1
|
Giampiccolo D, Herbet G, Duffau H. The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy. Brain 2025; 148:1507-1525. [PMID: 39932875 PMCID: PMC12074009 DOI: 10.1093/brain/awaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The inferior-fronto-occipital fasciculus (IFOF) is a long-range white matter tract that connects the prefrontal cortex with parietal, posterior temporal and occipital cortices. First identified in the 19th century through the pioneering studies of Mayo and Meynert using blunt dissection, its anatomy and function remain contentious topics. Structurally, its projections are well documented in human blunt dissection and tractography literature, yet its existence has been questioned by tract-tracing studies in macaques. Functionally, while traditional results from direct white matter stimulation during awake surgery suggested a contribution to language, recent evidence from stimulation and lesion data may indicate a broader role in executive control, extending to attention, motor cognition, memory, reading, emotion recognition and theory of mind. This review begins by examining anatomical evidence suggesting that the IFOF evolved in non-human primates to connect temporal and occipital cortices to prefrontal regions involved in context-dependent selection of visual features for action. We then integrate developmental, electrophysiological, functional and anatomical evidence for the human IFOF to propose it has a similar role in manipulation of visual features in our species-particularly when inhibition of overriding but task-irrelevant stimuli is required to prioritize a second, task-relevant stimulus. Next, we introduce a graded model in which dorsal (orbitofrontal, superior and middle frontal to precuneal, angular and supero-occipital projections) and ventral (inferior frontal to posterotemporal, basal temporal and infero-occipital) projections of the IFOF support perceptual or conceptual control of visual representations for action, respectively. Leveraging this model, we address controversies in the current literature regarding language, motor cognition, attention and emotion under the unifying view of cognitive control. Finally, we discuss surgical implications for this model and its impact on predicting and preventing neurological deficits in neurosurgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neuroscience, Cleveland Clinic London, London SW1X 7HY, UK
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
- Institut Universitaire de France, Paris 75005, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Praxiling Laboratory, UMR 5267, CNRS, Paul Valéry University, Montpellier 34090, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier 34295, France
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier 34000, France
| |
Collapse
|
2
|
Pierotti E, Speranza C, Cattaneo L, Turella L. Investigating resting-state functional connectivity of the human hand motor system: an offline TMS-fMRI study. Neuroimage 2025; 314:121254. [PMID: 40339631 DOI: 10.1016/j.neuroimage.2025.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
Skillful hand motor control engages complex interactions within a widespread brain network. Previous studies in non-human primates provided a precise picture of its connectivity profiles. Yet, whether the human hand motor network shows a similar connectivity fingerprints is still unclear. Our aim was to better characterize its functional connectivity profiles. We combined offline Transcranial Magnetic Stimulation (TMS) with resting-state functional magnetic resonance imaging (RS-fMRI) to map the changes in functional connectivity following the stimulation of a key node in this network, the human Anterior Intraparietal area (hAIP). Participants underwent two sessions of RS-fMRI before and after offline TMS, applied with a continuous theta-burst stimulation (cTBS) protocol. Univariate and multivariate analyses of RS-fMRI connectivity were performed. Univariate results showed that RS connectivity profiles within the hand motor network changed after cTBS to hAIP. Namely, we found increased functional connectivity between hAIP and SMA, and between SMA and M1. In multivariate analysis, we adopted a classifier to distinguish between RS-connectivity before and after cTBS. We showed significant decoding within a wide brain network comprising regions of the fronto-parietal motor pathways, of the ventral stream and within the cerebellum. Overall, our data provided novel insights on the connectivity patterns of the human hand motor network which compared favorably to the brain architecture described in monkeys, but with some species-specific features, advocating a similar crucial role of this network for hand action processing also in our species.
Collapse
Affiliation(s)
- Enrica Pierotti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Chiara Speranza
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Luigi Cattaneo
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Center for Medical Sciences (CISMED), University of Trento, Italy
| | - Luca Turella
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy.
| |
Collapse
|
3
|
Córdoba-Claros MA, Rubio-Garrido P, de Lima RRM, Morais PLAG, do Nascimento ES, Cavalcante JS, Clascá F. Projection Motifs and Wiring Logic of Medial Pulvinar Thalamocortical Axons in the Marmoset Monkey. J Neurosci 2025; 45:e1837242025. [PMID: 39919832 PMCID: PMC11984104 DOI: 10.1523/jneurosci.1837-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
The medial pulvinar thalamic nucleus (MPu) is an evolutionary novelty of the primate thalamus, prominently expanded in humans. Piecemeal data from studies in various monkey species indicate that MPu axons reach prefrontal, inferior parietal, cingulate, insular, or temporal areas; however, the precise wiring and functional logic of such brain-wide connections remain obscure. In marmoset monkeys (Callithrix jacchus) of both sexes, we visualized the axons originated from specific pulvinar domains by means of biotinylated dextran amine microinjections and compared them across multiple cases. In addition, by injecting retrograde tracers in the cortical areas targeted by the pulvinar axons, we investigated the organization of projection cells within MPu and the existence of long-range branched axons. Specific projection motifs reveal a caudal MPu subnucleus that innervates inferior and ventral temporal areas and a rostral MPu subnucleus that innervates temporal, ventral prefrontal, premotor, inferior posterior parietal, and cingulate areas. We demonstrate numerous MPu neurons that innervate through branched axons prefrontal and parietal or prefrontal and temporal areas; other cells with different projection patterns are closely intermingled with them. Our findings support the notion that MPu is a hub of the brain-wide networks that support complex visual and social cognition, sensory-guided reaching, working memory, and attention. Moreover, the finding of long-range branching MPu axons and dense terminal arborizations suggest that MPu cells may regulate functional connectivity among high-level cortical areas at different spatial scales. Besides, the anatomical "ground truth" provided by our study is relevant for functional imaging and distributed network modeling studies.
