1
|
Zhao X, Zhu M, Wang Z, Gao M, Long Y, Zhou S, Wang W. The Alleviative Effect of Sodium Butyrate on Dexamethasone-Induced Skeletal Muscle Atrophy. Cell Biol Int 2025; 49:508-521. [PMID: 39936899 DOI: 10.1002/cbin.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Skeletal muscle mass is significantly negatively regulated by glucocorticoids. Following glucocorticoid administration, the balance between protein synthesis and breakdown in skeletal muscle is disrupted, shifting towards a predominance of catabolic metabolism. Short-chain fatty acids like sodium butyrate have been found to regulate inflammatory reactions and successively activate signaling pathways. The preventive benefits of sodium butyrate against dexamethasone-induced skeletal muscle atrophy and myotube atrophy models were examined in this work, and the underlying mechanism was clarified. A total of 32 6-week-old C57BL/6 inbred male mice were randomly assigned to one of four groups and treated with dexamethasone to induce muscle atrophy and sodium butyrate. We found that sodium succinate alleviated dexamethasone-induced myotube atrophy in the myotube atrophy model by lowering the gene expression of two E3 ubiquitin ligases, Atrogin-1 and MURF1, and activating the AKT/mTOR signaling pathway. Pertussis toxin reversed this effect, indicating that G protein-coupled receptors were involved in sodium butyrate's action as a mediator. Additionally, pre-treatment with sodium butyrate lowered weight and muscle mass loss in a mouse model of skeletal muscle atrophy, dramatically decreased the MURF1 gene expression and decreased the nuclear translocation of the glucocorticoid receptor. In conclusion, this study shows that sodium butyrate inhibits the expression of atrophy genes, thus preventing the breakdown of proteins and the loss of muscle mass, while also inhibiting weight loss, in animal models.
Collapse
Affiliation(s)
- Xingchen Zhao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Mingqiang Zhu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zifan Wang
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ming Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yifei Long
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Shuo Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Tuo Y, Peng S, Li Y, Dang J, Feng Z, Ding L, Du S, Liu X, Wang L. Quinoa protein and its hydrolysate improve the fatigue resistance of mice: a potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism. J Nutr Biochem 2025; 139:109863. [PMID: 39952621 DOI: 10.1016/j.jnutbio.2025.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Fatigue is commonly marked by reduced endurance and impaired function, often linked to overexertion and chronic conditions. Quinoa (Chenopodium quinoa Willd.), with its rich amino acids and resilience to harsh conditions, offers a novel strategy for combating fatigue. This study explored the antifatigue effects of quinoa protein (QPro) and its hydrolysate (QPH) in weight-loaded swimming mice. After 4 weeks of oral administration, QPro and QPH significantly prolonged swimming duration, reduced serum fatigue biomarkers (lactic acid, urea nitrogen, lactate dehydrogenase, creatine kinase), and elevated glycogen reserves in the liver and muscle. RT-qPCR analysis indicated that QPH activated hepatic gluconeogenesis via G6Pase and PEPCK signaling and enhanced mitochondrial function through PGC-1α/NRF1/TFAM signaling in muscle. Additionally, QPro and QPH boosted antioxidant defenses by improving antioxidant enzyme activity, reducing malondialdehyde through the Nrf2/HO-1 pathway, and suppressing inflammation by reducing TNF-α and IL-6 levels. Network pharmacology identified 31 key targets involved in energy metabolism and inflammation, providing novel insights into the molecular mechanisms underlying the antifatigue properties of quinoa peptides. These findings highlight the potential of QPro and QPH as natural and bioactive ingredients in functional foods for enhancing endurance and mitigating fatigue.
Collapse
Affiliation(s)
- Yuanrong Tuo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Siwang Peng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yiju Li
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiamin Dang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhi Feng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Long Ding
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China.
