1
|
Dahm SF, Sülzenbrück S, Rieger M. Improvement by imagining actions: Bimanual transfer effects after action imagery practice in a sequential reaction time task. Acta Psychol (Amst) 2025; 252:104633. [PMID: 39689518 DOI: 10.1016/j.actpsy.2024.104633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Action-imagery-practice refers to the repetitive use of action imagery to improve subsequent performance leading to partially different representation types than action-execution-practice (AEP). This study explored the representation types in kinesthetic action-imagery-practice (K-AIP) and visual action-imagery-practice (V-AIP) in a serial reaction time task using the crossed hand transfer paradigm. 169 participants (age M ± SD = 25.2 ± 3.9) were randomly assigned to AEP, K-AIP, V-AIP, or control-practice (CP), practicing with uncrossed hands on ten consecutive days. Tests involved the same sequence, a mirror sequence, a shifted sequence, and a shifted mirror sequence, each with uncrossed and crossed hands. With crossed hands, sequence-specific transfer effects indicated only little evidence for effector-independent representations in late stages of learning in AEP and V-AIP. Performance in the same sequence with uncrossed hands indicated the acquisition of stimulus-response location associated effector-dependent sequence-specific representations in AEP, K-AIP and V-AIP, but not in CP. These visual-spatial effector-dependent representations were stronger after AEP than after AIP. Overall, no important differences between both AIP groups were observed, and both groups reported similar focus on kinesthesis and vision, suggesting that irrespective of the instructions, rather than focusing on one single modality, AIP always involves a combination of both modalities - vision and kinesthesis - that promote motor learning.
Collapse
Affiliation(s)
- Stephan F Dahm
- Universität Innsbruck, Department of Psychology, Innsbruck, Austria.
| | - Sandra Sülzenbrück
- FOM Hochschule, iwp Institut für Wirtschaftspsychologie, Essen, Germany; Westphalian University of Applied Sciences Gelsenkirchen, Department of Business Studies, Gelsenkirchen, Germany
| | - Martina Rieger
- UMIT Tirol - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria
| |
Collapse
|
2
|
Nagy CA, Hann F, Brezóczki B, Farkas K, Vékony T, Pesthy O, Németh D. Intact ultrafast memory consolidation in adults with autism and neurotypicals with autism traits. Brain Res 2025; 1847:149299. [PMID: 39486781 DOI: 10.1016/j.brainres.2024.149299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The processes of learning and memory consolidation are closely interlinked. Therefore, to uncover statistical learning in autism spectrum disorder (ASD), an in-depth examination of memory consolidation is essential. Studies of the last five years have revealed that learning can take place not only during practice but also during micro rest (<1 min) between practice blocks, termed micro offline gains. The concept of micro offline gains refers to performance improvements during short rest periods interspersed with practice, rather than during practice itself. This phenomenon is crucial for the acquisition and consolidation of motor skills and has been observed across various learning contexts. Numerous studies on learning in autism have identified intact learning but there has been no investigation into this fundamental aspect of memory consolidation in autistic individuals to date. We conducted two studies with two different samples: 1) neurotypical adults with distinct levels of autistic traits (N = 166) and 2) ASD-diagnosed adults (NASD = 22, NNTP = 20). Participants performed a well-established probabilistic learning task, allowing us to measure two learning processes separately in the same experimental design: statistical learning (i.e., learning probability-based regularities) and visuomotor performance (i.e., speed-up regardless of probabilities). Here we show considerable individual differences in offline (between blocks) changes during statistical learning and between-blocks improvement during visuomotor performance. However, cumulative evidence from individual studies suggests that the degree of autistic traits and ASD status are not associated with micro offline gains, indicating that, like statistical learning, rapid memory consolidation is intact.
Collapse
Affiliation(s)
- Cintia Anna Nagy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Flóra Hann
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Experimental Medicine, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Bianka Brezóczki
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain; BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Quan Y, Wang J, Wang Y, Kang G. The effect of reward and voluntary choice on the motor learning of serial reaction time task. Front Psychol 2025; 15:1493434. [PMID: 39839919 PMCID: PMC11747785 DOI: 10.3389/fpsyg.2024.1493434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Reward and voluntary choice facilitate motor skill learning through motivation. However, it remains unclear how their combination influences motor skill learning. The purpose of the present study is to investigate the effects of reward and voluntary choice on motor skill learning in a serial reaction time task (SRTT). Methods Participants completed six parts of SRTT, including pre-test, training phase, immediate post-test, a random session, delayed post-test, and retention test on the following day. During the training phase, participants were divided into four groups (reward_choice, reward_no-choice, no-reward_choice, no-reward_no-choice). In the reward condition, participants received reward for correct and faster (than a baseline) responses while those in the no-reward groups did not. For the choice manipulation, participants in the voluntary choice groups chose the color of the target, whereas in the forced choice groups, the same color was assigned by the computer. Results The results showed that the four groups did not exhibit any significant differences in reaction time and error rate in the pre-test phase. Importantly, both reward and voluntary choice significantly enhanced sequence-specific learning effects, while no interaction was found. No significant effects of reward and voluntary choice were observed in the retention test. Conclusions These findings suggest that reward and voluntary choice enhance motor skill performance and training independently, potentially at the action-selection level, which implies different mechanisms underlying the influences of reward and voluntary choice.
Collapse
Affiliation(s)
- Yanghui Quan
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jiayue Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yandong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Guanlan Kang
- School of Psychology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Lanir-Azaria S, Chishinski R, Tauman R, Nir Y, Giladi N. Sleep improves accuracy, but not speed, of generalized motor learning in young and older adults and in individuals with Parkinson's disease. Front Behav Neurosci 2024; 18:1466696. [PMID: 39390986 PMCID: PMC11464313 DOI: 10.3389/fnbeh.2024.1466696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.
Collapse
Affiliation(s)
- Saar Lanir-Azaria
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Riva Tauman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yuval Nir
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine Research, Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Diedrich L, Kolhoff HI, Chakalov I, Vékony T, Németh D, Antal A. Prefrontal theta-gamma transcranial alternating current stimulation improves non-declarative visuomotor learning in older adults. Sci Rep 2024; 14:4955. [PMID: 38418511 PMCID: PMC10901881 DOI: 10.1038/s41598-024-55125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France
- BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Shiga K, Miyaguchi S, Inukai Y, Otsuru N, Onishi H. Transcranial alternating current stimulation does not affect microscale learning. Behav Brain Res 2024; 459:114770. [PMID: 37984522 DOI: 10.1016/j.bbr.2023.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A theory has been posited that microscale learning, which involves short intervals of a few seconds during explicit motor skill learning, considerably enhances performance. This phenomenon correlates with diminished beta-band activity in the frontal and parietal regions. However, there is a lack of neurophysiological studies regarding the relationship between microscale learning and implicit motor skill learning. In the present study, we aimed to determine the effects of transcranial alternating current stimulation (tACS) during short rest periods on microscale learning in an implicit motor task. We investigated the effects of 20-Hz β-tACS delivered during short rest periods while participants performed an implicit motor task. In Experiments 1 and 2, β-tACS targeted the right dorsolateral prefrontal cortex and the right frontoparietal network, respectively. The participants performed a finger-tapping task using their nondominant left hand, and microscale learning was separately analyzed for micro-online gains (MOnGs) and micro-offline gains (MOffGs). Contrary to our expectations, β-tACS exhibited no statistically significant effects on MOnGs or MOffGs in either Experiment 1 or Experiment 2. In addition, microscale learning during the performance of the implicit motor task was improved by MOffGs in the early learning phase and by MOnGs in the late learning phase. These results revealed that the stimulation protocol employed in this study did not affect microscale learning, indicating a novel aspect of microscale learning in implicit motor tasks. This is the first study to examine microscale learning in implicit motor tasks and may provide baseline information that will be useful in future studies.
Collapse
Affiliation(s)
- Kyosuke Shiga
- Graduate School, Niigata University of Health and Welfare, Niigata 950-3198, Japan.
