administration, we found that compared with the control group, the mRNA and protein expression of HCN2 channel in the ventral tegmental area (VTA) were upregulated. Further immunofluorescence analysis showed that the fluorescence intensity of HCN2 channel of VTA dopaminergic neurons in morphine group was significantly enhanced, while the patch clamp recording of brain slices showed that both the magnitude and the density of Ih (HCN channel current) of VTA neurons were significantly increased. Moreover, intra-VTA infusion of ZD7288, a selective inhibitor of HCN channel, into rats of the morphine group decreased morphine CPP. Taken together, our results show that chronic morphine administration induces an upregulation of HCN2 in VTA dopamine neurons, while HCN inhibition reduces morphine CPP, suggesting that HCN channel may be a potential target for the treatment of morphine addiction.
Collapse
Affiliation(s)
- Jie Yin
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, China
| | - Dan Li
- Jingnan Medical Area of the General Hospital of the People's Liberation Army, Beijing, China
| | - Chenxu Chang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, China
| |
Collapse
|
7
|
Liu W, Chen QY, Li XH, Zhou Z, Zhuo M. Cortical Tagged Synaptic Long-Term Depression in the Anterior Cingulate Cortex of Adult Mice. J Neurosci 2024; 44:e0028242024. [PMID: 39054067 PMCID: PMC11358531 DOI: 10.1523/jneurosci.0028-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD; however, blocking N-methyl-d-aspartate receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels, also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.
Collapse
Affiliation(s)
- Weiqi Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
| | - Qi-Yu Chen
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
| | - Zhaoxiang Zhou
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Department of Exercise & Health Science, Xi'an Physical Education University, Xi'an 710068, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Zhuomin Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Sikirzhytskaya A, Tyagin I, Sutton SS, Wyatt MD, Safro I, Shtutman M. AI-based mining of biomedical literature: Applications for drug repurposing for the treatment of dementia. RESEARCH SQUARE 2024:rs.3.rs-4750719. [PMID: 39184100 PMCID: PMC11343300 DOI: 10.21203/rs.3.rs-4750719/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, HIV-associated neurocognitive disorder, and others significantly affect individuals, their families, caregivers, and healthcare systems. While there are no cures yet, researchers worldwide are actively working on the development of novel treatments that have the potential to slow disease progression, alleviate symptoms, and ultimately improve the overall health of patients. Huge volumes of new scientific information necessitate new analytical approaches for meaningful hypothesis generation. To enable the automatic analysis of biomedical data we introduced AGATHA, an effective AI-based literature mining tool that can navigate massive scientific literature databases, such as PubMed. The overarching goal of this effort is to adapt AGATHA for drug repurposing by revealing hidden connections between FDA-approved medications and a health condition of interest. Our tool converts the abstracts of peer-reviewed papers from PubMed into multidimensional space where each gene and health condition are represented by specific metrics. We implemented advanced statistical analysis to reveal distinct clusters of scientific terms within the virtual space created using AGATHA-calculated parameters for selected health conditions and genes. Partial Least Squares Discriminant Analysis was employed for categorizing and predicting samples (122 diseases and 20889 genes) fitted to specific classes. Advanced statistics were employed to build a discrimination model and extract lists of genes specific to each disease class. Here we focus on drugs that can be repurposed for dementia treatment as an outcome of neurodegenerative diseases. Therefore, we determined dementia-associated genes statistically highly ranked in other disease classes. Additionally, we report a mechanism for detecting genes common to multiple health conditions. These sets of genes were classified based on their presence in biological pathways, aiding in selecting candidates and biological processes that are exploitable with drug repurposing.