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Lim P, Woo SW, Han J, Lee YL, Shim JH, Kim HS. Danshensu sodium salt alleviates muscle atrophy via CaMKII-PGC1α-FoxO3a signaling pathway in D-galactose-induced models. FASEB J 2025; 39:e70280. [PMID: 39835720 PMCID: PMC11748827 DOI: 10.1096/fj.202402158r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Sarcopenia is an age-related muscle atrophy syndrome characterized by the loss of muscle strength and mass. Although many agents have been used to treat sarcopenia, there are no successful treatments to date. In this study, we identified Danshensu sodium salt (DSS) as a substantial suppressive agent of muscle atrophy. We used a D-galactose (DG)-induced aging-acceleration model, both in vivo and in vitro, to confirm the effect of DSS on sarcopenia. DSS inhibits the expression of muscle atrophy-related factors (MuRF1, MAFbx, myostatin, and FoxO3a) in DG-induced mouse C2C12 and human skeletal muscle cells. Additionally, DSS restored the diameter of reduced C2C12 myotubes. Next, we demonstrated that DSS stimulates AMPK and PGC1α through CaMKII. DSS inhibits the translocation of FoxO3a into the nucleus, thus inhibiting muscle atrophy in a calcium-dependent manner. DSS initiated the protein-protein interaction between FoxO3a and PGC1α. The reduction of the PGC1α-FoxO3a interaction by DG was restored by DSS. Also, DSS suppressed increased intracellular reactive oxygen species (ROS) by DG. In animal models, DSS administration improved mouse muscle mass and physical performance (grip strength and hanging test) under DG-induced accelerated aging conditions. These findings demonstrated that DSS attenuates muscle atrophy by inhibiting the expression of muscle atrophy-related factors. Therefore, DSS may be a potential therapeutic agent for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Pooreum Lim
- Department of AnatomyKorea University College of MedicineSeoulRepublic of Korea
| | - Sang Woo Woo
- Department of AnatomyKorea University College of MedicineSeoulRepublic of Korea
| | - Jihye Han
- Department of AnatomyKorea University College of MedicineSeoulRepublic of Korea
| | - Young Lim Lee
- Department of AnatomyKorea University College of MedicineSeoulRepublic of Korea
| | - Jae Ho Shim
- Department of AnatomyKorea University College of MedicineSeoulRepublic of Korea
| | - Hyeon Soo Kim
- Department of AnatomyKorea University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
4
|
Yang J, Zhong J, Du Y, Wang Z, Jiang L, Li Z, Liu Y. Bioinformatics and systems biology approaches to identify potential common pathogeneses for sarcopenia and osteoarthritis. Front Med (Lausanne) 2024; 11:1380210. [PMID: 38962732 PMCID: PMC11221828 DOI: 10.3389/fmed.2024.1380210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Sarcopenia, a geriatric syndrome characterized by progressive loss of muscle mass and strength, and osteoarthritis, a common degenerative joint disease, are both prevalent in elderly individuals. However, the relationship and molecular mechanisms underlying these two diseases have not been fully elucidated. In this study, we screened microarray data from the Gene Expression Omnibus to identify associations between sarcopenia and osteoarthritis. We employed multiple statistical methods and bioinformatics tools to analyze the shared DEGs (differentially expressed genes). Additionally, we identified 8 hub genes through functional enrichment analysis, protein-protein interaction analysis, transcription factor-gene interaction network analysis, and TF-miRNA coregulatory network analysis. We also discovered potential shared pathways between the two diseases, such as transcriptional misregulation in cancer, the FOXO signalling pathway, and endometrial cancer. Furthermore, based on common DEGs, we found that strophanthidin may be an optimal drug for treating sarcopenia and osteoarthritis, as indicated by the Drug Signatures database. Immune infiltration analysis was also performed on the sarcopenia and osteoarthritis datasets. Finally, receiver operating characteristic (ROC) curves were plotted to verify the reliability of our results. Our findings provide a theoretical foundation for future research on the potential common pathogenesis and molecular mechanisms of sarcopenia and osteoarthritis.