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
7
|
Stee W, Legouhy A, Guerreri M, Villemonteix T, Zhang H, Peigneux P. Microstructural dynamics of motor learning and sleep-dependent consolidation: A diffusion imaging study. iScience 2023; 26:108426. [PMID: 38058306 PMCID: PMC10696465 DOI: 10.1016/j.isci.2023.108426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics. Sixty-one young healthy adults underwent four DWI sessions, two sequential motor trainings, and a night of total sleep deprivation or regular sleep distributed over five days. We observed rapid-motor-learning-related remodeling in occipitoparietal, temporal, and motor-related subcortical regions, reflecting temporary dynamics in learning-related neuronal brain plasticity processes. Sleep-related consolidation seems not to exert a detectable impact on diffusion parameters, at least on the timescale of a few days.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| | - Antoine Legouhy
- Department of Computer Science & Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Michele Guerreri
- Department of Computer Science & Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Thomas Villemonteix
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratoire Psychopathologie et Processus de Changement, Paris-Lumières University, Saint-Denis, France
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Philippe Peigneux
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
8
|
Dahm SF, Rieger M. Kinesthetic vs. visual focus: No evidence for effects of practice modality in representation types after action imagery practice and action execution practice. Hum Mov Sci 2023; 92:103154. [PMID: 37844453 PMCID: PMC7615372 DOI: 10.1016/j.humov.2023.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Action-imagery practice (AIP) is assumed to result in partly different action representations than action-execution practice (AEP). The present study investigated whether focusing on either kinesthetic or visual aspects of a task during practice amplifies or diminishes such differences between AIP and AEP. In ten sessions, four groups, using either AIP or AEP with either kinesthetic or visual focus, practiced a twelve-element sequence in a unimanual serial reaction time task. Tests involved the practice sequence, a mirror sequence, and a different sequence, each performed with the practice and transfer hand. In AIP and AEP, in both hands, reaction times (RTs) were shorter in the practice sequence than in the different sequence, indicating effector-independent visual-spatial sequence representations. Further, RTs were shorter in the practice hand than in the transfer hand in the practice sequence (but not in the different sequence), indicating effector-dependent representations in AEP and AIP. Although the representation types did not differ, learning effects were stronger in AEP than in AIP. Thus, although to a lower extent than in AEP, effector-dependent representations can be acquired using AIP. Contrary to the expectations, the focus manipulation did not have an impact on the acquired representation types. Hence, modality instructions in AIP may not have such a strong impact as commonly assumed, at least in implicit sequence learning.
Collapse
Affiliation(s)
- Stephan F Dahm
- Universität Innsbruck, Department of Psychology, Innsbruck, Austria.
| | - Martina Rieger
- UMIT TIROL - Private University of Health Sciences and Health Technology, Institute of Psychology, Hall in Tyrol, Austria
| |
Collapse
|
9
|
Zheng Z, Wang J. Co-actors represent each other's task regularity through social statistical learning. Cognition 2023; 235:105411. [PMID: 36821997 DOI: 10.1016/j.cognition.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Numerous joint action studies have demonstrated that certain low-level aspects (e.g., stimuli and responses) of a co-actor's task can be automatically and implicitly represented by us as actors, biasing our own task performance in a joint action setup. However, it remains unclear whether individuals also represent more abstract, high-level aspects of a co-actor's task, such as regularity. In the first five experiments, participants participated alongside their co-actors and responded to a mixed shape sequence generated by randomly interleaving two fixed order sequences of shapes in both the pre- and post-test sessions. But different intermediate practice sessions were undergone by participants across experiments. When practicing their own fixed order sequences in a mixed shape sequence, either together with another person (Experiment 1) or alone but informed that their partner was performing the same practice task in a different room (Experiment 4), participants exhibited a learning effect on their co-actors' practiced sequences. This indirect learning effect was absent when one of the co-actors did not participate due to either being removed from the practice (Experiment 2) or sitting still without offering responses (Experiment 3), as well as when the two co-actors practiced together but responded to two distinct properties of stimuli (e.g., colour and shape, respectively), with one having regularity and the other not. Finally, participants exhibited comparable direct learning effects on their own practiced sequences for Experiments 1-5 as when performing the pre-test, practice, and post-test sessions alone for Experiment 6. These results demonstrate that, when practicing together, or even when believing that they are acting together with a partner, co-actors do represent the task regularity of one another through social statistical learning and transfer this learned regularity to subsequent task performances. The present study extends our understanding of co-representation in the joint action context in terms of the more abstract and high-level task features people co-represent, such as a co-actor's task regularity.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Psychology, Zhejiang Normal University, Jinhua 321001, PR China; Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua 321001, PR China
| | - Jun Wang
- School of Psychology, Zhejiang Normal University, Jinhua 321001, PR China; Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua 321001, PR China.
| |
Collapse
|
10
|
Stee W, Peigneux P. Does Motor Memory Reactivation through Practice and Post-Learning Sleep Modulate Consolidation? Clocks Sleep 2023; 5:72-84. [PMID: 36810845 PMCID: PMC9944088 DOI: 10.3390/clockssleep5010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Retrieving previously stored information makes memory traces labile again and can trigger restabilization in a strengthened or weakened form depending on the reactivation condition. Available evidence for long-term performance changes upon reactivation of motor memories and the effect of post-learning sleep on their consolidation remains scarce, and so does the data on the ways in which subsequent reactivation of motor memories interacts with sleep-related consolidation. Eighty young volunteers learned (Day 1) a 12-element Serial Reaction Time Task (SRTT) before a post-training Regular Sleep (RS) or Sleep Deprivation (SD) night, either followed (Day 2) by morning motor reactivation through a short SRTT testing or no motor activity. Consolidation was assessed after three recovery nights (Day 5). A 2 × 2 ANOVA carried on proportional offline gains did not evidence significant Reactivation (Morning Reactivation/No Morning Reactivation; p = 0.098), post-training Sleep (RS/SD; p = 0.301) or Sleep*Reactivation interaction (p = 0.257) effect. Our results are in line with prior studies suggesting a lack of supplementary performance gains upon reactivation, and other studies that failed to disclose post-learning sleep-related effects on performance improvement. However, lack of overt behavioural effects does not detract from the possibility of sleep- or reconsolidation-related covert neurophysiological changes underlying similar behavioural performance levels.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- GIGA—Cyclotron Research Centre—In Vivo Imaging, University of Liège (ULiège), 4000 Liège, Belgium
| | - Philippe Peigneux
- UR2NF—Neuropsychology and Functional Neuroimaging Research Unit Affiliated at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- GIGA—Cyclotron Research Centre—In Vivo Imaging, University of Liège (ULiège), 4000 Liège, Belgium
| |
Collapse
|
11
|
A failure of sleep-dependent consolidation of visuoperceptual procedural learning in young adults with ADHD. Transl Psychiatry 2022; 12:499. [PMID: 36460644 PMCID: PMC9718731 DOI: 10.1038/s41398-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
ADHD has been associated with cortico-striatal dysfunction that may lead to procedural memory abnormalities. Sleep plays a critical role in consolidating procedural memories, and sleep problems are an integral part of the psychopathology of ADHD. This raises the possibility that altered sleep processes characterizing those with ADHD could contribute to their skill-learning impairments. On this basis, the present study tested the hypothesis that young adults with ADHD have altered sleep-dependent procedural memory consolidation. Participants with ADHD and neurotypicals were trained on a visual discrimination task that has been shown to benefit from sleep. Half of the participants were tested after a 12-h break that included nocturnal sleep (sleep condition), whereas the other half were tested after a 12-h daytime break that did not include sleep (wakefulness condition) to assess the specific contribution of sleep to improvement in task performance. Despite having a similar degree of initial learning, participants with ADHD did not improve in the visual discrimination task following a sleep interval compared to neurotypicals, while they were on par with neurotypicals during the wakefulness condition. These findings represent the first demonstration of a failure in sleep-dependent consolidation of procedural learning in young adults with ADHD. Such a failure is likely to disrupt automatic control routines that are normally provided by the non-declarative memory system, thereby increasing the load on attentional resources of individuals with ADHD.
