1
|
Zalasky NA, Luo F, Kim LH, Noor MS, Brown EC, Arantes AP, Ramasubbu R, Gruber AJ, Kiss ZHT, Clark DL. Integration of valence and conflict processing through cellular-field interactions in human subgenual cingulate during emotional face processing in treatment-resistant depression. Mol Psychiatry 2025; 30:188-200. [PMID: 39030263 DOI: 10.1038/s41380-024-02667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
The subgenual anterior cingulate cortex (sgACC) has been identified as a key brain area involved in various cognitive and emotional processes. While the sgACC has been implicated in both emotional valuation and emotional conflict monitoring, it is still unclear how this area integrates multiple functions. We characterized both single neuron and local field oscillatory activity in 14 patients undergoing sgACC deep brain stimulation for treatment-resistant depression. During recording, patients were presented with a modified Stroop task containing emotional face images that varied in valence and congruence. We further analyzed spike-field interactions to understand how network dynamics influence single neuron activity in this area. Most single neurons responded to both valence and congruence, revealing that sgACC neuronal activity can encode multiple processes within the same task, indicative of multifunctionality. During peak neuronal response, we observed increased spectral power in low frequency oscillations, including theta-band synchronization (4-8 Hz), as well as desynchronization in beta-band frequencies (13-30 Hz). Theta activity was modulated by current trial congruency with greater increases in spectral power following non-congruent stimuli, while beta desynchronizations occurred regardless of emotional valence. Spike-field interactions revealed that local sgACC spiking was phase-locked most prominently to the beta band, whereas phase-locking to the theta band occurred in fewer neurons overall but was modulated more strongly for neurons that were responsive to task. Our findings provide the first direct evidence of spike-field interactions relating to emotional cognitive processing in the human sgACC. Furthermore, we directly related theta oscillatory dynamics in human sgACC to current trial congruency, demonstrating it as an important regulator during conflict detection. Our data endorse the sgACC as an integrative hub for cognitive emotional processing through modulation of beta and theta network activity.
Collapse
Affiliation(s)
- Nicole A Zalasky
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Feng Luo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Linda H Kim
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - M Sohail Noor
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Ana P Arantes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Darren L Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Yang J, Shen L, Long Q, Li W, Zhang W, Chen Q, Han B. Electrical stimulation induced self-related auditory hallucinations correlate with oscillatory power change in the default mode network. Cereb Cortex 2024; 34:bhad473. [PMID: 38061695 DOI: 10.1093/cercor/bhad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Self-related information is crucial in our daily lives, which has led to the proposal that there is a specific brain mechanism for processing it. Neuroimaging studies have consistently demonstrated that the default mode network (DMN) is strongly associated with the representation and processing of self-related information. However, the precise relationship between DMN activity and self-related information, particularly in terms of neural oscillations, remains largely unknown. We electrically stimulated the superior temporal and fusiform areas, using stereo-electroencephalography to investigate neural oscillations associated with elicited self-related auditory hallucinations. Twenty-two instances of auditory hallucinations were recorded and categorized into self-related and other-related conditions. Comparing oscillatory power changes within the DMN between self-related and other-related auditory hallucinations, we discovered that self-related hallucinations are associated with significantly stronger positive power changes in both alpha and gamma bands compared to other-related hallucinations. To ensure the validity of our findings, we conducted controlled analyses for factors of familiarity and clarity, which revealed that the observed effects within the DMN remain independent of these factors. These results underscore the significance of the functional role of the DMN during the processing of self-related auditory hallucinations and shed light on the relationship between self-related perception and neural oscillatory activity.
