1
|
Wang L, Tang W, Sun N, Lv J, Hu J, Tao L, Zhang C, Wang H, Chen L, Xu DX, Zhang Y, Huang Y. Low-dose tire wear chemical 6PPD-Q exposure elicit fatty liver via promoting fatty acid biosynthesis in ICR mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137574. [PMID: 39986096 DOI: 10.1016/j.jhazmat.2025.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) as a major metabolite of tire wear chemical 6PPD has been demonstrated to be an emerging burden of exposure in human populations, via contamination from drinking water, air particulate matter and food sources. Whilst increasing attention has been moved toward its adverse effect, the potential hepatotoxicity of 6PPD-Q in mammals at realistic dose remains unknown. Here, the toxic effects of 6PPD-Q at environmentally relevant dose on the liver of adult mice and its underlying mechanism were investigated through an integrative approach combining transcriptomic and lipidomic analyses. We found that 6PPD-Q exposure induced excessive lipid deposition following three weeks of exposure, ultimately contributing to the pathogenesis of fatty liver disease. Mechanistically, 6PPD-Q exposure caused a remarkable increase in the contents of fatty acids within the hepatic tissue of mice by enhancing their biosynthesis, thereby facilitating lipid deposition. In summary, this study provides a new understanding on the endocrine disrupting effects of 6PPD-Q on hepatic lipid metabolism and how it may contribute to elevated risk of fatty liver disease. Our findings call for a potential public health attention on the risk assessment of 6PPD-Q, particularly towards the risk of chronic metabolic diseases.
Collapse
Affiliation(s)
- Lili Wang
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weitian Tang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Nan Sun
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jiayue Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yihao Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yichao Huang
- School of Public Health, Anhui Medical University, Hefei 230032, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou 234099, China.
| |
Collapse
|
2
|
El Kouche S, Halvick S, Morel C, Duca R, van Nieuwenhuyse A, Turner JD, Grova N, Meyre D. Pollution, stress response, and obesity: A systematic review. Obes Rev 2025; 26:e13895. [PMID: 39825581 PMCID: PMC11964802 DOI: 10.1111/obr.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/20/2025]
Abstract
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist. A protocol for the systematic review was registered on PROSPERO. Of 1869 identified references, 63 were eligible after title and abstract screening, 42 after full-text reading, and risk of bias and quality assessment. An important body of evidence shows a positive association between pollution, stress response, and obesity. Pollution stimulates the hypothalamic-pituitary-adrenal axis by activating the glucocorticoid receptor signaling and transcriptional factors responsible for adipocyte differentiation, hyperphagia, and obesity. Endocrine-disrupting chemicals also alter the Peroxisome Proliferator-activated Receptor gamma pathway to promote adipocyte hyperplasia and hypertrophy. However, these associations depend on sex, age, and pollutant type. Our findings evidence that pollution promotes stress, leading to obesity.
Collapse
Affiliation(s)
- Sandra El Kouche
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
| | - Sarah Halvick
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Department of Health Protection, Unit Environmental Hygiene and Human Biological MonitoringNational Health Laboratory (LNS)DudelangeLuxembourg
| | - Chloe Morel
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
| | - Radu‐Corneliu Duca
- Department of Health Protection, Unit Environmental Hygiene and Human Biological MonitoringNational Health Laboratory (LNS)DudelangeLuxembourg
- Department of Public Health and Primary Care, Environment and HealthKU Leuven (University of Leuven)LeuvenBelgium
| | - An van Nieuwenhuyse
- Department of Public Health and Primary Care, Environment and HealthKU Leuven (University of Leuven)LeuvenBelgium
- Department of Health ProtectionNational Health Laboratory (LNS)DudelangeLuxembourg
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Nathalie Grova
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Immune Endocrine Epigenetics Research Group, Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - David Meyre
- Inserm UMR 1256 Nutrition‐Genetics‐Environmental Risk Exposure (N‐G‐ERE)University of LorraineNancyFrance
- Department of Health Research Methods, Evidence, and ImpactMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
3
|
Page B, Cora C, Reilly J, Reno R, Harbi W, Lynes MS, Lynes MA, Lynes MD. Monitoring Mouse Surface Temperature During Stress with a Thermal Camera: A Low-Cost Infrared Videography System for Evaluating Murine Metabolism. Curr Protoc 2025; 5:e70098. [PMID: 39945421 PMCID: PMC11823340 DOI: 10.1002/cpz1.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Energy is required for life, and organisms obtain their energy from fuel sources to enable both anabolic and catabolic processes. Some of this energy is radiated as heat, which can be quantified as a measure of metabolic rate. In some cases, environmental toxicants can alter metabolic energy in undesirable ways, and characterization of new pharmaceuticals can determine the efficacy of desirable metabolic rate manipulation or identify off-target adverse effects. Current methods to directly measure heat production in laboratory mice are expensive, can be laborious, and make it challenging to monitor animals in ways that are multiplexed, robust, and non-invasive. We present a set of protocols for assembling and deploying a simple, low-cost thermal camera to monitor and record thermogenic activity, modified from prior work. Parts used to build this system currently cost approximately $150 USD and, when assembled, can record mouse temperatures as well as ambient cage temperatures up to twice per second for extended periods. By using multiplexed cameras in a diurnal mouse incubator system, the thermogenic capacity of several mice can be simultaneously recorded and graphed. Exogenous agents and genotypes that alter metabolism can be readily identified with this technology. In this set of protocols, we describe the assembly of the thermal video camera device, its use, and related data capture and analysis methods. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Assembling thermal camera for thermogenic stress test Basic Protocol 2: In vivo measurement of mouse temperature under different ambient conditions.