Collapse
|
9
|
Kahvandi N, Ebrahimi Z, Sharifi M, Karimi SA, Shahidi S, Salehi I, Haddadi R, Sarihi A. S-3,4-DCPG, a potent orthosteric agonist for the mGlu8 receptor, facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats. Pharmacol Biochem Behav 2024; 240:173772. [PMID: 38653345 DOI: 10.1016/j.pbb.2024.173772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The limbic system, particularly the NAc, shows a high concentration of metabotropic glutamate receptors (mGluRs). Recent evidence suggests the significant involvement of mGluRs in mental disorders, including substance abuse and addiction. The objective of this study was to examine the involvement of mGlu8 receptors in the NAc in the mechanisms underlying the extinction and reinstatement of conditioned place preference (CPP) induced by morphine. Male Wistar rats underwent surgical implantation of bilateral cannulas in the NAc and were assessed in a CPP protocol. In study 1 at the same time as the extinction phase, the rats were given varying doses of S-3,4-DCPG (0.03, 0.3, and 3 μg/0.5 μl). In study 2, rats that had undergone CPP extinction were given S-3,4-DCPG (0.03, 0.3, and 3 μg/0.5 μl) five minutes prior to receiving a subthreshold dose of morphine (1 mg/kg) in order to reactivate the previously extinguished morphine response. The findings demonstrated that administering S-3,4-DCPG directly into the accumbens nucleus resulted in a decrease in the duration of the CPP extinction phase. Moreover, dose-dependent administration of S-3,4-DCPG into the NAc inhibited CPP reinstatement. The observations imply that microinjection of S-3,4-DCPG as a potent orthosteric agonist with high selectivity for the mGlu8 receptor into the NAc promotes the process of extinction while concurrently exerting inhibitory effects on the reinstatement of morphine-induced CPP. This effect may be associated with the modulation of glutamate engagement within the NAc and the plasticity of reward pathways at the synaptic level.
Collapse
Affiliation(s)
- Nazanin Kahvandi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sharifi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Korkmaz ND, Cikrikcili U, Akan M, Yucesan E. Psychedelic therapy in depression and substance use disorders. Eur J Neurosci 2024; 60:4063-4077. [PMID: 38773750 DOI: 10.1111/ejn.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/20/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Psychoactive substances obtained from botanicals have been applied for a wide variety of purposes in the rituals of different cultures for thousands of years. Classical psychedelics from N,N'-dimethyltryptamine, psilocybin, mescaline and various lysergamides cause specific alterations in perception, emotion and cognition by acting through serotonin 5-HT2A receptor activation. Lysergic acid diethylamide, the first famous breakthrough in the field, was discovered by chance by Albert Hoffman in the Zurich Sandoz laboratory in 1943, and studies on its psychoactive effects began to take place in the literature. Studies in this area were blocked after the legislation controlling the use and research of psychedelic drugs came into force in 1967, but since the 1990s, it has started to be a matter of scientific curiosity again by various research groups. In particular, with the crucial reports of psychotherapy-assisted psilocybin applications for life-threatening cancer-related anxiety and depression, a new avenues have been opened in the treatment of psychiatric diseases such as treatment-resistant depression and substance addictions. An increasing number of studies show that psychedelics have a very promising potential in the treatment of neuropsychiatric diseases where the desired efficiency cannot be achieved with conventional treatment methods. In this context, we discuss psychedelic therapy, encompassing its historical development, therapeutic applications and potential treatment effects-especially in depression, trauma disorders and substance use disorders-within the framework of ethical considerations.
Collapse
Affiliation(s)
- Nur Damla Korkmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ugur Cikrikcili
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany
- Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Merve Akan
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Emrah Yucesan
- Institute of Neurological Sciences, Department of Neurogenetics, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
11
|
Sikirzhytskaya A, Tyagin I, Sutton SS, Wyatt MD, Safro I, Shtutman M. AI-based mining of biomedical literature: Applications for drug repurposing for the treatment of dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597745. [PMID: 38895485 PMCID: PMC11185689 DOI: 10.1101/2024.06.06.597745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, HIV-associated neurocognitive disorder, and others significantly affect individuals, their families, caregivers, and healthcare systems. While there are no cures yet, researchers worldwide are actively working on the development of novel treatments that have the potential to slow disease progression, alleviate symptoms, and ultimately improve the overall health of patients. Huge volumes of new scientific information necessitate new analytical approaches for meaningful hypothesis generation. To enable the automatic analysis of biomedical data we introduced AGATHA, an effective AI-based literature mining tool that can navigate massive scientific literature databases, such as PubMed. The overarching goal of this effort is to adapt AGATHA for drug repurposing by revealing hidden connections between FDA-approved medications and a health condition of interest. Our tool converts the abstracts of peer-reviewed papers from PubMed into multidimensional space where each gene and health condition are represented by specific metrics. We implemented advanced statistical analysis to reveal distinct clusters of scientific terms within the virtual space created using AGATHA-calculated parameters for selected health conditions and genes. Partial Least Squares Discriminant Analysis was employed for categorizing and predicting samples (122 diseases and 20889 genes) fitted to specific classes. Advanced statistics were employed to build a discrimination model and extract lists of genes specific to each disease class. Here we focus on drugs that can be repurposed for dementia treatment as an outcome of neurodegenerative diseases. Therefore, we determined dementia-associated genes statistically highly ranked in other disease classes. Additionally, we report a mechanism for detecting genes common to multiple health conditions. These sets of genes were classified based on their presence in biological pathways, aiding in selecting candidates and biological processes that are exploitable with drug repurposing. Author Summary This manuscript outlines our project involving the application of AGATHA, an AI-based literature mining tool, to discover drugs with the potential for repurposing in the context of neurocognitive disorders. The primary objective is to identify connections between approved medications and specific health conditions through advanced statistical analysis, including techniques like Partial Least Squares Discriminant Analysis (PLSDA) and unsupervised clustering. The methodology involves grouping scientific terms related to different health conditions and genes, followed by building discrimination models to extract lists of disease-specific genes. These genes are then analyzed through pathway analysis to select candidates for drug repurposing.