Collapse
Affiliation(s)
- Jing Yang
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Lu Shen
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Qiting Long
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Wenjie Li
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Litang Road No. 168, Changping District, 102218, Beijing, China
- Epilepsy Center, Shanghai Neuromedical Center, Gulang Road No. 378, Putuo District, 200331, Shanghai, China
| | - Qi Chen
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Biao Han
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| |
Collapse
|
3
|
Mehrotra D, Dubé L. Accounting for multiscale processing in adaptive real-world decision-making via the hippocampus. Front Neurosci 2023; 17:1200842. [PMID: 37732307 PMCID: PMC10508350 DOI: 10.3389/fnins.2023.1200842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
For adaptive real-time behavior in real-world contexts, the brain needs to allow past information over multiple timescales to influence current processing for making choices that create the best outcome as a person goes about making choices in their everyday life. The neuroeconomics literature on value-based decision-making has formalized such choice through reinforcement learning models for two extreme strategies. These strategies are model-free (MF), which is an automatic, stimulus-response type of action, and model-based (MB), which bases choice on cognitive representations of the world and causal inference on environment-behavior structure. The emphasis of examining the neural substrates of value-based decision making has been on the striatum and prefrontal regions, especially with regards to the "here and now" decision-making. Yet, such a dichotomy does not embrace all the dynamic complexity involved. In addition, despite robust research on the role of the hippocampus in memory and spatial learning, its contribution to value-based decision making is just starting to be explored. This paper aims to better appreciate the role of the hippocampus in decision-making and advance the successor representation (SR) as a candidate mechanism for encoding state representations in the hippocampus, separate from reward representations. To this end, we review research that relates hippocampal sequences to SR models showing that the implementation of such sequences in reinforcement learning agents improves their performance. This also enables the agents to perform multiscale temporal processing in a biologically plausible manner. Altogether, we articulate a framework to advance current striatal and prefrontal-focused decision making to better account for multiscale mechanisms underlying various real-world time-related concepts such as the self that cumulates over a person's life course.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Laurette Dubé
- Desautels Faculty of Management, McGill University, Montréal, QC, Canada
- McGill Center for the Convergence of Health and Economics, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Klar P, Çatal Y, Langner R, Huang Z, Northoff G. Scale-free dynamics in the core-periphery topography and task alignment decline from conscious to unconscious states. Commun Biol 2023; 6:499. [PMID: 37161021 PMCID: PMC10170069 DOI: 10.1038/s42003-023-04879-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Scale-free physiological processes are ubiquitous in the human organism. Resting-state functional MRI studies observed the loss of scale-free dynamics under anesthesia. In contrast, the modulation of scale-free dynamics during task-related activity remains an open question. We investigate scale-free dynamics in the cerebral cortex's unimodal periphery and transmodal core topography in rest and task states during three conscious levels (awake, sedation, and anesthesia) complemented by computational modelling (Stuart-Landau model). The empirical findings demonstrate that the loss of the brain's intrinsic scale-free dynamics in the core-periphery topography during anesthesia, where pink noise transforms into white noise, disrupts the brain's neuronal alignment with the task's temporal structure. The computational model shows that the stimuli's scale-free dynamics, namely pink noise distinguishes from brown and white noise, also modulate task-related activity. Together, we provide evidence for two mechanisms of consciousness, temporo-spatial nestedness and alignment, suggested by the Temporo-Spatial Theory of Consciousness (TTC).
Collapse
Affiliation(s)
- Philipp Klar
- Medical Faculty, C. & O. Vogt-Institute for Brain Research, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada
| | - Robert Langner
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, Zhejiang Province, 310013, China
| |
Collapse
|
5
|
Wolff A, Chen L, Tumati S, Golesorkhi M, Gomez-Pilar J, Hu J, Jiang S, Mao Y, Longtin A, Northoff G. Prestimulus dynamics blend with the stimulus in neural variability quenching. Neuroimage 2021; 238:118160. [PMID: 34058331 DOI: 10.1016/j.neuroimage.2021.118160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/08/2023] Open
Abstract
Neural responses to the same stimulus show significant variability over trials, with this variability typically reduced (quenched) after a stimulus is presented. This trial-to-trial variability (TTV) has been much studied, however how this neural variability quenching is influenced by the ongoing dynamics of the prestimulus period is unknown. Utilizing a human intracranial stereo-electroencephalography (sEEG) data set, we investigate how prestimulus dynamics, as operationalized by standard deviation (SD), shapes poststimulus activity through trial-to-trial variability (TTV). We first observed greater poststimulus variability quenching in those real trials exhibiting high prestimulus variability as observed in all frequency bands. Next, we found that the relative effect of the stimulus was higher in the later (300-600ms) than the earlier (0-300ms) poststimulus period. Lastly, we replicate our findings in a separate EEG dataset and extend them by finding that trials with high prestimulus variability in the theta and alpha bands had faster reaction times. Together, our results demonstrate that stimulus-related activity, including its variability, is a blend of two factors: 1) the effects of the external stimulus itself, and 2) the effects of the ongoing dynamics spilling over from the prestimulus period - the state at stimulus onset - with the second dwarfing the influence of the first.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, Ottawa, Canada.