Collapse
Affiliation(s)
- Jinghong Yang
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Lu Zhou, China
| | - Jun Zhong
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Lu Zhou, China
| | - Yimin Du
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Lu Zhou, China
| | - Zi Wang
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Lu Zhou, China
| | - Lujun Jiang
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Lu Zhou, China
| | - Zhong Li
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Southwest Medical University, Lu Zhou, China
| | - Yanshi Liu
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Lu Zhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Southwest Medical University, Lu Zhou, China
| |
Collapse
|
5
|
Tarantino G, Sinatti G, Citro V, Santini SJ, Balsano C. Sarcopenia, a condition shared by various diseases: can we alleviate or delay the progression? Intern Emerg Med 2023; 18:1887-1895. [PMID: 37490203 PMCID: PMC10543607 DOI: 10.1007/s11739-023-03339-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
Sarcopenia is a severe condition common to various chronic diseases and it is reckoned as a major health problem. It encompasses many different molecular mechanisms that have been for a while discovered but not definitely clarified. Although sarcopenia is a disability status that leads to serious health consequences, the scarcity of suitable animal models has curtailed research addressing this disorder. Another limitation in the field of clinical investigation of sarcopenic patients is the lack of a generally accepted definition coupled with the difficulty of adopting common diagnostic criteria. In fact, both do not permit to clarify the exact prevalence rate and consequently limit physicians to establish any kind of therapeutical approach or, when possible, to adopt preventive measures. Unfortunately, there is no standardized cure, apart from doing more physical activity and embracing a balanced diet, but newly discovered substances start being considered. In this review, authors try to give an overview addressing principal pathways of sarcopenia and offer critical features of various possible interventions.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Gaia Sinatti
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore, SA, Italy
| | - Silvano Jr Santini
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy.
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| |
Collapse
|
6
|
Yang J, Jiang T, Xu G, Wang S, Liu W. Exploring molecular mechanisms underlying the pathophysiological association between knee osteoarthritis and sarcopenia. Osteoporos Sarcopenia 2023; 9:99-111. [PMID: 37941536 PMCID: PMC10627980 DOI: 10.1016/j.afos.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives Accumulating evidence indicates a strong link between knee osteoarthritis (KOA) and sarcopenia. However, the mechanisms involved have not yet been elucidated. This study primarily aims to explore the molecular mechanisms that explain the connection between these 2 disorders. Methods The gene expression profiles for KOA and sarcopenia were obtained from the Gene Expression Omnibus database, specifically from GSE55235, GSE169077, and GSE1408. Various bioinformatics techniques were employed to identify and analyze common differentially expressed genes (DEGs) across the 3 datasets. The techniques involved the analysis of Gene Ontology and pathways to enhance understanding, examining protein-protein interaction (PPI) networks, and identifying hub genes. In addition, we constructed the network of interactions between transcription factors (TFs) and genes, the co-regulatory network of TFs and miRNAs for hub genes, and predicted potential drugs. Results In total, 14 common DEGs were found between KOA and sarcopenia. Detailed information on biological processes and signaling pathways of common DEGs was obtained through enrichment analysis. After performing PPI network analysis, we discovered 4 hub genes (FOXO3, BCL6, CDKN1A, and CEBPB). Subsequently, we developed coregulatory networks for these hub genes involving TF-gene and TF-miRNA interactions. Finally, we identified 10 potential chemical compounds. Conclusions By conducting bioinformatics analysis, our study has successfully identified common gene interaction networks between KOA and sarcopenia. The potential of these findings to offer revolutionary understanding into the common development of these 2 conditions could lead to the identification of valuable targets for therapy.
Collapse
Affiliation(s)
- Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Jiang
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Guangming Xu
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shuai Wang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
7
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
8
|
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y, Meng L, Zhao Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr 2023; 10:1037200. [PMID: 36819699 PMCID: PMC9932270 DOI: 10.3389/fnut.2023.1037200] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the foundation of human function and plays a key role in producing exercise, bone protection, and energy metabolism. Sarcopenia is a systemic disease, which is characterized by degenerative changes in skeletal muscle mass, strength, and function. Therefore, sarcopenia often causes weakness, prolonged hospitalization, falls and other adverse consequences that reduce the quality of life, and even lead to death. In recent years, sarcopenia has become the focus of in-depth research. Researchers have suggested some molecular mechanisms for sarcopenia according to different muscle physiology. These mechanisms cover neuromuscular junction lesion, imbalance of protein synthesis and breakdown, satellite cells dysfunction, etc. We summarize the latest research progress on the molecular mechanism of sarcopenia in this review in order to provide new ideas for future researchers to find valuable therapeutic targets and develop relevant prevention strategies.