Collapse
Affiliation(s)
- Breanna Page
- Center for Molecular MedicineMaineHealth Institute for ResearchScarboroughMaine
- Roux Institute at Northeastern UniversityPortlandMaine
| | - Carolina Cora
- Center for Molecular MedicineMaineHealth Institute for ResearchScarboroughMaine
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaine
| | - James Reilly
- Center for Molecular MedicineMaineHealth Institute for ResearchScarboroughMaine
| | - Ryan Reno
- Center for Molecular MedicineMaineHealth Institute for ResearchScarboroughMaine
| | - Wadak Harbi
- Center for Molecular MedicineMaineHealth Institute for ResearchScarboroughMaine
| | | | - Michael A. Lynes
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticut
| | - Matthew D. Lynes
- Center for Molecular MedicineMaineHealth Institute for ResearchScarboroughMaine
- Roux Institute at Northeastern UniversityPortlandMaine
- Graduate School of Biomedical Science and EngineeringUniversity of MaineOronoMaine
- Department of MedicineMaineHealthPortlandMaine
| |
Collapse
|
4
|
Zhu W, Fang J, Ji C, Zhong H, Zhong T, Cui X. Maternal neonicotinoid pesticide exposure impairs glucose metabolism by deteriorating brown fat thermogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117596. [PMID: 39709706 DOI: 10.1016/j.ecoenv.2024.117596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Neonicotinoids (NEOs) are well-designed highly selective pesticides that target nicotinic acetylcholine receptors. However, their extensive use, accumulation, and biomagnification pose significant risks to humans. Increasing evidence has suggested that NEOs may affect glucose homeostasis, but little research has linked NEOs exposure to gestational diabetes mellitus (GDM), which is the most common disease in pregnancy. We here aimed to investigate the association between NEOs exposure and GDM occurrence. METHODS 100 pregnant women who completed a 75 g oral glucose tolerance test (OGTT) at 24-28 weeks of gestation were enrolled. Urinary concentrations of seven widely used NEOs were quantified using ultra-high performance liquid chromatography multiple reaction monitoring mass spectrometry (UHPLC-MRM-MS/MS). Correlation analysis revealed the associations between NEOs concentrations and glucose homeostasis parameters. The toxic effects of thiamethoxam (TMX) and clothianidin (CLO) were assessed using pregnant mice, and the potential mechanism in impairing glucose disposition regarding brown adipose tissue (BAT) thermogenesis has been elucidated. RESULTS Among the 100 urine samples, 88 % were contaminated by NEOs with concentrations ranging from 2.50 to 491.34 nmol/L. TMX and CLO were the most frequently detected NEOs, highly detected in women with GDM. Moreover, we found statistically significant associations between TMX concentrations and 1hBG, and 2hBG. Exposure to mixed NEOs during gestation resulted in elevated glucose levels and impaired insulin sensitivity in normal pregnant and GDM mice models. In addition, we found the metabolic disorders induced by NEOs were linked to the deterioration of BAT thermogenesis in vivo. CONCLUSION In general, we demonstrated that prenatal exposures to NEOs were associated with an increased risk of GDM by deteriorating the thermogenic capacity of BAT.