Collapse
Affiliation(s)
- María Angélica Córdoba-Claros
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Pablo Rubio-Garrido
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Ruthnaldo R M de Lima
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Paulo Leonardo A G Morais
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Expedito S do Nascimento
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Jeferson S Cavalcante
- Programa de Pós-graduação em Ciências Morfológicas, Universidade Federal do Rio Grande do Norte, Natal RN CEP 59078-900, Brazil
| | - Francisco Clascá
- Department of Anatomy & Graduate Program in Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| |
Collapse
|
4
|
Bohsali AA, Gullett JM, FitzGerald DB, Mareci T, Crosson B, White K, Nadeau SE. Neural connectivity underlying core language functions. BRAIN AND LANGUAGE 2025; 262:105535. [PMID: 39855029 DOI: 10.1016/j.bandl.2025.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature. METHODS We employed high angular resolution diffusion imaging (HARDI) with a dual region of interest tractography approach. Our diffusion tensor distribution model uses a mixture of Wishart distributions to estimate the water molecule displacement probability functions on a voxel-by-voxel basis and to model crossing/branching fibers using a multicompartmental approach. RESULTS We replicated the results of previously published studies of tracts underlying language function. Our study also yielded a number of novel findings: 1) extensive connectivity between Broca's region and the entirety of the middle and superior frontal gyri; 2) extensive interconnectivity between the four subcomponents of Broca's region, pars orbitalis, pars triangularis, pars opercularis, and the inferior precentral gyrus; 3) connectivity between the mid-superior temporal gyrus and the transverse gyrus; 4) connectivity between the mid-superior temporal gyrus, the transverse gyrus, and the planum temporale and the inferior and middle temporal gyri; and 5) connectivity between mid- and anterior superior temporal gyrus and all components of Broca's region. DISCUSSION These results, which replicate the results of prior DTT studies, also considerably extend them and thereby provide a fuller picture of the structural basis of language function and the basis for a novel model of the neural network architecture of language function. This new model is entirely consistent with discoveries from the aphasia literature and with parallel distributed processing conceptualizations of language function.
Collapse
Affiliation(s)
- Anastasia A Bohsali
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA
| | - Joseph M Gullett
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Clinical and Health Psychology, Gainesville, FL 32610, USA
| | - David B FitzGerald
- University of Florida Department of Neurology, Gainesville, FL 32610, USA
| | - Thomas Mareci
- University of Florida Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA; McKnight Brain Institute, Gainesville, FL 32611, USA
| | - Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence at the Atlanta VA Medical Center, Atlanta, GA 30033, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
| | - Keith White
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Psychology, Gainesville, FL 32611, USA
| | - Stephen E Nadeau
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
5
|
Kohsaka M, Oeda T, Takaya S, Tomita S, Park K, Yamamoto K, Fukuyama H, Sawada H. Cortical involvement of lateral trunk flexion and verticality misperception in Parkinson's disease. Brain Commun 2025; 7:fcaf040. [PMID: 39926614 PMCID: PMC11806416 DOI: 10.1093/braincomms/fcaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/09/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
Lateral trunk flexion is a common form of postural abnormality in Parkinson's disease and could be associated with verticality misperception. However, the mechanisms underlying lateral trunk flexion and verticality misperception in Parkinson's disease remain unclear. In the current study, we examined whether lateral trunk flexion is associated with verticality misperception in patients with Parkinson's disease. We also identified the brain regions involved in lateral trunk flexion and altered verticality perception. In this cross-sectional study, we evaluated the verticality perception using the subjective visual vertical test in 81 patients with Parkinson's disease and 14 age-matched healthy controls. According to the 97.5th percentile upper reference limit of the body tilt angle in the healthy controls, patients with Parkinson's disease were grouped into 37 patients with lateral trunk flexion and 44 patients without lateral trunk flexion. The mean of absolute subjective visual vertical angles was compared between patients with Parkinson's disease with lateral trunk flexion, those without lateral trunk flexion, and the healthy controls, and the impact of verticality misperception on lateral trunk flexion was evaluated using multivariate logistic regression models. We further performed a voxel-wise comparison of regional cerebral blood flow using N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography (height threshold of P < 0.001, uncorrected for multiple comparisons, extent threshold of 100 voxels) to identify the brain regions associated with lateral trunk flexion, and to investigate the relationship between verticality misperception and regional hypoperfusion. The mean of absolute subjective visual vertical angles was larger in patients with Parkinson's disease with and without lateral trunk flexion than in healthy controls (P < 0.001 and P < 0.001). Additionally, the subjective visual vertical angle was associated with the presence of lateral trunk flexion (odds ratio 2.25, 95% confidence interval 1.51-3.36, P < 0.001). The regional cerebral blood flow in patients with Parkinson's disease with lateral trunk flexion was decreased in the right inferior parietal lobule, right superior parietal lobule, right superior temporal gyrus, and right dorsal posterior cingulate cortex compared with those without lateral trunk flexion. The subjective visual vertical angle was inversely correlated with regional cerebral blood flow in these regions, except for the dorsal posterior cingulate cortex. Our study reveals that hypofunction in the right temporoparietal association cortices is involved in verticality misperception and the development of lateral trunk flexion in patients with Parkinson's disease. These results provide insights into potential therapeutic targets for addressing lateral trunk flexion.