Collapse
|
12
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Sallie SN, Sonkusare S, Mandali A, Casero V, Cui H, Guzman NV, Allison M, Voon V. Cortical paired associative stimulation shows impaired plasticity of inhibition networks as a function of chronic alcohol use. Psychol Med 2024; 54:698-709. [PMID: 37712403 DOI: 10.1017/s0033291723002374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
BACKGROUND Response inhibition - or the ability to withhold a suboptimal response - relies on the efficacy of fronto-striatal networks, and is impaired in neuropsychiatric disorders including addiction. Cortical paired associative stimulation (cPAS) is a form of transcranial magnetic stimulation (TMS) which can strengthen neuronal connections via spike-timing-dependent plasticity mechanisms. Here, we used cPAS targeting the fronto-striatal inhibitory network to modulate performance on a response inhibition measure in chronic alcohol use. METHODS Fifty-five participants (20 patients with a formal alcohol use disorder (AUD) diagnosis (26-74 years, 6[30%] females) and 20 matched healthy controls (HCs) (27-73 years, 6[30%] females) within a larger sample of 35 HCs (23-84 years, 11[31.4%] females) underwent two randomized sessions of cPAS 1-week apart: right inferior frontal cortex stimulation preceding right presupplementary motor area stimulation by either 4 ms (excitation condition) or 100 ms (control condition), and were subsequently administered the Stop Signal Task (SST) in both sessions. RESULTS HCs showed decreased stop signal reaction time in the excitation condition (t(19) = -3.01, p = 0.007, [CIs]:-35.6 to -6.42); this facilitatory effect was not observed for AUD (F(1,31) = 9.57, p = 0.004, CIs: -68.64 to -14.11). Individually, rates of SST improvement were substantially higher for healthy (72%) relative to AUD (13.6%) groups (OR: 2.33, p = 0.006, CIs:-3.34 to -0.55). CONCLUSION In line with previous findings, cPAS improved response inhibition in healthy adults by strengthening the fronto-striatal network through putative long-term potentiation-like plasticity mechanisms. Furthermore, we identified a possible marker of impaired cortical excitability, and, thus, diminished capacity for cPAS-induced neuroplasticity in AUD with direct implications to a disorder-relevant cognitive process.