| | - Liang Chen
- Department of Neurological Surgery, Huashan Hospital, Fudan University, Wulumuqi Middle Rd, Shanghai, China.
| | - Shankar Tumati
- University of Ottawa Institute of Mental Health Research, Ottawa, Canada
| | - Mehrshad Golesorkhi
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Higher Technical School of Telecommunications Engineering, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain
| | - Jie Hu
- Department of Neurological Surgery, Huashan Hospital, Fudan University, Wulumuqi Middle Rd, Shanghai, China
| | - Shize Jiang
- Department of Neurological Surgery, Huashan Hospital, Fudan University, Wulumuqi Middle Rd, Shanghai, China
| | - Ying Mao
- Department of Neurological Surgery, Huashan Hospital, Fudan University, Wulumuqi Middle Rd, Shanghai, China
| | - André Longtin
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada; Physics Department, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Huang C, Zhang H, Huang J, Duan C, Kim JJ, Ferrari M, Hu CS. Stronger resting-state neural oscillations associated with wiser advising from the 2nd- but not the 3rd-person perspective. Sci Rep 2020; 10:12677. [PMID: 32728108 PMCID: PMC7391636 DOI: 10.1038/s41598-020-69507-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
This is the first electroencephalogram study exploring the personal perspective effect on wise advising. Participants advised hypothetical protagonists in life dilemmas from both the 2nd- and 3rd-person perspective. Their advice for each dilemma was rated by two independent raters on wisdom criteria, i.e., metacognitive humility, metacognitive flexibility, and perspective taking. The results revealed that participants felt a significantly shorter psychological distance from protagonists when advising from the 2nd- (vs. the 3rd-) person perspective, p < 0.001. However, there was no significant effect of perspective condition on the wisdom score. Nevertheless, stronger resting-state absolute EEG powers in the frontal lobe were associated with wiser advising from the 2nd-, but not the 3rd-person perspective. Moreover, Z tests revealed that the correlations between the resting-state absolute EEG powers and wisdom scores were significantly stronger during advising from the 2nd- than the 3rd-person perspective. These results suggest that advising from the 2nd-person perspective was more self-related, and mental activities during rest contributed to advising from the 2nd- but not the 3rd-person perspective.
Collapse
Affiliation(s)
- Chengli Huang
- Institute of Psychological Sciences, Hangzhou Normal University, 2318 Yuhang Tang Road, Hangzhou, 311121, China
- Art Therapy Psychological Research Centre, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Haotian Zhang
- Institute of Psychological Sciences, Hangzhou Normal University, 2318 Yuhang Tang Road, Hangzhou, 311121, China
- Art Therapy Psychological Research Centre, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Jinhao Huang
- Institute of Psychological Sciences, Hangzhou Normal University, 2318 Yuhang Tang Road, Hangzhou, 311121, China
- Art Therapy Psychological Research Centre, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Cuiwen Duan
- Centre for Education Studies, University of Warwick, Coventry, UK
| | - Juensung J Kim
- Ontario Institute for Studies in Education, University of Toronto, Toronto, Canada
| | - Michel Ferrari
- Ontario Institute for Studies in Education, University of Toronto, Toronto, Canada
| | - Chao S Hu
- Institute of Psychological Sciences, Hangzhou Normal University, 2318 Yuhang Tang Road, Hangzhou, 311121, China.