Collapse
Affiliation(s)
- Masayuki Kohsaka
- Clinical Research Center and Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Tomoko Oeda
- Clinical Research Center and Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Shigetoshi Takaya
- Department of Neurology and Rehabilitation Medicine, Senri Rehabilitation Hospital, Osaka 562-0032, Japan
| | - Satoshi Tomita
- Clinical Research Center and Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Kwiyoung Park
- Clinical Research Center and Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Kenji Yamamoto
- Clinical Research Center and Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| | - Hidenao Fukuyama
- Department of Neurology, Yasu City Hospital, Shiga 520-2331, Japan
| | - Hideyuki Sawada
- Clinical Research Center and Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto 616-8255, Japan
| |
Collapse
|
6
|
Yu J, Xu Q, Ma L, Huang Y, Zhu W, Liang Y, Wang Y, Tang W, Zhu C, Jiang X. Functional Magnetic Resonance Imaging-Specific Alternations in the Default Mode Network in Obsessive-Compulsive Disorder: A Voxel-Based Meta-Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00377-X. [PMID: 39675630 DOI: 10.1016/j.bpsc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a common and debilitating mental disorder. Neuroimaging studies have highlighted that a dysfunctional default mode network (DMN) plays a key role in the pathophysiological mechanisms of OCD. However, findings of impaired DMN regions in OCD have been inconsistent. We used meta-analysis to identify functional magnetic resonance imaging (fMRI)-specific abnormalities of the DMN in OCD. METHODS PubMed, Web of Science, and Embase were searched to screen resting-state fMRI studies of the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF) and regional homogeneity of the DMN in patients with OCD. Based on the activation likelihood estimation algorithm, we compared all patients with OCD and a control group in a primary meta-analysis and analyzed unmedicated OCD patients without comorbidities in secondary meta-analyses. RESULTS A total of 26 eligible studies with 1219 patients with OCD (707 men) and 1238 healthy control participants (684 men) were included in the primary meta-analysis. We identified specific changes in brain regions of the DMN, mainly in the left medial frontal gyrus, bilateral superior temporal gyrus, bilateral inferior parietal lobule, bilateral precuneus, bilateral posterior cingulate cortex, and right parahippocampal gyrus. CONCLUSIONS Patients with OCD showed dysfunction in the DMN, including impaired local important nodal brain regions. The parietal cingulate cortex/precuneus appeared to be the most affected regions within the DMN, providing valuable insights into understanding the potential pathophysiology of OCD and targets for clinical interventions.
Collapse
Affiliation(s)
- Jianping Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianwen Xu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lisha Ma
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqi Huang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Liang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunzhan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenxin Tang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoying Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. Neuron 2024; 112:2631-2644.e6. [PMID: 38823391 PMCID: PMC11309918 DOI: 10.1016/j.neuron.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA; The Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Santacroce F, Cachia A, Fragueiro A, Grande E, Roell M, Baldassarre A, Sestieri C, Committeri G. Human intraparietal sulcal morphology relates to individual differences in language and memory performance. Commun Biol 2024; 7:520. [PMID: 38698168 PMCID: PMC11065983 DOI: 10.1038/s42003-024-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.
Collapse
Affiliation(s)
- Federica Santacroce
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Arnaud Cachia
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Agustina Fragueiro
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Margot Roell
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
9
|
Rech F, Duffau H. Beyond Avoiding Hemiplegia after Glioma Surgery: The Need to Map Complex Movement in Awake Patient to Preserve Conation. Cancers (Basel) 2023; 15:cancers15051528. [PMID: 36900318 PMCID: PMC10001205 DOI: 10.3390/cancers15051528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Improving the onco-functional balance has always been a challenge in glioma surgery, especially regarding motor function. Given the importance of conation (i.e., the willingness which leads to action) in patient's quality of life, we propose here to review the evolution of its intraoperative assessment through a reminder of the increasing knowledge of its neural foundations-based upon a meta-networking organization at three levels. Historical preservation of the primary motor cortex and pyramidal pathway (first level), which was mostly dedicated to avoid hemiplegia, has nonetheless shown its limits to prevent the occurrence of long-term deficits regarding complex movement. Then, preservation of the movement control network (second level) has permitted to prevent such more subtle (but possibly disabling) deficits thanks to intraoperative mapping with direct electrostimulations in awake conditions. Finally, integrating movement control in a multitasking evaluation during awake surgery (third level) enabled to preserve movement volition in its highest and finest level according to patients' specific demands (e.g., to play instrument or to perform sports). Understanding these three levels of conation and its underlying cortico-subcortical neural basis is therefore critical to propose an individualized surgical strategy centered on patient's choice: this implies an increasingly use of awake mapping and cognitive monitoring regardless of the involved hemisphere. Moreover, this also pleads for a finer and systematic assessment of conation before, during and after glioma surgery as well as for a stronger integration of fundamental neurosciences into clinical practice.