Collapse
|
12
|
Szewczyk M, Augustynowicz P, Szubielska M. Implicit spatial sequential learning facilitates attentional selection in covert visual search. An event-related potentials study. Front Hum Neurosci 2022; 16:974791. [DOI: 10.3389/fnhum.2022.974791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
IntroductionWhile most studies on implicit sequential learning focus on object learning, the hidden structure of target location and onset time can also be a subject of implicitly gathered knowledge. In our study, we wanted to investigate the effect of implicitly learned spatial and temporal sequential predictability on performance in a localization task in a paradigm in which covert selective attention is engaged. We were also interested in the neural mechanism of the facilitating effect of the predictable spatio-temporal context on visual search processes. Specifically, with the use of an event-related potential technique, we wanted to verify whether perceptual, attentional, and motor processes can be enhanced by the predictive spatio-temporal context of visual stimuli.MethodsWe analyzed data from 15 young, healthy adults who took part in an experimental electroencephalographic (EEG) study and performed a visual search localization task. Predictable sequences of four target locations and/or target onset times were presented in separate blocks of trials that formed the Space, Space- Time, and Time conditions. One block of trials with randomly presented stimuli served as a control condition.ResultsThe behavioral results revealed that participants successfully learned only the spatial dimension of target predictability. Although spatial predictability was a response-relevant dimension, we found that attentional selection–instead of motor preparation–was the facilitation mechanism in this type of visual search task. This was manifested by a shorter latency and more negative amplitude of the N2pc component and the lack of an effect on the sLRP component. We observed no effect of predictability on perceptual processing (P1 component).DiscussionWe discuss these results with reference to the current knowledge on sequential learning. Our findings also contribute to the current debate on the predictive coding theory.
Collapse
|
13
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Shibazaki A, Watanabe M. Does an interference task immediately after practice prevent memory consolidation of sequence-specific learning? J Phys Ther Sci 2022; 34:1-6. [PMID: 35035070 PMCID: PMC8752284 DOI: 10.1589/jpts.34.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Learning of movement procedures (sequence learning) is essential in physical therapy. Studies have shown that sequence-specific learning may be integrated from an early stage. This study examines the effect of an interference task on the retention of sequence-specific learning. [Participants and Methods] Young adults were randomly divided into a control group and an interference task group, and two experiments were performed. In each experiment, the control group practiced task A in both the acquisition phase and the retention phase four to five hours later. The Interference group practiced task A in the acquisition phase followed by task B, which is similar to the interference task, and then performed task A in the retention phase four to five hours later. In Experiment 2, the amount of practice for task A in the practice phase was 25% of that in Experiment 1. [Results] Sequence-specific learning occurred in the early stages of practice. In particular, the performance of Experiment 1 reached the ceiling. The results of the retention test showed no significant interference effect due to similar tasks. [Conclusion] Implicit sequence-specific learning stabilizes performance early and is not affected by interference tasks.
Collapse
Affiliation(s)
- Akito Shibazaki
- Department of Physical Therapy, Graduate School of Health and Welfare Sciences, International University of Health and Welfare: 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan.,Department of Rehabilitation, International University of Health and Welfare Mita Hospital, Japan
| | - Miyoko Watanabe
- Department of Physical Therapy, School of Health Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
15
|
Barham MP, Lum JAG, Conduit R, Fernadez L, Enticott PG, Clark GM. A Daytime Nap Does Not Enhance the Retention of a First-Order or Second-Order Motor Sequence. Front Behav Neurosci 2021; 15:659281. [PMID: 34335198 PMCID: PMC8324096 DOI: 10.3389/fnbeh.2021.659281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
This study examined the effects of a daytime nap on the retention of implicitly learnt “first-order conditional” (FOC) and “second-order conditional” (SOC) motor sequences. The implicit learning and retention of a motor sequence has been linked to the neural processes undertaken by the basal ganglia and primary motor cortex (i.e., procedural memory system). There is evidence, however, suggesting that SOC learning may further rely on the hippocampus-supported declarative memory system. Sleep appears to benefit the retention of information processed by the declarative memory system, but not the procedural memory system. Thus, it was hypothesized that sleep would benefit the retention of a SOC motor sequence but not a FOC sequence. The implicit learning and retention of these sequences was examined using the Serial Reaction Time Task. In this study, healthy adults implicitly learnt either a FOC (n = 20) or a SOC sequence (n = 20). Retention of both sequences was assessed following a daytime nap and period of wakefulness. Sleep was not found to improve the retention of the SOC sequence. There were no significant differences in the retention of a FOC or a SOC sequence following a nap or period of wakefulness. The study questions whether the declarative memory system is involved in the retention of implicitly learnt SOC sequences.
Collapse
Affiliation(s)
- Michael P Barham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Lara Fernadez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
16
|
Tóth-Fáber E, Janacsek K, Németh D. Statistical and sequence learning lead to persistent memory in children after a one-year offline period. Sci Rep 2021; 11:12418. [PMID: 34127682 PMCID: PMC8203620 DOI: 10.1038/s41598-021-90560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Extraction of environmental patterns underlies human learning throughout the lifespan and plays a crucial role not only in cognitive but also perceptual, motor, and social skills. At least two types of regularities contribute to acquiring skills: (1) statistical, probability-based regularities, and (2) serial order-based regularities. Memory performance of probability-based and/or serial order-based regularities over short periods (from minutes to weeks) has been widely investigated across the lifespan. However, long-term (months or year-long) memory performance of such knowledge has received relatively less attention and has not been assessed in children yet. Here, we aimed to test the long-term memory performance of probability-based and serial order-based regularities over a 1-year offline period in neurotypical children between the age of 9 and 15. Participants performed a visuomotor four-choice reaction time task designed to measure the acquisition of probability-based and serial order-based regularities simultaneously. Short-term consolidation effects were controlled by retesting their performance after a 5-h delay. They were then retested on the same task 1 year later without any practice between the sessions. Participants successfully acquired both probability-based and serial order-based regularities and retained both types of knowledge over the 1-year period. The successful retention was independent of age. Our study demonstrates that the representation of probability-based and serial order-based regularities remains stable over a long period of time. These findings offer indirect evidence for the developmental invariance model of skill consolidation.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, London, SE10 9LS, UK
| | - Dezső Németh
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Université de Lyon 1, Université de Lyon, Bâtiment 462 - Neurocampus 95 boulevard Pinel, 69675, Bron, Lyon, France.
| |
Collapse
|
17
|
Vakil E, Hayout M, Maler M, Schwizer Ashkenazi S. Day versus night consolidation of implicit sequence learning using manual and oculomotor activation versions of the serial reaction time task: reaction time and anticipation measures. PSYCHOLOGICAL RESEARCH 2021; 86:983-1000. [PMID: 34115193 DOI: 10.1007/s00426-021-01534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
This study presents two experiments that explored consolidation of implicit sequence learning based on two dependent variables-reaction time (RT) and correct anticipations to clarify the role of sleep, and whether the manual component is necessary for consolidation processes. Experiment 1 (n = 37) explored the performance of adults using an ocular variant of the serial reaction time task (O-SRT) with manual activation (MA), and Experiment 2 (n = 37) used the ocular activation (OA) version of the task. Each experiment consisted of a Day and a Night group that performed two sessions of the O-SRT with an intervening 12-h offline period (morning/evening in Day group, evening/following morning in Night group). Night offline had an advantage only when manual response was required and when correct anticipations (i.e., accuracy) but not RT (i.e., speed) were measured. We associated this finding with the dual-learning processes required in the MA O-SRT that led to increased sequence specific learning overnight. When using the OA O-SRT, both groups demonstrated similar rates after offline in RT and correct anticipations. We interpreted this finding to reflect stabilization, which confirmed our hypothesis. As expected, all the groups demonstrated reduced performance when another sequence was introduced, thus reflecting sequence-specific learning. This study used a powerful procedure that allows measurement of implicit sequence learning in several ways: by evaluating two different measures (RT, correct anticipations) and by isolating different aspects of the task (i.e., with/without the manual learning component, more/less general skill learning), which are known to affect learning and consolidation.