- Art Therapy Psychological Research Centre, Hangzhou Normal University, Hangzhou, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
7
|
Ikeda S, Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Yokota S, Magistro D, Kawashima R. Neural substrates of self- and external-preoccupation: A voxel-based morphometry study. Brain Behav 2019; 9:e01267. [PMID: 31004413 PMCID: PMC6576210 DOI: 10.1002/brb3.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Self- and external-preoccupation have been linked to psychopathological states. The neural substrates underlying self- and external-preoccupation remain unclear. In the present study, we aim to provide insight into the information-processing mechanisms associated with self- and external-preoccupation at the structural level. METHODS To investigate the neural substrates of self- and external-preoccupation, we acquired high-resolution T1-weighted structural images and Preoccupation Scale scores from 1,122 young subjects. Associations between regional gray matter volume (rGMV) and Preoccupation Scale subscores for self- and external-preoccupation were estimated using voxel-based morphometry. RESULTS Significant positive associations between self-preoccupation and rGMV were observed in widespread brain areas such as the bilateral precuneus and posterior cingulate gyri, structures known to be associated with self-triggered self-reference during rest. Significant negative associations between external-preoccupation and rGMV were observed only in the bilateral cerebellum, regions known to be associated with behavioral addiction, sustained attention, and reward system. CONCLUSION Our results reveal distinct neural substrates for self- and external-preoccupation at the structural level.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Huang Z, Zhang J, Wu J, Liu X, Xu J, Zhang J, Qin P, Dai R, Yang Z, Mao Y, Hudetz AG, Northoff G. Disrupted neural variability during propofol-induced sedation and unconsciousness. Hum Brain Mapp 2018; 39:4533-4544. [PMID: 29974570 PMCID: PMC6223306 DOI: 10.1002/hbm.24304] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
Variability quenching is a widespread neural phenomenon in which trial-to-trial variability (TTV) of neural activity is reduced by repeated presentations of a sensory stimulus. However, its neural mechanism and functional significance remain poorly understood. Recurrent network dynamics are suggested as a candidate mechanism of TTV, and they play a key role in consciousness. We thus asked whether the variability-quenching phenomenon is related to the level of consciousness. We hypothesized that TTV reduction would be compromised during reduced level of consciousness by propofol anesthetics. We recorded functional magnetic resonance imaging signals of resting-state and stimulus-induced activities in three conditions: wakefulness, sedation, and unconsciousness (i.e., deep anesthesia). We measured the average (trial-to-trial mean, TTM) and variability (TTV) of auditory stimulus-induced activity under the three conditions. We also examined another form of neural variability (temporal variability, TV), which quantifies the overall dynamic range of ongoing neural activity across time, during both the resting-state and the task. We found that (a) TTM deceased gradually from wakefulness through sedation to anesthesia, (b) stimulus-induced TTV reduction normally seen during wakefulness was abolished during both sedation and anesthesia, and (c) TV increased in the task state as compared to resting-state during both wakefulness and sedation, but not anesthesia. Together, our results reveal distinct effects of propofol on the two forms of neural variability (TTV and TV). They imply that the anesthetic disrupts recurrent network dynamics, thus prevents the stabilization of cortical activity states. These findings shed new light on the temporal dynamics of neuronal variability and its alteration during anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology and Center for Consciousness ScienceUniversity of MichiganAnn ArborMichigan
| | - Jun Zhang
- Department of AnesthesiologyHuashan Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jinsong Wu
- Neurological Surgery DepartmentHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiPeople's Republic of China
| | - Xiaoge Liu
- Department of AnesthesiologyHuashan Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jianghui Xu
- Department of AnesthesiologyHuashan Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jianfeng Zhang
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouPeople's Republic of China
| | - Pengmin Qin
- School of PsychologySouth China Normal UniversityGuangzhouPeople's Republic of China
| | - Rui Dai