Collapse
Affiliation(s)
- Fabien Rech
- Department of Neurosurgery, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France
- Le Centre de Recherche en Automatique de Nancy, Le Centre National de la Recherche Scientifique, Université de Lorraine, F-54000 Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumours’, INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
10
|
Angular gyrus: an anatomical case study for association cortex. Brain Struct Funct 2023; 228:131-143. [PMID: 35906433 DOI: 10.1007/s00429-022-02537-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus is associated with a spectrum of higher order cognitive functions. This mini-review undertakes a broad survey of putative neuroanatomical substrates, guided by the premise that area-specific specializations derive from a combination of extrinsic connections and intrinsic area properties. Three levels of spatial resolution are discussed: cellular, supracellular connectivity, and synaptic micro-scale, with examples necessarily drawn mainly from experimental work with nonhuman primates. A significant factor in the functional specialization of the human parietal cortex is the pronounced enlargement. In addition to "more" cells, synapses, and connections, however, the heterogeneity itself can be considered an important property. Multiple anatomical features support the idea of overlapping and temporally dynamic membership in several brain wide subnetworks, but how these features operate in the context of higher cognitive functions remains for continued investigations.
Collapse
|
11
|
Bleau M, Paré S, Chebat DR, Kupers R, Nemargut JP, Ptito M. Neural substrates of spatial processing and navigation in blindness: An activation likelihood estimation meta-analysis. Front Neurosci 2022; 16:1010354. [PMID: 36340755 PMCID: PMC9630591 DOI: 10.3389/fnins.2022.1010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Even though vision is considered the best suited sensory modality to acquire spatial information, blind individuals can form spatial representations to navigate and orient themselves efficiently in space. Consequently, many studies support the amodality hypothesis of spatial representations since sensory modalities other than vision contribute to the formation of spatial representations, independently of visual experience and imagery. However, given the high variability in abilities and deficits observed in blind populations, a clear consensus about the neural representations of space has yet to be established. To this end, we performed a meta-analysis of the literature on the neural correlates of spatial processing and navigation via sensory modalities other than vision, like touch and audition, in individuals with early and late onset blindness. An activation likelihood estimation (ALE) analysis of the neuroimaging literature revealed that early blind individuals and sighted controls activate the same neural networks in the processing of non-visual spatial information and navigation, including the posterior parietal cortex, frontal eye fields, insula, and the hippocampal complex. Furthermore, blind individuals also recruit primary and associative occipital areas involved in visuo-spatial processing via cross-modal plasticity mechanisms. The scarcity of studies involving late blind individuals did not allow us to establish a clear consensus about the neural substrates of spatial representations in this specific population. In conclusion, the results of our analysis on neuroimaging studies involving early blind individuals support the amodality hypothesis of spatial representations.
Collapse
Affiliation(s)
- Maxime Bleau
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, Ariel, Israel
| | - Ron Kupers
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Institute of Neuroscience, Faculty of Medicine, Université de Louvain, Brussels, Belgium
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurice Ptito
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- *Correspondence: Maurice Ptito,
| |
Collapse
|
12
|
Bohnen NI, Kanel P, Roytman S, Scott PJH, Koeppe RA, Albin RL, Kerber KA, Müller MLTM. Cholinergic brain network deficits associated with vestibular sensory conflict deficits in Parkinson's disease: correlation with postural and gait deficits. J Neural Transm (Vienna) 2022; 129:1001-1009. [PMID: 35753016 PMCID: PMC9308723 DOI: 10.1007/s00702-022-02523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
To examine regional cerebral vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]-FEOBV) PET binding in Parkinson' disease (PD) patients with and without vestibular sensory conflict deficits (VSCD). To examine associations between VSCD-associated cholinergic brain deficits and postural instability and gait difficulties (PIGD). PD persons (M70/F22; mean age 67.6 ± 7.4 years) completed clinical assessments for imbalance, falls, freezing of gait (FoG), modified Romberg sensory conflict testing, and underwent VAChT PET. Volumes of interest (VOI)-based analyses included detailed thalamic and cerebellar parcellations. VSCD-associated VAChT VOI selection used stepwise logistic regression analysis. Vesicular monoamine transporter type 2 (VMAT2) [11C]dihydrotetrabenazine (DTBZ) PET imaging was available in 54 patients. Analyses of covariance were performed to compare VSCD-associated cholinergic deficits between patients with and without PIGD motor features while accounting for confounders. PET sampling passed acceptance criteria in 73 patients. This data-driven analysis identified cholinergic deficits in five brain VOIs associating with the presence of VSCD: medial geniculate nucleus (MGN) (P < 0.0001), para-hippocampal gyrus (P = 0.0043), inferior nucleus of the pulvinar (P = 0.047), fusiform gyrus (P = 0.035) and the amygdala (P = 0.019). Composite VSCD-associated [18F]FEOBV-binding deficits in these 5 regions were significantly lower in patients with imbalance (- 8.3%, F = 6.5, P = 0.015; total model: F = 5.1, P = 0.0008), falls (- 6.9%, F = 4.9, P = 0.03; total model F = 4.7, P = 0.0015), and FoG (- 14.2%, F = 9.0, P = 0.0043; total model F = 5.8, P = 0.0003), independent of age, duration of disease, gender and nigrostriatal dopaminergic losses. Post hoc analysis using MGN VAChT binding as the single cholinergic VOI demonstrated similar significant associations with imbalance, falls and FoG. VSCD-associated cholinergic network changes localize to distinct structures involved in multi-sensory, in particular vestibular, and multimodal cognitive and motor integration brain regions. Relative clinical effects of VSCD-associated cholinergic network deficits were largest for FoG followed by postural imbalance and falls. The MGN was the most significant region identified.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan, Ann Arbor, MI, USA. .,Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA. .,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA. .,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA. .,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA.