Collapse
Affiliation(s)
- Samantha N Sallie
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Saurabh Sonkusare
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alekhya Mandali
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX13TH, UK
| | - Violeta Casero
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Hailun Cui
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Natalie V Guzman
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0QQ, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Caffino L, Mottarlini F, Piva A, Rizzi B, Fumagalli F, Chiamulera C. Temporal dynamics of BDNF signaling recruitment in the rat prefrontal cortex and hippocampus following a single infusion of a translational dose of ketamine. Neuropharmacology 2024; 242:109767. [PMID: 37858883 DOI: 10.1016/j.neuropharm.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Despite several decades of investigations, the mechanisms underlying the rapid action of ketamine as antidepressant are still far from being completely understood. Several studies indicated Brain-Derived Neurotrophic Factor (BDNF) as critical for the fast antidepressant action of ketamine, due to its contribution in early and rapid synaptic adaptations. However, previous reports have been essentially based on ketamine dosing modes that differ from the clinical route of administration (slow intravenous infusion). In this report, we investigated the effects of a ketamine dosing mode in male Sprague-Dawley rats showed to be translational to the clinically effective mode in patients. We focused on the first 24 h after infusion to finely dissect potential differences in the contribution of BDNF signaling pathway in prefrontal cortex and hippocampus, two brain regions involved in the antidepressant effects of ketamine. Our data show that the slow ketamine infusion activates the BDNF-mTOR-S6 pathway in prefrontal cortex as early as 2 h and remains on until at least 6 h after the infusion. At the 12 h timepoint, this pathway is turned off in prefrontal cortex while it becomes activated in hippocampus. Interestingly, this pathway appears to be activated in both brain regions at 24 h through a BDNF-independent mechanism adding complexity to the early action of ketamine. We have captured previously unknown dynamics of the early effects of ketamine showing rapid activation/deactivation of BDNF and its downstream signaling in prefrontal cortex and hippocampus, following a precise temporal profile.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy.
| |
Collapse
|
16
|
Yunusa S, Hassan Z, Müller CP. Mitragynine inhibits hippocampus neuroplasticity and its molecular mechanism. Pharmacol Rep 2023; 75:1488-1501. [PMID: 37924443 PMCID: PMC10661785 DOI: 10.1007/s43440-023-00541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Mitragynine (MIT), the primary indole alkaloid of kratom (Mitragyna speciosa), has been associated with addictive and cognitive decline potentials. In acute studies, MIT decreases spatial memory and inhibits hippocampal synaptic transmission in long-term potentiation (LTP). This study investigated the impacts of 14-day MIT treatment on hippocampus synaptic transmission and its possible underlying mechanisms. METHODS Under urethane anesthesia, field excitatory post-synaptic potentials (fEPSP) of the hippocampal CA1 region were recorded in the Sprague Dawley (SD) rats that received MIT (1, 5, and 10 mg/kg), morphine (MOR) 5 mg/kg, or vehicle (ip). The effects of the treatments on basal synaptic transmission, paired-pulse facilitation (PPF), and LTP were assessed in the CA1 region. Analysis of the brain's protein expression linked to neuroplasticity was then performed using a western blot. RESULTS The baseline synaptic transmission's amplitude was drastically decreased by MIT at 5 and 10 mg/kg doses, although the PPF ratio before TBS remained unchanged, the PPF ratio after TBS was significantly reduced by MIT (10 mg/kg). Strong and persistent inhibition of LTP was generated in the CA1 region by MIT (5 and 10 mg/kg) doses; this effect was not seen in MIT (1 mg/kg) treated rats. In contrast to MIT (1 mg/kg), MIT (5 and 10 mg/kg) significantly raised the extracellular glutamate levels. After exposure to MIT, GluR-1 receptor expression remained unaltered. However, NMDAε2 receptor expression was markedly downregulated. The expression of pCaMKII, pERK, pCREB, BDNF, synaptophysin, PSD-95, Delta fosB, and CDK-5 was significantly downregulated in response to MIT (5 and 10 mg/kg) exposure, while MOR (5 mg/kg) significantly raised synaptophysin and Delta fosB expression. CONCLUSION Findings from this work reveal that a smaller dose of MIT (1 mg/kg) poses no risk to hippocampal synaptic transmission. Alteration in neuroplasticity-associated proteins may be a molecular mechanism for MIT (5 and 10 mg/kg)-induced LTP disruption and cognitive impairments. Data from this work posit that MIT acted differently from MOR on neuroplasticity and its underlying mechanisms.
Collapse
Affiliation(s)
- Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Pharmacology, Bauchi State University Gadau, PMB 65 Itas/Gadau, Bauchi, Bauchi State, Nigeria
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany.