- State Key Laboratory of Brain and Cognitive ScienceInstitute of Biophysics, Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Zhong Yang
- Department of RadiologyHuashan Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Ying Mao
- Neurological Surgery DepartmentHuashan Hospital, Shanghai Medical College, Fudan UniversityShanghaiPeople's Republic of China
| | - Anthony G. Hudetz
- Department of Anesthesiology and Center for Consciousness ScienceUniversity of MichiganAnn ArborMichigan
| | - Georg Northoff
- Institute of Mental Health ResearchUniversity of OttawaOttawaOntarioCanada
- Center for Cognition and Brain DisordersHangzhou Normal UniversityHangzhouPeople's Republic of China
- Mental Health CentreZhejiang University School of MedicineHangzhouPeople's Republic of China
| |
Collapse
|
9
|
Shapira-Lichter I, Strauss I, Oren N, Gazit T, Sammartino F, Giacobbe P, Kennedy S, Hutchison WD, Fried I, Hendler T, Lozano AM. Conflict monitoring mechanism at the single-neuron level in the human ventral anterior cingulate cortex. Neuroimage 2018; 175:45-55. [DOI: 10.1016/j.neuroimage.2018.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 01/26/2023] Open
|
10
|
Ramirez-Mahaluf JP, Roxin A, Mayberg HS, Compte A. A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics. Cereb Cortex 2018; 27:660-679. [PMID: 26514163 DOI: 10.1093/cercor/bhv249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Major depression disease (MDD) is associated with the dysfunction of multinode brain networks. However, converging evidence implicates the reciprocal interaction between midline limbic regions (typified by the ventral anterior cingulate cortex, vACC) and the dorso-lateral prefrontal cortex (dlPFC), reflecting interactions between emotions and cognition. Furthermore, growing evidence suggests a role for abnormal glutamate metabolism in the vACC, while serotonergic treatments (selective serotonin reuptake inhibitor, SSRI) effective for many patients implicate the serotonin system. Currently, no mechanistic framework describes how network dynamics, glutamate, and serotonin interact to explain MDD symptoms and treatments. Here, we built a biophysical computational model of 2 areas (vACC and dlPFC) that can switch between emotional and cognitive processing. MDD networks were simulated by slowing glutamate decay in vACC and demonstrated sustained vACC activation. This hyperactivity was not suppressed by concurrent dlPFC activation and interfered with expected dlPFC responses to cognitive signals, mimicking cognitive dysfunction seen in MDD. Simulation of clinical treatments (SSRI or deep brain stimulation) counteracted this aberrant vACC activity. Theta and beta/gamma oscillations correlated with network function, representing markers of switch-like operation in the network. The model shows how glutamate dysregulation can cause aberrant brain dynamics, respond to treatments, and be reflected in EEG rhythms as biomarkers of MDD.
Collapse
Affiliation(s)
| | - Alexander Roxin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centre de Recerca Matemàtica, Bellaterra, Spain
| | | | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
11
|
Kanayama N, Asai T, Nakao T, Makita K, Kozuma R, Uyama T, Yamane T, Kadota H, Yamawaki S. Subjectivity of the Anomalous Sense of Self Is Represented in Gray Matter Volume in the Brain. Front Hum Neurosci 2017; 11:232. [PMID: 28536515 PMCID: PMC5422542 DOI: 10.3389/fnhum.2017.00232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/21/2017] [Indexed: 01/15/2023] Open
Abstract
The self includes complicated and heterogeneous functions. Researchers have divided the self into three distinct functions called “agency,” “ownership,” and “narrative self”. These correspond to psychiatric symptoms, behavioral characteristics and neural responses, but their relationship with brain structure is unclear. This study examined the relationship between the subjectivity of self-related malfunctions and brain structure in terms of gray matter (GM) volume in 96 healthy people. They completed a recently developed self-reported questionnaire called the Embodied Sense of Self Scale (ESSS) that measures self-related malfunctions. The ESSS has three subscales reflecting the three distinct functions of the self. We also determined the participants’ brain structures using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM). Multiple regression analysis revealed a significant negative correlation between ownership malfunction and the insular cortex GM volume. A relationship with brain structure could thus only be confirmed for the ESSS “ownership” subscale. This finding suggests that distinct brain structures feel ownership and that the ESSS could partly screen for distinct brain structures.