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA.,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Kevin A Kerber
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA
| |
Collapse
|
13
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
14
|
The Role of the Interaction between the Inferior Parietal Lobule and Superior Temporal Gyrus in the Multisensory Go/No-go Task. Neuroimage 2022; 254:119140. [PMID: 35342002 DOI: 10.1016/j.neuroimage.2022.119140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Information from multiple sensory modalities interacts. Using functional magnetic resonance imaging (fMRI), we aimed to identify the neural structures correlated with how cooccurring sound modulates the visual motor response execution. The reaction time (RT) to audiovisual stimuli was significantly faster than the RT to visual stimuli. Signal detection analyses showed no significant difference in the perceptual sensitivity (d') between audiovisual and visual stimuli, while the response criteria (β or c) of the audiovisual stimuli was decreased compared to the visual stimuli. The functional connectivity between the left inferior parietal lobule (IPL) and bilateral superior temporal gyrus (STG) was enhanced in Go processing compared with No-go processing of audiovisual stimuli. Furthermore, the left precentral gyrus (PreCG) showed enhanced functional connectivity with the bilateral STG and other areas of the ventral stream in Go processing compared with No-go processing of audiovisual stimuli. These results revealed that the neuronal network correlated with modulations of the motor response execution after the presentation of both visual stimuli along with cooccurring sound in a multisensory Go/Nogo task, including the left IPL, left PreCG, bilateral STG and some areas of the ventral stream. The role of the interaction between the IPL and STG in transforming audiovisual information into motor behavior is discussed. The current study provides a new perspective for exploring potential brain mechanisms underlying how humans execute appropriate behaviors on the basis of multisensory information.
Collapse
|
15
|
Del Maschio N, Fedeli D, Garofalo G, Buccino G. Evidence for the Concreteness of Abstract Language: A Meta-Analysis of Neuroimaging Studies. Brain Sci 2021; 12:32. [PMID: 35053776 PMCID: PMC8773921 DOI: 10.3390/brainsci12010032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The neural mechanisms subserving the processing of abstract concepts remain largely debated. Even within the embodiment theoretical framework, most authors suggest that abstract concepts are coded in a linguistic propositional format, although they do not completely deny the role of sensorimotor and emotional experiences in coding it. To our knowledge, only one recent proposal puts forward that the processing of concrete and abstract concepts relies on the same mechanisms, with the only difference being in the complexity of the underlying experiences. In this paper, we performed a meta-analysis using the Activation Likelihood Estimates (ALE) method on 33 functional neuroimaging studies that considered activations related to abstract and concrete concepts. The results suggest that (1) concrete and abstract concepts share the recruitment of the temporo-fronto-parietal circuits normally involved in the interactions with the physical world, (2) processing concrete concepts recruits fronto-parietal areas better than abstract concepts, and (3) abstract concepts recruit Broca's region more strongly than concrete ones. Based on anatomical and physiological evidence, Broca's region is not only a linguistic region mainly devoted to speech production, but it is endowed with complex motor representations of different biological effectors. Hence, we propose that the stronger recruitment of this region for abstract concepts is expression of the complex sensorimotor experiences underlying it, rather than evidence of a purely linguistic format of its processing.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milano, Italy; (N.D.M.); (D.F.)
| | - Davide Fedeli
- Faculty of Psychology, Università Vita-Salute San Raffaele, 20132 Milano, Italy; (N.D.M.); (D.F.)
| | - Gioacchino Garofalo
- Divisione di Neuroscienze, Università Vita-Salute San Raffaele, 20132 Milano, Italy;
- IRCCS San Raffaele, 20132 Milano, Italy
| | - Giovanni Buccino
- Divisione di Neuroscienze, Università Vita-Salute San Raffaele, 20132 Milano, Italy;
- IRCCS San Raffaele, 20132 Milano, Italy
| |
Collapse
|
16
|
Zakharov AV, Khivintseva EV, Chaplygin SS, Starikovsky MY, Elizarov MA, Kolsanov AV. [Motor rehabilitation of patients in the acute period of stroke using virtual reality technology]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:71-75. [PMID: 34553585 DOI: 10.17116/jnevro202112108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study an effect of adjuvant rehabilitation using implicit virtual reality on the dynamics of the motor function of the lower extremities in patients in the acute period of ischemic stroke. MATERIALS AND METHODS The study was carried out to assess the effectiveness and safety of rehabilitation using virtual reality in 60 patients with lower central paresis in the acute period of ischemic stroke, lasting from 3 to 5 days. Patients of the study group additionally received rehabilitation using the hardware-software complex ReviVR, which allows to stimulate the patient's plantar surface by means of pneumo cuffs synchronously with the step of his animated body. Animation of movement was demonstrated to the patient using virtual reality glasses. The duration of the classes was 10 days, 20-25 minutes each. The total duration of rehabilitation measures in the study and comparison groups was 3-4 hours. RESULTS A significant regression on NIHSS (3 [-4; -1] and -1 [-2; 0], p<0.001) and a progress on RMI (3 [1; 3] and 2 [0; 2], p<0.001, respectively), between the study group and the control group were found. Changes on FMA-LE section (E-F) occurred on day 10, between the study and comparison groups (9 [5; 16] and 4 [0; 7], respectively, p=0.04). The improvement in FMA-LE out of synergy, in the standing position, indicated an increased readiness of the patient to form an independent walk. CONCLUSION The study has shown that the use of virtual reality rehabilitation increases the effectiveness of motor rehabilitation in patients with lower central paresis in the acute period of stroke.