- Psychiatric and Psychotherapeutic University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
17
|
Zhao Y, Han X, Zheng ZL. Analysis of the brain transcriptome for substance-associated genes: An update on large-scale genome-wide association studies. Addict Biol 2023; 28:e13332. [PMID: 37753566 PMCID: PMC10539015 DOI: 10.1111/adb.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Substance use disorder (SUD) arises from the initiation to subsequent regular, irregular and harmful use of substances such as alcohol, tobacco/nicotine and cannabis. While thousands of genetic variants have been identified from recent large-scale genome-wide association studies (GWAS), understanding their functions in substance involvement and investigating the mechanisms by which they act in the addiction circuits remains challenging. In this study, we re-analysed the brain regional transcriptome data from the most comprehensive postmortem transcriptomic study, with a focus on up- or down-regulation of substance-associated protein-coding genes in the addiction circuit-related brain regions (AddictRegions), including six cortical and 11 subcortical regions. We found that substance-associated genes were overrepresented in AddictRegions. Interestingly, we observed a greater degree of genetic overlap between initiation and use and between use and SUD than between initiation and SUD. Moreover, substance initiation, use and SUD-associated genes tend to shift their enriched AddictRegions from the cortical for initiation and, to a lesser extent, substance use to subcortical regions for SUD (e.g., thalamus, substantia nigra and ventral tegmental area). We also uncovered a pattern of coordinated cortical up-regulation and subcortical down-regulation for the genes associated with tobacco initiation and alcohol use. Moreover, the Gene Ontology terms of glutamate receptor activity and neurotransmitter binding were most significantly overrepresented in AddictRegion-upregulated, substance-associated genes, with the strongest enrichment for those involved in common substance use behaviours. Overall, our analysis provides a resource of AddictRegion-related transcriptomes for studying substance-associated genes and generates intriguing insights into the genetic control of substance initiation, use and SUD.
Collapse
Affiliation(s)
- Yihong Zhao
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Xuewei Han
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10068, USA
| |
Collapse
|
18
|
Yu J, Zhang Y, Xun Y, Tang H, Fu X, Zhang R, Zhu F, Zhang J. Methylation and expression quantitative trait loci rs1799971 in the OPRM1 gene and rs4654327 in the OPRD1 gene are associated with opioid use disorder. Neurosci Lett 2023; 814:137468. [PMID: 37660978 DOI: 10.1016/j.neulet.2023.137468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Opioid use disorder (OUD) is a chronic and relapsing brain disease that results in significant mortality worldwide. Genetic factors are estimated to contribute to 40%-60% of the liability, with polymorphisms of opioid receptor genes implicated in this disorder. However, the mechanisms underlying these associations are not yet fully understood. In the present study, we first examined the methylation levels in the promoter region of the OPRM1, OPRD1, and OPRK1 genes in 111 healthy controls (HCs) and 120 patients with OUD, and genotyped three tag SNPs in these genes. Correlations between these SNPs and the methylation levels of the CpG sites and expression levels of the genes were analyzed. After identifying the mQTLs and eQTLs, we determined the associations between the mQTLs/eQTLs and susceptibility to and characteristics of OUD in 930 HCs and 801 patients with OUD. Our results demonstrated that SNPs rs1799971 in the OPRM1 gene and rs4654327 in the OPRD1 gene were both mQTLs and eQTLs. We observed unique correlations between mQTLs and methylation levels of several CpG sites in the OUD group compared to the HC group. Interestingly, both the two mQTLs and eQTLs were associated with the susceptibility to OUD. In conclusion, we suppose that mQTLs and eQTLs in genes may underlie the associations between certain risk genetic polymorphisms and OUD. These mQTLs and eQTLs could potentially serve as promising biomarkers for better management of opioid misuse.
