1
|
Abokyi S, Tse DYY. Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy. Neural Regen Res 2025; 20:366-377. [PMID: 38819040 PMCID: PMC11317960 DOI: 10.4103/nrr.nrr-d-23-02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
Retinal aging has been recognized as a significant risk factor for various retinal disorders, including diabetic retinopathy, age-related macular degeneration, and glaucoma, following a growing understanding of the molecular underpinnings of their development. This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches, focusing on the activation of transcription factor EB. Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies, such as exercise, calorie restriction, rapamycin, and metformin, in patients and animal models of these common retinal diseases. The review critically assesses the role of transcription factor EB in retinal biology during aging, its neuroprotective effects, and its therapeutic potential for retinal disorders. The impact of transcription factor EB on retinal aging is cell-specific, influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways. In vascular endothelial cells, transcription factor EB controls important processes, including endothelial cell proliferation, endothelial tube formation, and nitric oxide levels, thereby influencing the inner blood-retinal barrier, angiogenesis, and retinal microvasculature. Additionally, transcription factor EB affects vascular smooth muscle cells, inhibiting vascular calcification and atherogenesis. In retinal pigment epithelial cells, transcription factor EB modulates functions such as autophagy, lysosomal dynamics, and clearance of the aging pigment lipofuscin, thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization. These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis, neuronal synapse plasticity, energy metabolism, microvasculature, and inflammation, ultimately offering protection against retinal aging and diseases. The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases. Therefore, it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Dennis Yan-yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Center for Eye and Vision Research, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Shi Y, Mi Z, Zhao W, Hu Y, Xiang H, Gan Y, Yuan S. Melatonin Mitigates Acidosis-Induced Neuronal Damage by Up-Regulating Autophagy via the Transcription Factor EB. Int J Mol Sci 2025; 26:1170. [PMID: 39940940 PMCID: PMC11818126 DOI: 10.3390/ijms26031170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Acidosis, a common feature of cerebral ischemia and hypoxia, results in neuronal damage and death. This study aimed to investigate the protective effects and mechanisms of action of melatonin against acidosis-induced neuronal damage. SH-SY5Y cells were exposed to an acidic environment to simulate acidosis, and a photothrombotic (PT) infarction model was used to establish an animal model of cerebral ischemia of male C57/BL6J mice. Both in vivo and in vitro studies demonstrated that acidosis increased cytoplasmic transcription factor EB (TFEB) levels, reduced nuclear TFEB levels, and suppressed autophagy, as evidenced by elevated p62 levels, a higher LC3-II/LC3-I ratio, decreased synapse-associated proteins (PSD-95 and synaptophysin), and increased neuronal apoptosis. In contrast, melatonin promoted the nuclear translocation of TFEB, enhanced autophagy, and reversed neuronal apoptosis. Moreover, the role of TFEB in melatonin's neuroprotective effects was validated by modulating TFEB nuclear translocation. In conclusion, melatonin mitigates acidosis-induced neuronal damage by promoting the nuclear translocation of TFEB, thereby enhancing autophagy. These findings offer new insights into potential treatments for acidosis.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharamceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China;
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha 410013, China
| | - Zhaoyu Mi
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Wei Zhao
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Yue Hu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Hui Xiang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Yaoxue Gan
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharamceutical Sciences, Health Science Center, Hunan Normal University, Changsha 410013, China;
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha 410006, China; (Z.M.); (W.Z.); (Y.H.); (H.X.); (Y.G.)
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Health Science Center, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
3
|
Grosso Jasutkar H, Wasserlein EM, Ishola A, Litt N, Staniszewski A, Arancio O, Yamamoto A. Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease. Autophagy 2024; 20:2540-2555. [PMID: 38949671 PMCID: PMC11572145 DOI: 10.1080/15548627.2024.2368335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the atg7iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from atg7iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in atg7iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. Abbreviations: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Azeez Ishola
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicole Litt
- Department of Neurology, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Li W, Zhu H, Chen J, Ru B, Peng Q, Miao J, Liu X. PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae. Nat Commun 2024; 15:1967. [PMID: 38438368 PMCID: PMC10912746 DOI: 10.1038/s41467-024-46290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Host-derived reactive oxygen species (ROS) are an important defense means to protect against pathogens. Although mitochondria are the main intracellular targets of ROS, how pathogens regulate mitochondrial physiology in response to oxidative stress remains elusive. Prohibitin 2 (PHB2) is an inner mitochondrial membrane (IMM) protein, recognized as a mitophagy receptor in animals and fungi. Here, we find that an ANK and FYVE domain-containing protein PsAF5, is an adapter of PsPHB2, interacting with PsATG8 under ROS stress. Unlike animal PHB2 that can recruit ATG8 directly to mitochondria, PsPHB2 in Phytophthora sojae cannot recruit PsATG8 to stressed mitochondria without PsAF5. PsAF5 deletion impairs mitophagy under ROS stress and increases the pathogen's sensitivity to H2O2, resulting in the attenuation of P. sojae virulence. This discovery of a PsPHB2-PsATG8 adapter (PsAF5) in plant-pathogenic oomycetes reveals that mitophagy induction by IMM proteins is conserved in eukaryotes, but with differences in the details of ATG8 recruitment.
Collapse
Affiliation(s)
- Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongwei Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Binglu Ru
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing, 100193, China.
| |
Collapse
|