Collapse
Affiliation(s)
- Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Ping’an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Lingjiao Meng,
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,*Correspondence: Qun Zhao,
| |
Collapse
|
9
|
Tan HW, Xu YM, Liang ZL, Cai NL, Wu YY, Lau ATY. Single-gene knockout-coupled omics analysis identifies C9orf85 and CXorf38 as two uncharacterized human proteins associated with ZIP8 malfunction. Front Mol Biosci 2022; 9:991308. [PMID: 36330220 PMCID: PMC9623088 DOI: 10.3389/fmolb.2022.991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023] Open
Abstract
Human transmembrane protein metal cation symporter ZIP8 (SLC39A8) is a member of the solute carrier gene family responsible for intracellular transportation of essential micronutrients, including manganese, selenium, and zinc. Previously, we established a ZIP8-knockout (KO) human cell model using the CRISPR/Cas9 system and explored how the expression of ZIP8 could possibly contribute to a wide range of human diseases. To further assess the biophysiological role of ZIP8, in the current study, we employed isobaric tags for relative and absolute quantitation (iTRAQ) and detected the changes of the proteome in ZIP8-KO cells (proteomic data are available via ProteomeXchange with identifier PXD036680). A total of 286 differentially expressed proteins (206 downregulated and 80 upregulated proteins) were detected in the ZIP8-KO cell model, and subsequent bioinformatics analyses (GO, KEGG, KOG, and PPI) were performed on these proteins. Interestingly, four "uncharacterized" proteins (proteins with unknown biological function) were identified in the differentially expressed proteins: C1orf198, C9orf85, C17orf75, and CXorf38-all of which were under-expressed in the ZIP8-KO cells. Notably, C9orf85 and CXorf38 were amongst the top-10 most downregulated proteins, and their expressions could be selectively induced by essential micronutrients. Furthermore, clinical-based bioinformatic analysis indicated that positive correlations between the gene expressions of ZIP8 and C9orf85 or CXorf38 were observed in multiple cancer types. Overall, this study reveals the proteomic landscape of cells with impaired ZIP8 and uncovers the potential relationships between essential micronutrients and uncharacterized proteins C9orf85 and CXorf38. The differentially expressed proteins identified in ZIP8-KO cells could be the potential targets for diagnosing and/or treating human ZIP8-associated diseases, including but not limited to malnutrition, viral infection, and cancers.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
10
|
Tang Y. Editorial: Nutraceuticals. Curr Opin Pharmacol 2022; 66:102265. [PMID: 35830773 DOI: 10.1016/j.coph.2022.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Key Laboratory of Sichuan Province, 37 Shi-er Qiao Road, Chengdu 610075, China.
| |
Collapse
|
11
|
Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13:811751. [PMID: 35250869 PMCID: PMC8892203 DOI: 10.3389/fendo.2022.811751] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory factor (LIF), fibroblast growth factor-21 (FGF-21), adiponectin, and apelin. While factors such as myostatin, leptin, interleukin-6 (IL-6), interleukin-8 (IL-8), and resistin increase. The consequences of these changes are an increase in inflammatory factors, increased degradation of muscle proteins, increased fat mass, and decreased muscle tissue, which exacerbates sarcopenia obesity. In contrast, exercise, especially strength training, reverses this process, which includes increasing muscle protein synthesis, increasing myogenesis, increasing mitochondrial biogenesis, increasing brown fat, reducing white fat, reducing inflammatory factors, and reducing muscle atrophy. Since some people with chronic diseases are not able to do high-intensity strength training, exercises with blood flow restriction (BFR) are newly recommended. Numerous studies have shown that low-intensity BFR training produces the same increase in hypertrophy and muscle strength such as high-intensity strength training. Therefore, it seems that exercise interventions with BFR can be an effective way to prevent the exacerbation of sarcopenia obesity. However, due to limited studies on adipokines and exercises with BFR in people with sarcopenic obesity, more research is needed.
Collapse
|