Collapse
Affiliation(s)
- Jiao Yu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, China
| | - Yudan Zhang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Xun
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hua Tang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710061, China
| | - Xiaoyu Fu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Zhang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Feng Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jianbo Zhang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
19
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Zhang J, Liu Z, Liu X, Wang X, Yu L. Intravenous Injection of GluR2-3Y Inhibits Repeated Morphine-Primed Reinstatement of Drug Seeking in Rats. Brain Sci 2023; 13:brainsci13040590. [PMID: 37190555 DOI: 10.3390/brainsci13040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Studies have demonstrated that the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is essential to drug addiction. In this study, we explored the influence of GluR2-3Y, an interfering peptide to prevent the endocytosis of AMPA receptors containing the GluR2 subunit, on morphine-seeking behavior in the rat self-administration model. After self-administration was established, the rats received intravenous injections of GluR2-3Y during the extinction sessions. There were no significant differences in both active and inactive pokes compared to the control group of rats that received GluR2-3S, indicating that GluR2-3Y has no significant influences on the extinction of morphine self-administration. The other two groups of rats were trained, extinguished, and reinstated by repeated morphine priming (respectively, called Prime 1, Prime 2, and Prime 3). Only one intravenous injection of GluR2-3Y was performed before Prime 1. Compared to the control group, GluR2-3Y did not affect Prime 1, but significantly attenuated the morphine-seeking behavior during repeated morphine-primed reinstatement, indicating an inhibitory after effect of GluR2-3Y on morphine-seeking behavior in rats. The long-term depression (LTD) in the nucleus accumbens (NAc) shell was also assessed. Pretreatment with GluR2-3Y altered the ability of LTD induction to the level of that in the naive group, while pretreatment with GluR2-3S had no effects on LTD. Our results demonstrated that the intravenous injection of GluR2-3Y, to block the endocytosis of AMPA receptors, inhibited the reinstatement of morphine-seeking behavior, which may be induced by modulating the neuronal plasticity in the NAc shell of rats.
Collapse
Affiliation(s)
- Jianjun Zhang
- College of Basic Medical, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong 030619, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| | - Zhuo Liu
- School of Crime Investigation, People’s Public Security University of China, Beijing 100038, China
| | - Xiaodong Liu
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqian Wang
- College of Basic Medical, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong 030619, China
| | - Longchuan Yu
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Domanegg K, Sommer WH, Meinhardt MW. Psychedelic Targeting of Metabotropic Glutamate Receptor 2 and Its Implications for the Treatment of Alcoholism. Cells 2023; 12:963. [PMID: 36980303 PMCID: PMC10047550 DOI: 10.3390/cells12060963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Alcohol abuse is a leading risk factor for the public health burden worldwide. Approved pharmacotherapies have demonstrated limited effectiveness over the last few decades in treating alcohol use disorders (AUD). New therapeutic approaches are therefore urgently needed. Historical and recent clinical trials using psychedelics in conjunction with psychotherapy demonstrated encouraging results in reducing heavy drinking in AUD patients, with psilocybin being the most promising candidate. While psychedelics are known to induce changes in gene expression and neuroplasticity, we still lack crucial information about how this specifically counteracts the alterations that occur in neuronal circuits throughout the course of addiction. This review synthesizes well-established knowledge from addiction research about pathophysiological mechanisms related to the metabotropic glutamate receptor 2 (mGlu2), with findings and theories on how mGlu2 connects to the major signaling pathways induced by psychedelics via serotonin 2A receptors (2AR). We provide literature evidence that mGlu2 and 2AR are able to regulate each other's downstream signaling pathways, either through monovalent crosstalk or through the formation of a 2AR-mGlu2 heteromer, and highlight epigenetic mechanisms by which 2ARs can modulate mGlu2 expression. Lastly, we discuss how these pathways might be targeted therapeutically to restore mGlu2 function in AUD patients, thereby reducing the propensity to relapse.
Collapse
Affiliation(s)
- Kevin Domanegg
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
- Bethanien Hospital for Psychiatry, Psychosomatics, and Psychotherapy Greifswald, 17489 Greifswald, Germany
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69115 Heidelberg, Germany
| |
Collapse
|
22
|
Mash DC. IUPHAR - invited review - Ibogaine - A legacy within the current renaissance of psychedelic therapy. Pharmacol Res 2023; 190:106620. [PMID: 36907284 DOI: 10.1016/j.phrs.2022.106620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 03/13/2023]
Abstract
Ibogaine is a powerful psychoactive substance that not only alters perception, mood and affect, but also stops addictive behaviors. Ibogaine has a very long history of ethnobotanical use in low doses to combat fatigue, hunger and thirst and, in high doses as a sacrament in African ritual contexts. In the 1960's, American and European self-help groups provided public testimonials that a single dose of ibogaine alleviated drug craving, opioid withdrawal symptoms, and prevented relapse for weeks, months and sometimes years. Ibogaine is rapidly demethylated by first-pass metabolism to a long-acting metabolite noribogaine. Ibogaine and its metabolite interact with two or more CNS targets simultaneously and both drugs have demonstrated predictive validity in animal models of addiction. Online forums endorse the benefits of ibogaine as an "addiction interrupter" and present-day estimates suggest that more than ten thousand people have sought treatment in countries where the drug is unregulated. Open label pilot studies of ibogaine-assisted drug detoxification have shown positive benefit in treating addiction. Ibogaine, granted regulatory approval for human testing in a Phase 1/2a clinical trial, joins the current landscape of psychedelic medicines in clinical development.