Collapse
|
17
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Rosene DL, Yeterian EH, Makris N. MRI-based Parcellation and Morphometry of the Individual Rhesus Monkey Brain: the macaque Harvard-Oxford Atlas (mHOA), a translational system referencing a standardized ontology. Brain Imaging Behav 2021; 15:1589-1621. [PMID: 32960419 PMCID: PMC8608281 DOI: 10.1007/s11682-020-00357-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Investigations of the rhesus monkey (Macaca mulatta) brain have shed light on the function and organization of the primate brain at a scale and resolution not yet possible in humans. A cornerstone of the linkage between non-human primate and human studies of the brain is magnetic resonance imaging, which allows for an association to be made between the detailed structural and physiological analysis of the non-human primate and that of the human brain. To further this end, we present a novel parcellation method and system for the rhesus monkey brain, referred to as the macaque Harvard-Oxford Atlas (mHOA), which is based on the human Harvard-Oxford Atlas (HOA) and grounded in an ontological and taxonomic framework. Consistent anatomical features were used to delimit and parcellate brain regions in the macaque, which were then categorized according to functional systems. This system of parcellation will be expanded with advances in technology and, like the HOA, will provide a framework upon which the results from other experimental studies (e.g., functional magnetic resonance imaging (fMRI), physiology, connectivity, graph theory) can be interpreted.
Collapse
Affiliation(s)
- R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Edward H Yeterian
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
18
|
Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N. Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 2021; 231:117843. [PMID: 33577936 PMCID: PMC8188735 DOI: 10.1016/j.neuroimage.2021.117843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Richard N, Desmurget M, Teillac A, Beuriat PA, Bardi L, Coudé G, Szathmari A, Mottolese C, Sirigu A, Hiba B. Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study. Neuroimage 2021; 235:118002. [PMID: 33789136 DOI: 10.1016/j.neuroimage.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
Collapse
Affiliation(s)
- Nathalie Richard
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Michel Desmurget
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Achille Teillac
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Institut de neurosciences cognitives et intégratives d'Aquitaine, CNRS / UMR 5287, 33076 Bordeaux, France
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Lara Bardi
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Gino Coudé
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Alexandru Szathmari
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Carmine Mottolese
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Angela Sirigu
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Bassem Hiba
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France.
| |
Collapse
|
20
|
Yang J, Yu Y, Shigemasu H, Kadota H, Nakahara K, Kochiyama T, Ejima Y, Wu J. Functional heterogeneity in the left lateral posterior parietal cortex during visual and haptic crossmodal dot-surface matching. Brain Behav 2021; 11:e02033. [PMID: 33470046 PMCID: PMC7994684 DOI: 10.1002/brb3.2033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vision and touch are thought to contribute information to object perception in an independent but complementary manner. The left lateral posterior parietal cortex (LPPC) has long been associated with multisensory information processing, and it plays an important role in visual and haptic crossmodal information retrieval. However, it remains unclear how LPPC subregions are involved in visuo-haptic crossmodal retrieval processing. METHODS In the present study, we used an fMRI experiment with a crossmodal delayed match-to-sample paradigm to reveal the functional role of LPPC subregions related to unimodal and crossmodal dot-surface retrieval. RESULTS The visual-to-haptic condition enhanced the activity of the left inferior parietal lobule relative to the haptic unimodal condition, whereas the inverse condition enhanced the activity of the left superior parietal lobule. By contrast, activation of the left intraparietal sulcus did not differ significantly between the crossmodal and unimodal conditions. Seed-based resting connectivity analysis revealed that these three left LPPC subregions engaged distinct networks, confirming their different functions in crossmodal retrieval processing. CONCLUSION Taken together, the findings suggest that functional heterogeneity of the left LPPC during visuo-haptic crossmodal dot-surface retrieval processing reflects that the left LPPC does not simply contribute to retrieval of past information; rather, each subregion has a specific functional role in resolving different task requirements.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | | | | | | | | | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Beijing Institute of Technology, Beijing, China
| |
Collapse
|
21
|
Kilroy E, Harrison L, Butera C, Jayashankar A, Cermak S, Kaplan J, Williams M, Haranin E, Bookheimer S, Dapretto M, Aziz-Zadeh L. Unique deficit in embodied simulation in autism: An fMRI study comparing autism and developmental coordination disorder. Hum Brain Mapp 2020; 42:1532-1546. [PMID: 33320398 PMCID: PMC7927289 DOI: 10.1002/hbm.25312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
A deficit in pre‐cognitively mirroring other people's actions and experiences may be related to the social impairments observed in autism spectrum disorder (ASD). However, it is unclear whether such embodied simulation deficits are unique to ASD or instead are related to motor impairment, which is commonly comorbid with ASD. Here we aim to disentangle how, neurologically, motor impairments contribute to simulation deficits and identify unique neural signatures of ASD. We compare children with ASD (N = 30) to children with Developmental Coordination Disorder (DCD; N = 23) as well as a typically developing group (N = 33) during fMRI tasks in which children observe, imitate, and mentalize about other people's actions. Results indicate a unique neural signature in ASD: during action observation, only the ASD group shows hypoactivity in a region important for simulation (inferior frontal gyrus, pars opercularis, IFGop). However, during a motor production task (imitation), the IFGop is hypoactive for both ASD and DCD groups. For all tasks, we find correlations across groups with motor ability, even after controlling for age, IQ, and social impairment. Conversely, across groups, mentalizing ability is correlated with activity in the dorsomedial prefrontal cortex when controlling for motor ability. These findings help identify the unique neurobiological basis of ASD for aspects of social processing. Furthermore, as no previous fMRI studies correlated brain activity with motor impairment in ASD, these findings help explain prior conflicting reports in these simulation networks.