Collapse
Affiliation(s)
- Eli Vakil
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel.
| | - Moran Hayout
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Matan Maler
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Simone Schwizer Ashkenazi
- Department of Psychology, Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, 52900, Ramat-Gan, Israel
| |
Collapse
|
18
|
Prutean N, Martín-Arévalo E, Leiva A, Jiménez L, Vallesi A, Lupiáñez J. The causal role of DLPFC top-down control on the acquisition and the automatic expression of implicit learning: State of the art. Cortex 2021; 141:293-310. [PMID: 34116383 DOI: 10.1016/j.cortex.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/19/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Implicit learning refers to the incidental acquisition and expression of knowledge that is not accompanied by full awareness of its contents. Implicit sequence learning (ISL) represents one of the most useful paradigms to investigate these processes. In this paradigm, participants are usually instructed to respond to the location of a target that moves regularly through a set of possible locations. Although participants are not informed about the existence of a sequence, they eventually learn it implicitly, as attested by the costs observed when this sequence is violated in a reduced set of control trials. Interestingly, the expression of this learning decreases immediately after a control trial, in a way that resembles the adjustments triggered in response to incongruent trials in interference tasks. These effects have been attributed to a control network involving dorsolateral prefrontal cortex (DLPFC) and cingulate (ACC) structures. In the present work, we reviewed a group of recent studies which had inhibited DLPFC top-down control by means of non-invasive brain stimulation to increase the acquisition of ISL. In addition, as no previous study has investigated the effect of inhibiting top-down control on releasing the automatic expression of ISL, we present a pre-registered - yet exploratory - study in which an inhibitory continuous theta burst stimulation protocol was applied over an anterior-ventral portion of the dorsolateral prefrontal cortex (DLPFC) highly interconnected with the ACC, and whose activity has been specifically linked to motor control (i.e., Right DLPFC, n = 10 or the Left DLPFC, n = 10), compared to active Vertex stimulation (n = 10). Contrary to our hypotheses, the results did not show evidence for the involvement of such region in the expression of ISL. We discussed the results in the context of the set of contradictory findings reported in the systematic review.
Collapse
Affiliation(s)
- Nicoleta Prutean
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain; Department of Neuroscience & Padova Neuroscience Center, University of Padova, Italy.
| | - Elisa Martín-Arévalo
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain.
| | - Alicia Leiva
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain.
| | - Luis Jiménez
- Department of Psychology, University of Santiago de Compostela, Spain.
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Italy; Brain Imaging & Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy.
| | - Juan Lupiáñez
- Department of Experimental Psychology and Mind, Brain and Behaviour Research Center, University of Granada, Spain.
| |
Collapse
|
19
|
Acquisition and consolidation processes following motor imagery practice. Sci Rep 2021; 11:2295. [PMID: 33504870 PMCID: PMC7840673 DOI: 10.1038/s41598-021-81994-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
It well-known that mental training improves skill performance. Here, we evaluated skill acquisition and consolidation after physical or motor imagery practice, by means of an arm pointing task requiring speed-accuracy trade-off. In the main experiment, we showed a significant enhancement of skill after both practices (72 training trials), with a better acquisition after physical practice. Interestingly, we found a positive impact of the passage of time (+ 6 h post training) on skill consolidation for the motor imagery training only, without any effect of sleep (+ 24 h post training) for none of the interventions. In a control experiment, we matched the gain in skill learning after physical training (new group) with that obtained after motor imagery training (main experiment) to evaluate skill consolidation after the same amount of learning. Skill performance in this control group deteriorated with the passage of time and sleep. In another control experiment, we increased the number of imagined trials (n = 100, new group) to compare the acquisition and consolidation processes of this group with that observed in the motor imagery group of the main experiment. We did not find significant differences between the two groups. These findings suggest that physical and motor imagery practice drive skill learning through different acquisition and consolidation processes.
Collapse
|
20
|
Trofimova O, Mottaz A, Allaman L, Chauvigné LAS, Guggisberg AG. The "implicit" serial reaction time task induces rapid and temporary adaptation rather than implicit motor learning. Neurobiol Learn Mem 2020; 175:107297. [PMID: 32822865 DOI: 10.1016/j.nlm.2020.107297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
The serial reaction time task (SRTT) has been widely used to induce learning of a repeated motor sequence without the participants' awareness. The task has also been of major influence for defining current concepts of offline consolidation after motor learning. The present study intended to replicate previous findings in a larger population of 53 healthy individuals. We were unable to reproduce previous results of online and offline implicit motor learning with the SRTT. Trials with a repeated sequence rapidly induced shorter reaction times compared to random trials, but this improvement was lost in a post-test obtained a few minutes after the training block. Furthermore, no offline consolidation was observed as there was no change in sequence specific reaction time gain between the post-test immediately after training and a re-test obtained 8 h after training. Online or offline learning remained absent when we modulated the number of sequence repetitions, the error levels, and the structure of random sequences. We conclude that the SRTT induces a rapid and temporary adaptation to the sequence rather than learning, since the repeated motor sequence does not seem to be encoded in memory.
Collapse
Affiliation(s)
- Olga Trofimova
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Anaïs Mottaz
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Leslie Allaman
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Léa A S Chauvigné
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Adrian G Guggisberg
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Fresnoza S, Christova M, Bieler L, Körner C, Zimmer U, Gallasch E, Ischebeck A. Age-Dependent Effect of Transcranial Alternating Current Stimulation on Motor Skill Consolidation. Front Aging Neurosci 2020; 12:25. [PMID: 32116653 PMCID: PMC7016219 DOI: 10.3389/fnagi.2020.00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is the application of subthreshold, sinusoidal current to modulate ongoing brain rhythms related to sensory, motor and cognitive processes. Electrophysiological studies suggested that the effect of tACS applied at an alpha frequency (8–12 Hz) was state-dependent. The effects of tACS, that is, an increase in parieto-occipital electroencephalography (EEG) alpha power and magnetoencephalography (MEG) phase coherence, was only observed when the eyes were open (low alpha power) and not when the eyes were closed (high alpha power). This state-dependency of the effects of alpha tACS might extend to the aging brain characterized by general slowing and decrease in spectral power of the alpha rhythm. We additionally hypothesized that tACS will influence the motor cortex, which is involved in motor skill learning and consolidation. A group of young and old healthy adults performed a serial reaction time task (SRTT) with their right hand before and after the tACS stimulation. Each participant underwent three sessions of stimulation: sham, stimulation applied at the individual participant’s alpha peak frequency or individual alpha peak frequency (iAPF; α-tACS) and stimulation with iAPF plus 2 Hz (α2-tACS) to the left motor cortex for 10 min (1.5 mA). We measured the effect of stimulation on general motor skill (GMS) and sequence-specific skill (SS) consolidation. We found that α-tACS and α2-tACS improved GMS and SS consolidation in the old group. In contrast, α-tACS minimally improved GMS consolidation but impaired SS consolidation in the young group. On the other hand, α2-tACS was detrimental to the consolidation of both skills in the young group. Our results suggest that individuals with aberrant alpha rhythm such as the elderly could benefit more from tACS stimulation, whereas for young healthy individuals with intact alpha rhythm the stimulation could be detrimental.
Collapse
Affiliation(s)
- Shane Fresnoza
- Institute of Psychology University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Monica Christova
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria.,Institute of Physiotherapy, University of Applied Sciences FH-JOANNEUM, Graz, Austria
| | - Lara Bieler
- Institute of Psychology University of Graz, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Christof Körner
- Institute of Psychology University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Ulrike Zimmer
- Institute of Psychology University of Graz, Graz, Austria.,Faculty of Human Sciences, Medical School Hamburg (MSH), Hamburg, Germany
| | - Eugen Gallasch
- BioTechMed, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology University of Graz, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Apšvalka D, Cross ES, Ramsey R. Fluid intelligence and working memory support dissociable aspects of learning by physical but not observational practice. Cognition 2019; 190:170-183. [PMID: 31100547 PMCID: PMC6711769 DOI: 10.1016/j.cognition.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Humans have a remarkable ability to learn by watching others, whether learning to tie an elaborate knot or play the piano. However, the mechanisms that translate visual input into motor skill execution remain unclear. It has been proposed that common cognitive and neural mechanisms underpin learning motor skills by physical and observational practice. Here we provide a novel test of the common mechanism hypothesis by testing the extent to which certain individual differences predict observational as well as physical learning. Participants (N = 92 per group) either physically practiced a five-element key-press sequence or watched videos of similar sequences before physically performing trained and untrained sequences in a test phase. We also measured cognitive abilities across participants that have previously been associated with rates of learning, including working memory and fluid intelligence. Our findings show that individual differences in working memory and fluid intelligence predict improvements in dissociable aspects of motor learning following physical practice, but not observational practice. Working memory predicts general learning gains from pre- to post-test that generalise to untrained sequences, whereas fluid intelligence predicts sequence-specific gains that are tied to trained sequences. However, neither working memory nor fluid intelligence predict training gains following observational learning. Therefore, these results suggest limits to the shared mechanism hypothesis of physical and observational learning. Indeed, models of observational learning need updating to reflect the extent to which such learning is based on shared as well as distinct processes compared to physical learning. We suggest that such differences could reflect the more intentional nature of learning during physical compared to observational practice, which relies to a greater extent on higher-order cognitive resources such as working memory and fluid intelligence.