Collapse
Affiliation(s)
- Deborah C Mash
- Professor Emerita University of Miami Miller School of Medicine, Depts. Neurology and Molecular and Cellular Pharmacology.
| |
Collapse
|
23
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
24
|
Mao LM, Mathur N, Shah K, Wang JQ. Roles of metabotropic glutamate receptor 8 in neuropsychiatric and neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:349-366. [PMID: 36868634 PMCID: PMC10162486 DOI: 10.1016/bs.irn.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Karina Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States; Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
25
|
High Morphine Use Disorder Susceptibility Is Predicted by Impaired Learning Ability in Mice. Brain Sci 2022; 12:brainsci12121650. [PMID: 36552110 PMCID: PMC9776386 DOI: 10.3390/brainsci12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
An obvious reason for substance uses disorders (SUDs) is drug craving and seeking behavior induced by conditioned context, which is an abnormal solid context memory. The relationship between susceptibility to SUD and learning ability remains unclear in humans and animal models. In this study, we found that susceptibility to morphine use disorder (MUD) was negatively correlated with learning ability in conditioned place preference (CPP) in C57 mice. By using behavioral tests, we identified the FVB mouse as learning impaired. In addition, we discovered that learning-relevant proteins, such as the glutamate receptor subunits GluA1, NR1, and NR2A, were decreased in FVB mice. Finally, we assessed the context learning ability of FVB mice using the CPP test and priming. We found that FVB mice had lower learning performance with respect to normal memory but higher performance of morphine-reinstatement memory. Compared to C57 mice, FVB mice are highly sensitive to MUDs. Our results suggest that SUD susceptibility is predicted by impaired learning ability in mice; therefore, learning ability can play a simple and practical role in identifying high-risk SUD groups.
Collapse
|
26
|
Bakulin IS, Poydasheva AG, Zabirova AH, Suponeva NA, Piradov MA. Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. ANNALS OF CLINICAL AND EXPERIMENTAL NEUROLOGY 2022; 16:74-82. [DOI: 10.54101/acen.2022.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.
Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.
Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.
The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.
Collapse
|
27
|
A Novel CaMKII Inhibitory Peptide Blocks Relapse to Morphine Seeking by Influencing Synaptic Plasticity in the Nucleus Accumbens Shell. Brain Sci 2022; 12:brainsci12080985. [PMID: 35892425 PMCID: PMC9394410 DOI: 10.3390/brainsci12080985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Drugs of abuse cause enduring functional disorders in the brain reward circuits, leading to cravings and compulsive behavior. Although people may rehabilitate by detoxification, there is a high risk of relapse. Therefore, it is crucial to illuminate the mechanisms of relapse and explore the therapeutic strategies for prevention. In this research, by using an animal model of morphine self-administration in rats and a whole-cell patch–clamp in brain slices, we found changes in synaptic plasticity in the nucleus accumbens (NAc) shell were involved in the relapse to morphine-seeking behavior. Compared to the controls, the amplitude of long-term depression (LTD) induced in the medium spiny neurons increased after morphine self-administration was established, recovered after the behavior was extinguished, and increased again during the relapse induced by morphine priming. Intravenous injection of MA, a new peptide obtained by modifying Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor “myr-AIP”, decreased CaMKII activity in the NAc shell and blocked the reinstatement of morphine-seeking behavior without influence on the locomotor activity. Moreover, LTD was absent in the NAc shell of the MA-pretreated rats, whereas it was robust in the saline controls in which morphine-seeking behavior was reinstated. These results indicate that CaMKII regulates morphine-seeking behavior through its involvement in the change of synaptic plasticity in the NAc shell during the relapse, and MA may be of great value in the clinical treatment of relapse to opioid seeking.