Collapse
Affiliation(s)
- Emily Kilroy
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA.,Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Laura Harrison
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA.,Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Christiana Butera
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA.,Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Aditya Jayashankar
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA.,Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Sharon Cermak
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
| | - Jonas Kaplan
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Marian Williams
- USC University Center for Excellence in Developmental Disabilities, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Emily Haranin
- USC University Center for Excellence in Developmental Disabilities, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA.,Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California, USA
| | - Lisa Aziz-Zadeh
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA.,Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Intrinsic functional clustering of ventral premotor F5 in the macaque brain. Neuroimage 2020; 227:117647. [PMID: 33338618 DOI: 10.1016/j.neuroimage.2020.117647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Neurophysiological and anatomical data suggest the existence of several functionally distinct regions in the lower arcuate sulcus and adjacent postarcuate convexity of the macaque monkey. Ventral premotor F5c lies on the postarcuate convexity and consists of a dorsal hand-related and ventral mouth-related field. The posterior bank of the lower arcuate contains two additional premotor F5 subfields at different anterior-posterior levels, F5a and F5p. Anterior to F5a, area 44 has been described as a dysgranular zone occupying the deepest part of the fundus of the inferior arcuate. Finally, area GrFO occupies the most rostral portion of the fundus and posterior bank of inferior arcuate and extends ventrally onto the frontal operculum. Recently, data-driven exploratory approaches using resting-state fMRI data have been suggested as a promising non-invasive method for examining the functional organization of the primate brain. Here, we examined to what extent partitioning schemes derived from data-driven clustering analysis of resting-state fMRI data correspond with the proposed organization of the fundus and posterior bank of the macaque arcuate sulcus, as suggested by invasive architectonical, connectional and functional investigations. Using a hierarchical clustering analysis, we could retrieve clusters corresponding to the dorsal and ventral portions of F5c on the postarcuate convexity, F5a and F5p at different antero-posterior locations on the posterior bank of the lower arcuate, area 44 in the fundus, as well as part of area GrFO in the most anterior portion of the fundus. Additionally, each of these clusters displayed distinct whole-brain functional connectivity, in line with previous anatomical tracer and seed-based functional connectivity investigations of F5/44 subdivisions. Overall, our data suggests that hierarchical clustering analysis of resting-state fMRI data can retrieve a fine-grained level of cortical organization that resembles detailed parcellation schemes derived from invasive functional and anatomical investigations.
Collapse
|
23
|
Howells H, Simone L, Borra E, Fornia L, Cerri G, Luppino G. Reproducing macaque lateral grasping and oculomotor networks using resting state functional connectivity and diffusion tractography. Brain Struct Funct 2020; 225:2533-2551. [PMID: 32936342 PMCID: PMC7544728 DOI: 10.1007/s00429-020-02142-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
Abstract
Cortico-cortical networks involved in motor control have been well defined in the macaque using a range of invasive techniques. The advent of neuroimaging has enabled non-invasive study of these large-scale functionally specialized networks in the human brain; however, assessing its accuracy in reproducing genuine anatomy is more challenging. We set out to assess the similarities and differences between connections of macaque motor control networks defined using axonal tracing and those reproduced using structural and functional connectivity techniques. We processed a cohort of macaques scanned in vivo that were made available by the open access PRIME-DE resource, to evaluate connectivity using diffusion imaging tractography and resting state functional connectivity (rs-FC). Sectors of the lateral grasping and exploratory oculomotor networks were defined anatomically on structural images, and connections were reproduced using different structural and functional approaches (probabilistic and deterministic whole-brain and seed-based tractography; group template and native space functional connectivity analysis). The results showed that parieto-frontal connections were best reproduced using both structural and functional connectivity techniques. Tractography showed lower sensitivity but better specificity in reproducing connections identified by tracer data. Functional connectivity analysis performed in native space had higher sensitivity but lower specificity and was better at identifying connections between intrasulcal ROIs than group-level analysis. Connections of AIP were most consistently reproduced, although those connected with prefrontal sectors were not identified. We finally compared diffusion MR modelling with histology based on an injection in AIP and speculate on anatomical bases for the observed false negatives. Our results highlight the utility of precise ex vivo techniques to support the accuracy of neuroimaging in reproducing connections, which is relevant also for human studies.