Collapse
Affiliation(s)
- Noriaki Kanayama
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima UniversityHiroshima, Japan.,Center of KANSEI Innovation, Hiroshima UniversityHiroshima, Japan
| | - Tomohisa Asai
- Nippon Telegraph and Telephone Communication Science Laboratories, Human Information Science LaboratoryKanagawa, Japan
| | - Takashi Nakao
- Department of Psychology, Graduate School of Education, Hiroshima UniversityHiroshima, Japan
| | - Kai Makita
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima UniversityHiroshima, Japan.,Center of KANSEI Innovation, Hiroshima UniversityHiroshima, Japan
| | - Ryutaro Kozuma
- Faculty of Medicine, Hiroshima UniversityHiroshima, Japan
| | - Takuto Uyama
- Faculty of Medicine, Hiroshima UniversityHiroshima, Japan
| | | | - Hiroshi Kadota
- Research Institute, Kochi University of TechnologyKochi, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Institute of Biomedical and Health Sciences, Hiroshima UniversityHiroshima, Japan.,Center of KANSEI Innovation, Hiroshima UniversityHiroshima, Japan
| |
Collapse
|
12
|
Northoff G, Duncan NW. How do abnormalities in the brain's spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Prog Neurobiol 2016; 145-146:26-45. [PMID: 27531135 DOI: 10.1016/j.pneurobio.2016.08.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 01/16/2023]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with a variety of symptoms that include sensorimotor, affective, cognitive, and social changes. The exact neuronal mechanisms underlying these symptoms remain unclear though. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's spontaneous activity, otherwise known as its resting state activity. While various spatial and temporal abnormalities have been observed in spontaneous activity in schizophrenia, their meaning and significance for the different psychopathological symptoms in schizophrenia, are yet to be defined. The first aim in this paper is to provide an overview of recent findings concerning changes in the spatial (e.g., functional connectivity) and temporal (e.g., couplings between different frequency fluctuations) properties of spontaneous activity in schizophrenia. The second aim is to link these spatiotemporal changes to the various psychopathological symptoms of schizophrenia, with a specific focus on basic symptoms, formal thought disorder, and ego-disturbances. Based on the various findings described, we postulate that the spatiotemporal changes on the neuronal level of the brain's spontaneous activity transform into corresponding spatiotemporal changes on the psychological level which, in turn, leads to the different kinds of psychopathological symptoms. We consequently suggest a spatiotemporal rather than cognitive or sensory approach to the condition, amounting to what we describe as "Spatiotemporal Psychopathology".
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; University of Ottawa Institute of Mental Health Research and University of Ottawa Brain and Mind Research Institute, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Brain and Consciousness Research Centre, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Niall W Duncan
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Brain and Consciousness Research Centre, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Robinson JD, Wagner NF, Northoff G. Is the Sense of Agency in Schizophrenia Influenced by Resting-State Variation in Self-Referential Regions of the Brain? Schizophr Bull 2016; 42:270-6. [PMID: 26221048 PMCID: PMC4753591 DOI: 10.1093/schbul/sbv102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Schizophrenia is a disturbance of the self, of which the attribution of agency is a major component. In this article, we review current theories of the Sense of Agency, their relevance to schizophrenia, and propose a novel framework for future research. We explore some of the models of agency, in which both bottom-up and top-down processes are implicated in the genesis of agency. We further this line of inquiry by suggesting that ongoing neurological activity (the brain's resting state) in self-referential regions of the brain can provide a deeper level of influence beyond what the current models capture. Based on neuroimaging studies, we suggest that aberrant activity in regions such as the default mode network of individuals with schizophrenia can lead to a misattribution of internally/externally generated stimuli. This can result in symptoms such as thought insertion and delusions of control. Consequently, neuroimaging can contribute to a more comprehensive conceptualization and measurement of agency and potential treatment implications.