Collapse
|
28
|
Inbar K, Levi LA, Kupchik YM. Cocaine induces input and cell-type-specific synaptic plasticity in ventral pallidum-projecting nucleus accumbens medium spiny neurons. Neuropsychopharmacology 2022; 47:1461-1472. [PMID: 35121830 PMCID: PMC9205871 DOI: 10.1038/s41386-022-01285-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Cocaine use and abstinence induce long-term synaptic alterations in the excitatory input to nucleus accumbens (NAc) medium spiny neurons (MSNs). The NAc regulates reward-related behaviors through two parallel projections to the ventral pallidum (VP)-originating in D1 or D2-expressing MSNs (D1-MSNs→VP; D2-MSNs→VP). The activity of these projections depends on their excitatory synaptic inputs, but it is not known whether and how abstinence from cocaine affects the excitatory transmission to D1-MSNs→VP and D2-MSNs→VP. Here we examined different forms of cocaine-induced synaptic plasticity in the inputs from the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) to NAc D1-MSNs→VP and putative D2-MSNs→VP (pD2-MSNs→VP) in the core and shell subcompartments of the NAc. We used the whole-cell patch-clamp technique to record excitatory postsynaptic currents from D1-tdTomato mice injected with ChR2 in either the BLA or the mPFC and retrograde tracer (RetroBeads) in the VP. We found that cocaine conditioned place preference (CPP) followed by abstinence potentiated the excitatory input from the BLA and mPFC to both D1-MSNs→VP and pD2-MSNs→VP. Interestingly, while the strengthening of the inputs to D1-MSNs→VP was of postsynaptic origin and manifested as increased AMPA to NMDA ratio, in pD2-MSNs→VP plasticity was predominantly presynaptic and was detected as changes in the paired-pulse ratio and coefficient of variation. Lastly, some of the changes were sex-specific. Overall our data show that abstinence from cocaine changes the excitatory inputs to both D1-MSNs→VP and pD2-MSNs→VP but with different mechanisms. This may help understand how circuits converging into the VP change after cocaine exposure.
Collapse
Affiliation(s)
- Kineret Inbar
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Liran A. Levi
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Yonatan M. Kupchik
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| |
Collapse
|
29
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
30
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|
31
|
Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior. Int J Mol Sci 2021; 22:ijms22158219. [PMID: 34360984 PMCID: PMC8348638 DOI: 10.3390/ijms22158219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose–response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.
Collapse
|
32
|
Piva A, Caffino L, Mottarlini F, Pintori N, Castillo Díaz F, Fumagalli F, Chiamulera C. Metaplastic Effects of Ketamine and MK-801 on Glutamate Receptors Expression in Rat Medial Prefrontal Cortex and Hippocampus. Mol Neurobiol 2021; 58:3443-3456. [PMID: 33723767 PMCID: PMC8257545 DOI: 10.1007/s12035-021-02352-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Ketamine and MK-801 by blocking NMDA receptors may induce reinforcing effects as well as schizophrenia-like symptoms. Recent results showed that ketamine can also effectively reverse depressive signs in patients' refractory to standard therapies. This evidence clearly points to the need of characterization of effects of these NMDARs antagonists on relevant brain areas for mood disorders. The aim of the present study was to investigate the molecular changes occurring at glutamatergic synapses 24 h after ketamine or MK-801 treatment in the rat medial prefrontal cortex (mPFC) and hippocampus (Hipp). In particular, we analyzed the levels of the glutamate transporter-1 (GLT-1), NMDA receptors, AMPA receptors subunits, and related scaffolding proteins. In the homogenate, we found a general decrease of protein levels, whereas their changes in the post-synaptic density were more complex. In fact, ketamine in the mPFC decreased the level of GLT-1 and increased the level of GluN2B, GluA1, GluA2, and scaffolding proteins, likely indicating a pattern of enhanced excitability. On the other hand, MK-801 only induced sparse changes with apparently no correlation to functional modification. Differently from mPFC, in Hipp, both substances reduced or caused no changes of glutamate receptors and scaffolding proteins expression. Ketamine decreased NMDA receptors while increased AMPA receptors subunit ratios, an effect indicative of permissive metaplastic modulation; conversely, MK-801 only decreased the latter, possibly representing a blockade of further synaptic plasticity. Taken together, these findings indicate a fine tuning of glutamatergic synapses by ketamine compared to MK-801 both in the mPFC and Hipp.
Collapse
Affiliation(s)
- Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Nicholas Pintori
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| |
Collapse
|
33
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|