Collapse
Affiliation(s)
- Dace Apšvalka
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Wales, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, England, UK
| | - Emily S Cross
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Wales, UK; Institute of Neuroscience and Psychology, School of Psychology, University of Glasgow, Glasgow, Scotland, UK.
| | - Richard Ramsey
- Social Brain in Action Laboratory, Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Wales, UK.
| |
Collapse
|
23
|
Debarnot U, Neveu R, Samaha Y, Saruco E, Macintyre T, Guillot A. Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS. Neurobiol Learn Mem 2019; 164:107062. [PMID: 31377178 DOI: 10.1016/j.nlm.2019.107062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acquisition and consolidation of a new motor skill occurs gradually over long time span. Motor imagery (MI) and brain stimulation have been showed as beneficial approaches that boost motor learning, but little is known about the extent of their combined effects. OBJECTIVE Here, we aimed to investigate, for the first time, whether delivering multiple sessions of transcranial direct current stimulation (tDCS) over primary motor cortex during physical and MI practice might improve implicit motor sequence learning in a young population. METHODS Participants practiced a serial reaction time task (SRTT) either physically or through MI, and concomitantly received either an anodal (excitatory) or sham stimulation over the primary motor cortex during three successive days. The effect of anodal tDCS on the general motor skill and sequence specific learning were assessed on both acquisition (within-day) and consolidation (between-day) processes. We further compared the magnitude of motor learning reached after a single and three daily sessions of tDCS. RESULTS The main finding showed that anodal tDCS boosted MI practice, but not physical practice, during the first acquisition session. A second major result showed that compared to sham stimulation, multiple daily session of anodal tDCS, for both types of practice, resulted in greater implicit motor sequence learning rather than a single session of stimulation. CONCLUSIONS The present study is of particular importance in the context of rehabilitation, where we postulate that scheduling mental training when patients are not able to perform physical movement might beneficiate from concomitant and consecutive brain stimulation sessions over M1 to promote functional recovery.
Collapse
Affiliation(s)
- Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France.
| | - Rémi Neveu
- Division of Child and Adolescent Psychiatry, University of Geneva, 1200 Geneva, Switzerland
| | - Yvette Samaha
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France
| | - Elodie Saruco
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France; Neurologische Universitätsklinik, Bergmannsheil gGmbH, Forschungsgruppe Plastizität, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Tadhg Macintyre
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622 Villeurbanne, France
| |
Collapse
|
24
|
Savic B, Müri R, Meier B. High Definition Transcranial Direct Current Stimulation Does Not Modulate Implicit Task Sequence Learning and Consolidation. Neuroscience 2019; 414:77-87. [DOI: 10.1016/j.neuroscience.2019.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
|
25
|
Doppler CEJ, Meyer L, Dovern A, Stühmer-Beckh J, Weiss PH, Fink GR. Differential Impact of Social and Monetary Reward on Procedural Learning and Consolidation in Aging and Its Structural Correlates. Front Aging Neurosci 2019; 11:188. [PMID: 31417395 PMCID: PMC6682642 DOI: 10.3389/fnagi.2019.00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
In young (n = 36, mean ± SD: 24.8 ± 4.5 years) and older (n = 34, mean ± SD: 65.1 ± 6.5 years) healthy participants, we employed a modified version of the Serial Reaction Time task to measure procedural learning (PL) and consolidation while providing monetary and social reward. Using voxel-based morphometry (VBM), we additionally determined the structural correlates of reward-related motor performance (RMP) and PL. Monetary reward had a beneficial effect on PL in the older subjects only. In contrast, social reward significantly enhanced PL in the older and consolidation in the young participants. VBM analyses revealed that motor performance related to monetary reward was associated with larger grey matter volume (GMV) of the left striatum in the young, and motor performance related to social reward with larger GMV of the medial orbitofrontal cortex in the older group. The differential effects of social reward in young (improved consolidation) and both social and monetary rewards in older (enhanced PL) healthy subjects point to the potential of rewards for interventions targeting aging-associated motor decline or stroke-induced motor deficits.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany.,Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Meyer
- Department of Neurology, Klinikum Leverkusen, Leverkusen, Germany
| | - Anna Dovern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
| | - Jaro Stühmer-Beckh
- Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany.,Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany.,Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Lacroix A, Proulx-Bégin L, Hamel R, De Beaumont L, Bernier PM, Lepage JF. Static magnetic stimulation of the primary motor cortex impairs online but not offline motor sequence learning. Sci Rep 2019; 9:9886. [PMID: 31285526 PMCID: PMC6614538 DOI: 10.1038/s41598-019-46379-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Static magnetic fields (SMFs) are known to alter neural activity, but evidence of their ability to modify learning-related neuroplasticity is lacking. The present study tested the hypothesis that application of static magnetic stimulation (SMS), an SMF applied transcranially via a neodymium magnet, over the primary motor cortex (M1) would alter learning of a serial reaction time task (SRTT). Thirty-nine participants took part in two experimental sessions separated by 24 h where they had to learn the SRTT with their right hand. During the first session, two groups received SMS either over contralateral (i.e., left) or ipsilateral (i.e., right) M1 while a third group received sham stimulation. SMS was not applied during the second session. Results of the first session showed that application of SMS over contralateral M1 impaired online learning as compared to both ipsilateral and sham groups, which did not differ. Results further revealed that application of SMS did not impair offline learning or relearning. Overall, these results are in line with those obtained using other neuromodulatory techniques believed to reduce cortical excitability in the context of motor learning and suggest that the ability of SMS to alter learning-related neuroplasticity is temporally circumscribed to the duration of its application.
Collapse
Affiliation(s)
- Angélina Lacroix
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada.,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada
| | - Léa Proulx-Bégin
- Department of Psychology, Montreal University, 90 Ave. Vincent d'Indy, Montréal, Canada
| | - Raphaël Hamel
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada.,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada.,Faculty of Physical Activity Sciences, Sherbrooke University, 2500 de l'Université Blvd., Sherbrooke, Canada
| | - Louis De Beaumont
- Department of Surgery, Faculty of Medicine, Pavillon Roger-Gaudry C.P, 6128, Montréal, Canada
| | - Pierre-Michel Bernier
- Faculty of Physical Activity Sciences, Sherbrooke University, 2500 de l'Université Blvd., Sherbrooke, Canada
| | - Jean-François Lepage
- Department of Pediatrics, Sherbrooke University, 3001-12th Ave. North, Sherbrooke, Canada. .,Sherbrooke University Research Center, 3001-12th Ave. North, Sherbrooke, Canada.
| |
Collapse
|
27
|
Sleep preferentially enhances memory for a cognitive strategy but not the implicit motor skills used to acquire it. Neurobiol Learn Mem 2019; 161:135-142. [DOI: 10.1016/j.nlm.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
|
28
|
Lum JAG, Mills A, Plumridge JMA, Sloan NP, Clark GM, Hedenius M, Enticott PG. Transcranial direct current stimulation enhances retention of a second (but not first) order conditional visuo-motor sequence. Brain Cogn 2018; 127:34-41. [PMID: 30253264 DOI: 10.1016/j.bandc.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
Abstract
This study examined the role of the left inferior frontal gyrus in the implicit learning and retention of a 'simple' first order conditional (FOC) sequence and a relatively 'complex' second order conditional (SOC) sequence, using anodal transcranial direct current stimulation (a-tDCS). Groups of healthy adults received either a-tDCS (n = 18) over the left inferior frontal gyrus or sham/placebo (n = 18) stimulation. On separate days, participants completed a serial reaction time (SRT) task whilst receiving stimulation. On one of the days, participants were presented with a FOC sequence and in another, a SOC sequence. Both the learning and short-term retention of the sequences were measured. Results showed a-tDCS enhanced the short-term retention of the SOC sequence but not the FOC sequence. There was no effect of a-tDCS on the learning of either FOC or SOC sequences. The results provide evidence of prefrontal involvement in the retention of a motor sequence. However, its role appears to be influenced by the complexity of the sequence's structure. Additionally, the results show a-tDCS can enhance retention of an implicitly learnt motor sequence.