Collapse
Affiliation(s)
- Jeffrey D Robinson
- The Royal Ottawa Health Care Group, Secure Treatment Unit, Brockville, ON, Canada; Institute of Mental Health Research, University of Ottawa, Ottawa, Canada;
| | | | | |
Collapse
|
14
|
Northoff G. Is the self a higher-order or fundamental function of the brain? The "basis model of self-specificity" and its encoding by the brain's spontaneous activity. Cogn Neurosci 2016; 7:203-22. [PMID: 26505808 DOI: 10.1080/17588928.2015.1111868] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
What is the self? This is a question that has long been discussed in (Western) philosophy where the self is traditionally conceived a higher-order function at the apex or pinnacle of all functions. This tradition has been transferred to recent neuroscience where the self is often considered to be a higher-order cognitive function reflected in memory and other high-level judgements. However, other lines of research demonstrate a close and intimate relationship between self-specificity and more basic functions like perceptions, emotions and reward. This paper focuses on the relationship between self-specificity and other basic functions relating to emotions, reward and perception. I propose the basis model that conceives self-specificity as a fundamental feature of the brain's spontaneous activity. This is supported by recent findings showing rest-self overlap in midline regions as well as findings demonstrating that the resting state can predict subsequent degrees of self-specificity. I conclude that such self-specificity in the brain's spontaneous activity may be central in linking the self to either internal or external stimuli. This may also provide the basis for coding the self as subject in relation to internal (i.e., self-consciousness) or external (i.e., phenomenal consciousness) mental events.
Collapse
Affiliation(s)
- Georg Northoff
- a Institute of Mental Health Research , University of Ottawa , Ottawa , Canada.,b Centre for Cognition and Brain Disorders , Hangzhou Normal University , Hangzhou , China.,c Centre for Brain and Consciousness , Taipei Medical University (TMU) , Taipei , Taiwan.,d College for Humanities and Medicine , Taipei Medical University (TMU) , Taipei , Taiwan.,e ITAB , University of Chieti , Chieti , Italy
| |
Collapse
|
15
|
Huang Z, Obara N, Davis HH, Pokorny J, Northoff G. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness. Neuropsychologia 2016; 82:161-170. [PMID: 26805557 DOI: 10.1016/j.neuropsychologia.2016.01.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/23/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity.
Collapse
Affiliation(s)
- Zirui Huang
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada K1Z 7K4.
| | - Natsuho Obara
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada K1Z 7K4; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | - Johanna Pokorny
- Department of Anthropology, University of Toronto, Toronto, ON, Canada M5S 2S2
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada K1Z 7K4; Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou 310015, PR China; Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; Taipei Medical University-Shuang Ho Hospital, Brain and Consciousness Research Center, New Taipei City, Taiwan
| |
Collapse
|
16
|
Qin P, Grimm S, Duncan NW, Fan Y, Huang Z, Lane T, Weng X, Bajbouj M, Northoff G. Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli. Soc Cogn Affect Neurosci 2016; 11:693-702. [PMID: 26796968 DOI: 10.1093/scan/nsw008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap.
Collapse
Affiliation(s)
- Pengmin Qin
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Mind, Brain Imaging and Neuroethics Unit, University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, Canada, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan,
| | - Simone Grimm
- Department of Psychiatry, Charité, CBF, Berlin, Germany, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Niall W Duncan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yan Fan
- Department of Psychiatry, Charité, CBF, Berlin, Germany
| | - Zirui Huang
- Mind, Brain Imaging and Neuroethics Unit, University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, Canada
| | - Timothy Lane
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China, and
| | - Malek Bajbouj
- Department of Psychiatry, Charité, CBF, Berlin, Germany
| | - Georg Northoff
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan, Mind, Brain Imaging and Neuroethics Unit, University of Ottawa Institute of Mental Health Research (IMHR), Ottawa, Canada, Brain and Consciousness Research Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China, and University of Ottawa Brain and Mind Research Institute
| |
Collapse
|