Collapse
Affiliation(s)
- Wenwen Zhu
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jiali Fang
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Chenbo Ji
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Hong Zhong
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Tianying Zhong
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Xianwei Cui
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
5
|
Zhou HL, Wang BB, Fan XL, Zhang XM, Song Y. Carvacrol acetate activated Nrf2 modulates mitophagy for the treatment of neurocyte oxidative stress induced by chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117484. [PMID: 39644575 DOI: 10.1016/j.ecoenv.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study explored the protective effect and potential mechanism of carvacrol acetate (CAA) on the oxidation of chlorpyrifos (CPF). A model of oxidative stimulus damage was established in Sprague-Dawley rats by subcutaneous injection of the CPF poison. PC12 cells were used to construct an oxidative injury model using CPF, and the protective effects and mechanism of action of CAA against CPF-induced oxidative damage were explored in vitro. The key role of Nuclear factor erythroid-2-related factor 2 (Nrf2) in alleviating CPF-induced damage via CAA was further confirmed by administering Nrf2 inhibitors to PC12 cells. Administration of CAA significantly enhanced the locomotor ability of the rats, alleviated neuronal pathological alterations, and increased the number of Nissl bodies, while increasing autophagic bodies. In vitro, CAA promoted cell survival and augmented the mitochondrial membrane potential. It decreased both intra- and extracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), while markedly elevating mitochondrial DNA (mtDNA) copy number. Moreover, PC12 cells treated with Nrf2 inhibitors failed to exhibit any improvement in survival rate when treated with CAA after a toxic insult. Furthermore, ROS and MDA levels were not significantly reduced, SOD enzyme activity did not increase, and mitochondrial membrane potential and mtDNA copy number did not improve. Western blot analysis showed that the expression of Tfam, Beclin1, and LC3II/LC3I proteins in the CAA group decreased significantly after Nrf2 inhibition. These findings suggest that CAA modulates mitochondrial function and autophagy by regulating the Nrf2 signalling pathway to mitigate the toxic damage. Finally, the effect of the autophagy inhibitor, 3-MA, on PC12 cells suggests that CAA promotes mitophagy by participating in the Nrf2 pathway, thereby preventing CPF-induced oxidative stress damage.
Collapse
Affiliation(s)
- Hong-Ling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Bei-Bei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Jinhua People's Hospital, Jinhua, Zhejiang 2321000, China.
| | - Xiao-Min Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; First People's Hospital of Linping District, Hangzhou, Zhejiang 311103, China.
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
6
|
Migliaccio V, Di Gregorio I, Penna S, Panico G, Lombardi A, Lionetti L. Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats. Nutrients 2024; 16:2616. [PMID: 39203754 PMCID: PMC11357593 DOI: 10.3390/nu16162616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Brown adipose tissue (BAT) participates in thermogenesis and energy homeostasis. Studies on factors capable of influencing BAT function, such as a high-fat diet (HFD) or exposure to environmental pollutants, could be useful for finding metabolic targets for maintaining energy homeostasis. We evaluated the effect of chronic exposure to dichlorodiphenyldichloroethylene (DDE), the major metabolite of dichlorodiphenyltrichloroethane (DDT), and/or a HFD on BAT morphology, mitochondrial mass, dynamics, and oxidative stress in rats. To this end, male Wistar rats were treated for 4 weeks with a standard diet, or a HFD alone, or together with DDE. An increase in paucilocular adipocytes and the lipid droplet size were observed in HFD-treated rats, which was associated with a reduction in mitochondrial mass and in mitochondrial fragmentation, as well as with increased oxidative stress and upregulation of the superoxide dismutase-2. DDE administration mimics most of the effects induced by a HFD on BAT, and it aggravates the increase in the lipid droplet size when administered together with a HFD. Considering the known role of oxidative stress in altering BAT functionality, it could underlie the ability of both DDE and a HFD to induce similar metabolic adaptations in BAT, leading to reduced tissue thermogenesis, which can result in a predisposition to the onset of energy homeostasis disorders.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| | - Serena Penna
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| | - Giuliana Panico
- Department of Biology, University of Naples Federico II, Complesso Monte Sant’Angelo Via Cinthia 26, 80126 Napoli, Italy;
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Complesso Monte Sant’Angelo Via Cinthia 26, 80126 Napoli, Italy;
| | - Lillà Lionetti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (V.M.); (I.D.G.); (S.P.)
| |
Collapse
|
7
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Hansen JB, Novak I. Editorial overview: New and revitalized old targets in metabolic disease. Curr Opin Pharmacol 2024; 75:102434. [PMID: 38277941 DOI: 10.1016/j.coph.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Jacob B Hansen
- University of Copenhagen, Department of Biology, Section for Cell Biology and Physiology, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Ivana Novak
- University of Copenhagen, Department of Biology, Section for Cell Biology and Physiology, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| |
Collapse
|