Collapse
Affiliation(s)
- Jarrad A G Lum
- Deakin University, Geelong, Australia, Cognitive Neuroscience Unit, School of Psychology, Australia.
| | - Andrea Mills
- Deakin University, Geelong, Australia, Cognitive Neuroscience Unit, School of Psychology, Australia
| | - James M A Plumridge
- Deakin University, Geelong, Australia, Cognitive Neuroscience Unit, School of Psychology, Australia
| | - Nicole P Sloan
- Deakin University, Geelong, Australia, Cognitive Neuroscience Unit, School of Psychology, Australia
| | - Gillian M Clark
- Deakin University, Geelong, Australia, Cognitive Neuroscience Unit, School of Psychology, Australia
| | - Martina Hedenius
- Department of Neuroscience, Speech Language Pathology Unit, Uppsala University, Uppsala, Sweden; Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter G Enticott
- Deakin University, Geelong, Australia, Cognitive Neuroscience Unit, School of Psychology, Australia
| |
Collapse
|
29
|
San Anton E, Cleeremans A, Destrebecqz A, Peigneux P, Schmitz R. Spontaneous eyeblinks are sensitive to sequential learning. Neuropsychologia 2018; 119:489-500. [PMID: 30243927 DOI: 10.1016/j.neuropsychologia.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
Abstract
Although sequential learning and spontaneous eyeblink rate (EBR) have both been shown to be tightly related to cerebral dopaminergic activity, they have never been investigated at the same time. In the present study, EBR, taken as an indirect marker of dopaminergic activity, was investigated in two resting state conditions, both before and after visuomotor sequence learning in a serial reaction time task (SRT) and during task practice. Participants' abilities to produce and manipulate their knowledge about the sequential material were probed in a generation task. We hypothesized that the time course of spontaneous EBR might follow the progressive decrease of RTs during the SRT session. Additionally, we manipulated the structure of the transfer blocks as well as their respective order, assuming that (1) fully random trials might generate a larger psychophysiological response than an unlearned but structured material, and (2) a second (final) block of transfer might give rise to larger effects given that the sequential material was better consolidated after further practice. Finally, we tentatively hypothesized that, in addition to their online version, spontaneous EBR recorded during the pre- and post-learning resting sessions might be predictive of (1) the SRT learning curve, (2) the magnitude of the transfer effects, and (3) performance in the generation task. Results showed successful sequence learning with decreased accuracy and increased reaction times (RTs) in transfer blocks featuring a different material (random trials or a structured, novel sequence). In line with our hypothesis that EBR reflects dopaminergic activity associated with sequential learning, we observed increased EBR in random trials as well as when the second transfer block occurred at the end of the learning session. There was a positive relationship between the learning curve (RTs) and the slope of EBR during the SRT session. Additionally, inter-individual differences in resting and real-time EBR predicted the magnitude of accuracy and RTs transfer effects, respectively, but they were not related to participants' performances during the generation task. Notwithstanding, our results suggest that the degree of explicit sequential knowledge modulates the association between the magnitude of the transfer effect in EBR and SRT performance. Overall, the present study provides evidence that EBR may represent a valid indirect psychophysiological correlate of dopaminergic activity coupled to sequential learning.
Collapse
Affiliation(s)
- Estibaliz San Anton
- Université Libre de Bruxelles (ULB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Belgium; Consciousness Cognition & Computation Group (CO3), Belgium
| | - Axel Cleeremans
- Université Libre de Bruxelles (ULB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Belgium; Consciousness Cognition & Computation Group (CO3), Belgium
| | - Arnaud Destrebecqz
- Université Libre de Bruxelles (ULB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Belgium; Consciousness Cognition & Computation Group (CO3), Belgium
| | - Philippe Peigneux
- Université Libre de Bruxelles (ULB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF), Belgium
| | - Rémy Schmitz
- Université Libre de Bruxelles (ULB), Brussels, Belgium; Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF), Belgium.
| |
Collapse
|
30
|
Lugassy D, Herszage J, Pilo R, Brosh T, Censor N. Consolidation of complex motor skill learning: evidence for a delayed offline process. Sleep 2018; 41:5042787. [DOI: 10.1093/sleep/zsy123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Diva Lugassy
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, , Israel
| | - Jasmine Herszage
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Raphael Pilo
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, , Israel
| | - Tamar Brosh
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
31
|
Grundey J, Thirugnasambandam N, Amu R, Paulus W, Nitsche MA. Nicotinic Restoration of Excitatory Neuroplasticity Is Linked to Improved Implicit Motor Learning Skills in Deprived Smokers. Front Neurol 2018; 9:367. [PMID: 29892258 PMCID: PMC5985290 DOI: 10.3389/fneur.2018.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Nicotine has been shown to modulate neuroplasticity, cognition, and learning processes in smokers and non-smokers. A possible mechanism for its effect on learning and memory formation is its impact on long-term depression and long-term potentiation (LTP). Nicotine abstinence in smokers is often correlated with impaired cognitive performance. As neuroplasticity is closely connected to learning and memory formation, we aimed to explore the effect of nicotine spray administration in deprived smokers on paired-associative stimulation (PAS25)-induced neuroplasticity and on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. Deprived smokers (n = 12) under placebo medication displayed reduced excitatory neuroplasticity induced by PAS25. Plasticity was restored by nicotine spray administration. Likewise, SRTT-performance improved after nicotine spray administration compared to placebo administration (n = 19). The results indicate a restitutional effect of nicotine spray in deprived smokers on both: LTP-like neuroplasticity and motor learning. These results present a possible explanation for persistence of nicotine addiction and probability of relapse.
Collapse
Affiliation(s)
- Jessica Grundey
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Rosa Amu
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Walter Paulus
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Clinical Neurophysiology, Georg-August-Universität Göttingen, Göttingen, Germany.,Forschungsbereich Psychologie und Neurowissenschaften, Leibniz Research Centre for Working Environment and Human Factors (LG), Dortmund, Germany
| |
Collapse
|
32
|
Yordanova J, Kolev V, Bruns E, Kirov R, Verleger R. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations. Sleep 2018; 40:4104557. [PMID: 28958008 PMCID: PMC5806558 DOI: 10.1093/sleep/zsx151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Study Objectives The present study explored the sleep mechanisms which may support awareness of hidden regularities. Methods Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Results Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Conclusions Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere.
Collapse
Affiliation(s)
- Juliana Yordanova
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Vasil Kolev
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Eike Bruns
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Roumen Kirov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rolf Verleger
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Psychology II, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
33
|
Meier B, Fanger S, Toller G, Matter S, Müri R, Gutbrod K. Amnesic patients have residual prospective memory capacities. Clin Neuropsychol 2018; 33:606-621. [PMID: 29436258 DOI: 10.1080/13854046.2018.1438516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate, in two separate studies, whether amnesic patients with a severe memory impairment can learn to perform a habitual prospective memory task when they receive immediate feedback on prospective memory failures (Study 1) and whether amnesic patients are able to benefit from previous habitual prospective memory performance after a 24-h retention interval. METHOD A prospective memory task was embedded in a lexical decision task (Study 1) and in a perceptual discrimination task (Study 2). Performance was compared across test halves. Participants received immediate performance feedback on prospective memory failures that served as a reminder for the prospective memory task. A retest was performed after 24 h in Study 2, but without immediate feedback in the first test half. RESULTS In Study 1, amnesic patients performed at a lower level than the control group, but they improved significantly across the experiment. In Study 2, the results of the first session replicated this pattern. The results of the second session showed a performance breakdown in amnesic patients. However, one single reminder was enough to boost performance again on the level of the second part of day one. CONCLUSIONS This indicates that amnesic patients have residual prospective memory capacities and that providing immediate feedback is a promising strategy to draw on these capacities.
Collapse
Affiliation(s)
- Beat Meier
- a Institute of Psychology , University of Bern , Bern , Switzerland
| | - Severin Fanger
- a Institute of Psychology , University of Bern , Bern , Switzerland
| | - Giannina Toller
- a Institute of Psychology , University of Bern , Bern , Switzerland
| | - Sibylle Matter
- a Institute of Psychology , University of Bern , Bern , Switzerland
| | - René Müri
- b Department of Neurology , University of Bern , Bern , Switzerland.,c Department of Cognitive and Restorative Neurology , Bern University Hospital , Bern , Switzerland
| | - Klemens Gutbrod
- b Department of Neurology , University of Bern , Bern , Switzerland.,c Department of Cognitive and Restorative Neurology , Bern University Hospital , Bern , Switzerland
| |
Collapse
|
34
|
Viczko J, Sergeeva V, Ray LB, Owen AM, Fogel SM. Does sleep facilitate the consolidation of allocentric or egocentric representations of implicitly learned visual-motor sequence learning? ACTA ACUST UNITED AC 2018; 25:67-77. [PMID: 29339558 PMCID: PMC5772393 DOI: 10.1101/lm.044719.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
Abstract
Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation process is independent of sleep or wake for explicit MSL. However, it remains unclear the extent to which sleep contributes to the consolidation of implicit (i.e., unconscious) MSL, nor is it known what aspects of the memory representation (egocentric, allocentric) are consolidated by sleep. Here, we investigated the extent to which sleep is involved in consolidating implicit MSL, specifically, whether the egocentric or the allocentric cognitive representations of a learned sequence are enhanced by sleep, and whether these changes support the development of explicit sequence knowledge across sleep but not wake. Our results indicate that egocentric and allocentric representations can be behaviorally dissociated for implicit MSL. Neither representation was preferentially enhanced across sleep nor were developments of explicit awareness observed. However, after a 1-wk interval performance enhancement was observed in the egocentric representation. Taken together, these results suggest that like explicit MSL, implicit MSL has dissociable allocentric and egocentric representations, but unlike explicit sequence learning, implicit egocentric and allocentric memory consolidation is independent of sleep, and the time-course of consolidation differs significantly.
Collapse
Affiliation(s)
- Jeremy Viczko
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Valya Sergeeva
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Laura B Ray
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Stuart M Fogel
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.,The Royal's Institute for Mental Health Research, Ottawa, Ontario K1Z 7K5, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
35
|
Grundey J, Amu R, Batsikadze G, Paulus W, Nitsche MA. Diverging effects of nicotine on motor learning performance: Improvement in deprived smokers and attenuation in non-smokers. Addict Behav 2017; 74:90-97. [PMID: 28600927 DOI: 10.1016/j.addbeh.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Nicotine modulates cognition and neuroplasticity in smokers and non-smokers. A possible mechanism for its effect on learning and memory performance is its impact on long-term potentiation (LTP) and long-term depression (LTD). As neuroplasticity is closely connected to learning processes, we aimed to explore the effect of nicotine in healthy, young smokers and non-smokers on performance of the serial reaction time task (SRTT), a sequential motor learning paradigm. 20 nicotine-deprived smokers and 20 non-smokers participated in the study and were exposed to nicotine or placebo medication. Deprived smokers under placebo medication displayed reduced performance in terms of reaction time and error rates compared to the non-smoking group. After application of nicotine, performance in smokers improved while it deteriorated in non-smokers. These results indicate a restituting effect of nicotine in smokers in terms of cognitive parameters. This sheds further light on the proposed mechanism of nicotine on learning processes, which might be linked to the addictive component of nicotine, the probability of relapse and thus needs also be addressed in cessation treatment.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany.
| | - R Amu
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - G Batsikadze
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - M A Nitsche
- Department of Clinical Neurophysiology, Georg-August University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Göttingen, Germany; Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
37
|
No effects of transcranial DLPFC stimulation on implicit task sequence learning and consolidation. Sci Rep 2017; 7:9649. [PMID: 28852114 PMCID: PMC5575284 DOI: 10.1038/s41598-017-10128-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Neurostimulation of the dorsolateral prefrontal cortex (DLPFC) can modulate performance in cognitive tasks. In a recent study, however, transcranial direct current stimulation (tDCS) of the DLPFC did not affect implicit task sequence learning and consolidation in a paradigm that involved bimanual responses. Because bimanual performance increases the coupling between homologous cortical areas of the hemispheres and left and right DLPFC were stimulated separately the null findings may have been due to the bimanual setup. The aim of the present study was to test the effect of neuro-stimulation on sequence learning in a uni-manual setup. For this purpose two experiments were conducted. In Experiment 1, the DLPFC was stimulated with tDCS. In Experiment 2 the DLPFC was stimulated with transcranial magnetic stimulation (TMS). In both experiments, consolidation was measured 24 hours later. The results showed that sequence learning was present in all conditions and sessions, but it was not influenced by stimulation. Likewise, consolidation of sequence learning was robust across sessions, but it was not influenced by stimulation. These results replicate and extend previous findings. They indicate that established tDCS and TMS protocols on the DLPFC do not influence implicit task sequence learning and consolidation.
Collapse
|
38
|
Kóbor A, Janacsek K, Takács Á, Nemeth D. Statistical learning leads to persistent memory: Evidence for one-year consolidation. Sci Rep 2017; 7:760. [PMID: 28396586 PMCID: PMC5429700 DOI: 10.1038/s41598-017-00807-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Statistical learning is a robust mechanism of the brain that enables the extraction of environmental patterns, which is crucial in perceptual and cognitive domains. However, the dynamical change of processes underlying long-term statistical memory formation has not been tested in an appropriately controlled design. Here we show that a memory trace acquired by statistical learning is resistant to inference as well as to forgetting after one year. Participants performed a statistical learning task and were retested one year later without further practice. The acquired statistical knowledge was resistant to interference, since after one year, participants showed similar memory performance on the previously practiced statistical structure after being tested with a new statistical structure. These results could be key to understand the stability of long-term statistical knowledge.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, Eötvös Loránd University, Izabella utca 46., H-1064, Budapest, Hungary.,MTA-ELTE NAP B Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117, Budapest, Hungary
| | - Ádám Takács
- Institute of Psychology, Eötvös Loránd University, Izabella utca 46., H-1064, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, Eötvös Loránd University, Izabella utca 46., H-1064, Budapest, Hungary. .,MTA-ELTE NAP B Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117, Budapest, Hungary.
| |
Collapse
|
39
|
Savic B, Müri R, Meier B. A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning and consolidation. Brain Stimul 2017; 10:567-575. [PMID: 28089321 DOI: 10.1016/j.brs.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is assumed to affect cortical excitability and dependent on the specific stimulation conditions either to increase or decrease learning. OBJECTIVE The purpose of this study was to modulate implicit task sequence learning with tDCS. METHODS As cortico-striatal loops are critically involved in implicit task sequence learning, tDCS was applied above the dorsolateral prefrontal cortex (DLPFC). In Experiment 1, anodal, cathodal, or sham tDCS was applied before the start of the sequence learning task. In Experiment 2, stimulation was applied during the sequence learning task. Consolidation of learning was assessed after 24 h. RESULTS The results of both experiments showed that implicit task sequence learning occurred consistently but it was not modulated by different tDCS conditions. Similarly, consolidation measured after a 24 h-interval including sleep was also not affected by stimulation. CONCLUSIONS These results indicate that a single session of DLPFC tDCS is not sufficient to modulate implicit task sequence learning. This study adds to the accumulating evidence that tDCS may not be as effective as originally thought.
Collapse
Affiliation(s)
- Branislav Savic
- Institute of Psychology and Center for Cognition, Learning, and Memory, University of Bern, Switzerland
| | - René Müri
- Department of Neurology, Bern University Hospital Inselspital, and Center for Cognition, Learning, and Memory, University of Bern, Bern, Switzerland
| | - Beat Meier
- Institute of Psychology and Center for Cognition, Learning, and Memory, University of Bern, Switzerland.
| |
Collapse
|
40
|
Stark-Inbar A, Raza M, Taylor JA, Ivry RB. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning. J Neurophysiol 2016; 117:412-428. [PMID: 27832611 DOI: 10.1152/jn.01141.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 10/30/2016] [Indexed: 11/22/2022] Open
Abstract
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning.
Collapse
Affiliation(s)
- Alit Stark-Inbar
- Department of Psychology, University of California, Berkeley, California;
| | - Meher Raza
- Department of Psychology, University of California, Berkeley, California
| | - Jordan A Taylor
- Department of Psychology, Princeton University, Princeton, New Jersey
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
| |
Collapse
|
41
|
Savic B, Meier B. How Transcranial Direct Current Stimulation Can Modulate Implicit Motor Sequence Learning and Consolidation: A Brief Review. Front Hum Neurosci 2016; 10:26. [PMID: 26903837 PMCID: PMC4748051 DOI: 10.3389/fnhum.2016.00026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/18/2016] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to investigate how transcranial direct current stimulation (tDCS) can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.
Collapse
Affiliation(s)
- Branislav Savic
- Institute of Psychology, University of BernBern, Switzerland; Center for Cognition, Learning, and Memory, University of BernBern, Switzerland
| | - Beat Meier
- Institute of Psychology, University of BernBern, Switzerland; Center for Cognition, Learning, and Memory, University of BernBern, Switzerland
| |
Collapse
|
42
|
Sleep-independent off-line enhancement and time of the day effects in three forms of skill learning. Cogn Process 2016; 17:163-74. [PMID: 26861244 DOI: 10.1007/s10339-016-0750-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
The role of sleep in memory and skill-learning processes is an important and widely debated issue. The current study explores the nature of the relationship between sleep and off-line improvement in three tasks for measuring different aspects of skill learning: the serial reaction time (SRT) task, which is a motor sequence learning task; the artificial grammar learning (AGL) task, testing abstract verbal sequence learning; and the weather prediction (WP) task, which is a non-sequential categorization task. Each participant was tested on one of the three tasks twice, either in a Wake condition (with a 12-h off-line period without sleep), or in a Sleep condition (with sleep). Results showed no sleep-related off-line improvement throughout the three tasks in a two-session re-learning design, but a sleep-independent time-based effect was found on the SRT task. No performance boost was observed in the WP and AGL tasks. Performance on the SRT showed a time of the day effect: the Sleep group outperforming the Wake group; however, this effect was restricted to overall response latencies. Taken together, no evidence was found in favor of sleep-dependent off-line enhancement in skill learning, but methodological concerns warrant further investigations.
Collapse
|
43
|
Hodyl NA, Schneider L, Vallence AM, Clow A, Ridding MC, Pitcher JB. The cortisol awakening response is associated with performance of a serial sequence reaction time task. Int J Psychophysiol 2015; 100:12-8. [PMID: 26721740 DOI: 10.1016/j.ijpsycho.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022]
Abstract
There is emerging evidence of a relationship between the cortisol awakening response (CAR) and the neural mechanisms underlying learning and memory. The aim of this study was to determine whether the CAR is associated with acquisition, retention and overnight consolidation or improvement of a serial sequence reaction time task. Salivary samples were collected at 0, 15, 30 and 45 min after awakening in 39 healthy adults on 2 consecutive days. The serial sequence reaction time task was repeated each afternoon. Participants completed the perceived stress scale and provided salivary samples prior to testing for cortisol assessment. While the magnitude of the CAR (Z score) was not associated with either baseline performance or the timed improvement during task acquisition of the serial sequence task, a positive correlation was observed with reaction times during the stable performance phase on day 1 (r=0.373, p=0.019). Residuals derived from the relationship between baseline and stable phase reaction times on day 1 were used as a surrogate for the degree of learning: these residuals were also correlated with the CAR mean increase on day 1 (r=0.357, p=0.048). Task performance on day 2 was not associated with the CAR obtained on this same day. No association was observed between the perceived stress score, cortisol at testing or task performance. These data indicate that a smaller CAR in healthy adults is associated with a greater degree of learning and faster performance of a serial sequence reaction time task. These results support recognition of the CAR as an important factor contributing to cognitive performance throughout the day.
Collapse
Affiliation(s)
- Nicolette A Hodyl
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia; Neonatal Medicine, Women's and Children's Hospital, Adelaide, SA, Australia.
| | - Luke Schneider
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Ann-Maree Vallence
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Angela Clow
- Department of Psychology, University of Westminster, London, UK
| | - Michael C Ridding
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Julia B Pitcher
- The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
44
|
Handa A, Rhee J, Wright DL. The Structural Relationship Between Two Motor Sequences Practiced Close in Time Impacts Offline Facilitation. J Mot Behav 2015; 48:47-56. [PMID: 26020122 DOI: 10.1080/00222895.2015.1035431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Robust offline gains occur during explicit motor sequence learning. However practice of a motor sequence, other than the target sequence, within 4-6 hr after initial practice interferes with these gains. This work assessed if experiencing supplemental practice of spatially or motorically similar sequences influenced the extent of offline gain. A contemporary model of sequence learning assumes that exposure to a spatially but not motor-related sequence would not compromise stabilization of the memory for the target sequence, thus, would have minimal impact on the resultant offline gain and possibly amplify overnight gains. As anticipated, a reliable offline improvement was observed for the target motor sequence in the absence of practice with an alternative motor sequence. This gain was significantly reduced when the learner experienced additional practice with either a novel or motorically similar sequence. There was no evidence of heightened overnight gain for the target sequence from intervening practice with a spatially similar sequence. Thus, the expression of offline improvement is not necessarily eliminated if practice of an alternative motor sequence is encountered shortly after a target sequence. However, the structure of the motor sequence faced during intervening practice can impact the resultant postpractice consolidation processes reflected in the eventual expression of offline facilitation.
Collapse
Affiliation(s)
- Atul Handa
- a Human Performance Laboratories, Department of Kinesiology , Texas A&M University , College Station
| | - Joohyun Rhee
- a Human Performance Laboratories, Department of Kinesiology , Texas A&M University , College Station
| | - David L Wright
- a Human Performance Laboratories, Department of Kinesiology , Texas A&M University , College Station
| |
Collapse
|
45
|
Csabi E, Varszegi-Schulz M, Janacsek K, Malecek N, Nemeth D. The consolidation of implicit sequence memory in obstructive sleep apnea. PLoS One 2014; 9:e109010. [PMID: 25329462 PMCID: PMC4198077 DOI: 10.1371/journal.pone.0109010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/04/2014] [Indexed: 12/29/2022] Open
Abstract
Obstructive Sleep Apnea (OSA) Syndrome is a relatively frequent sleep disorder characterized by disrupted sleep patterns. It is a well-established fact that sleep has beneficial effect on memory consolidation by enhancing neural plasticity. Implicit sequence learning is a prominent component of skill learning. However, the formation and consolidation of this fundamental learning mechanism remains poorly understood in OSA. In the present study we examined the consolidation of different aspects of implicit sequence learning in patients with OSA. We used the Alternating Serial Reaction Time task to measure general skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 10-hour offline period with sleep. Our data showed differences in offline changes of general skill learning between the OSA and control group. The control group demonstrated offline improvement from evening to morning, while the OSA group did not. In contrast, we did not observe differences between the groups in offline changes in sequence-specific learning. Our findings suggest that disrupted sleep in OSA differently affects neural circuits involved in the consolidation of sequence learning.
Collapse
Affiliation(s)
- Eszter Csabi
- Institute of Psychology, University of Szeged, Szeged, Hungary
| | | | - Karolina Janacsek
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Budapest, Hungary
| | - Nick Malecek
- Imaging Research Center, University of Texas, Austin, Texas, United States of America
| | - Dezso Nemeth
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Budapest, Hungary
- Imaging Research Center, University of Texas, Austin, Texas, United States of America
| |
Collapse
|