Collapse
Affiliation(s)
- Henrietta Howells
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| | - Luciano Simone
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| | - Elena Borra
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Luca Fornia
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| |
Collapse
|
24
|
Identification of a distinct association fiber tract "IPS-FG" to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography. Sci Rep 2020; 10:15475. [PMID: 32968114 PMCID: PMC7511306 DOI: 10.1038/s41598-020-72471-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/02/2020] [Indexed: 02/02/2023] Open
Abstract
The intraparietal sulcus (IPS) in the posterior parietal cortex (PPC) is well-known as an interface for sensorimotor integration in visually guided actions. However, our understanding of the human neural network between the IPS and the cortical visual areas has been devoid of anatomical specificity. We here identified a distinctive association fiber tract “IPS-FG” to connect the IPS areas and the fusiform gyrus (FG), a high-level visual region, by white matter dissection and tractography. The major fiber bundles of this tract appeared to arise from the medial bank of IPS, in the superior parietal lobule (SPL), and project to the FG on the ventral temporal cortex (VTC) in post-mortem brains. This tract courses vertically at the temporo-parieto-occipital (TPO) junction where several fiber tracts intersect to connect the dorsal-to-ventral cortical regions, including the vertical occipital fasciculus (VOF). We then analyzed the structural connectivity of this tract with diffusion-MRI (magnetic resonance imaging) tractography. The quantitative tractography analysis revealed the major streamlines of IPS-FG interconnect the posterior IPS areas (e.g., IP1, IPS1) with FG (e.g., TF, FFC, VVC, PHA2, PIT) on the Human Connectome Project multimodal parcellation atlas (HCP MMP 1.0). Since the fronto-parietal network, including the posterior IPS areas, is recruited by multiple cognitive demands, the IPS-FG could play a role in the visuomotor integration as well as the top-down modulation of various cognitive functions reciprocally.
Collapse
|
25
|
Ma S, Li Y, Liu Y, Xu C, Li H, Yao Q, Wang Y, Yang Z, Zuo P, Yang M, Mo X. Changes in Cortical Thickness Are Associated With Cognitive Ability in Postoperative School-Aged Children With Tetralogy of Fallot. Front Neurol 2020; 11:691. [PMID: 32765405 PMCID: PMC7380078 DOI: 10.3389/fneur.2020.00691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022] Open
Abstract
In children with tetralogy of Fallot (TOF), there is a risk of brain injury even if intracardiac deformities are corrected. This population follow-up study aimed to identify the correlation between cerebral morphology changes and cognition in postoperative school-aged children with TOF. Resting-state functional magnetic resonance imaging (rs-fMRI) and the Wechsler Intelligence Scale for Children–Chinese revised edition (WISC-CR) were used to assess the difference between children with TOF and healthy children (HCs). Multiple linear regression showed that the TOF group had a lower verbal intelligence quotient (VIQ, 95.000 ± 13.433, p = 0.001) than the HC group and that VIQ had significant positive correlations with the cortical thickness of both the left precuneus (p < 0.05) and the right caudal middle frontal gyrus (p < 0.05) after adjustment for preoperative SpO2, preoperative systolic blood pressure (SBP), preoperative diastolic blood pressure (DBP) and time of aortic override (AO). Our results suggested that brain injury induced by TOF would exert lasting effects on cortical and cognitive development at least to school age. This study provides direct evidence of the relationship between cortical thickness and VIQ and of the need for strengthened verbal training in school-aged TOF patients after corrective surgery.
Collapse
Affiliation(s)
- Siyu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaping Li
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Liu
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huijun Li
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong Yao
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Pengcheng Zuo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Zakharov AV, Bulanov VA, Khivintseva EV, Kolsanov AV, Bushkova YV, Ivanova GE. Stroke Affected Lower Limbs Rehabilitation Combining Virtual Reality With Tactile Feedback. Front Robot AI 2020; 7:81. [PMID: 33501248 PMCID: PMC7805611 DOI: 10.3389/frobt.2020.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
In our study, we tested a combination of virtual reality (VR) and robotics in the original adjuvant method of post-stroke lower limb walk restoration in acute phase using a simulation with visual and tactile biofeedback based on VR immersion and physical impact to the soles of patients. The duration of adjuvant therapy was 10 daily sessions of 15 min each. The study showed the following significant rehabilitation progress in Control (N = 27) vs. Experimental (N = 35) groups, respectively: 1.56 ± 0.29 (mean ± SD) and 2.51 ± 0.31 points by Rivermead Mobility Index (p = 0.0286); 2.15 ± 0.84 and 6.29 ± 1.20 points by Fugl-Meyer Assessment Lower Extremities scale (p = 0.0127); and 6.19 ± 1.36 and 13.49 ± 2.26 points by Berg Balance scale (p = 0.0163). P-values were obtained by the Mann-Whitney U test. The simple and intuitive mechanism of rehabilitation, including through the use of sensory and semantic components, allows the therapy of a patient with diaschisis and afferent and motor aphasia. Safety of use allows one to apply the proposed method of therapy at the earliest stage of a stroke. We consider the main finding of this study that the application of rehabilitation with implicit interaction with VR environment produced by the robotics action has measurable significant influence on the restoration of the affected motor function of the lower limbs compared with standard rehabilitation therapy.
Collapse
Affiliation(s)
- Alexander V Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | | | - Elena V Khivintseva
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Alexander V Kolsanov
- Institute for Innovative Development, Samara State Medical University, Samara, Russia
| | - Yulia V Bushkova
- Research Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Galina E Ivanova
- Research Center of Cerebrovascular Pathology and Stroke, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
27
|
Mayer A, Lewenfus G, Bittencourt-Navarrete RE, Clasca F, Franca JGD. Thalamic Inputs to Posterior Parietal Cortical Areas Involved in Skilled Forelimb Movement and Tool Use in the Capuchin Monkey. Cereb Cortex 2019; 29:5098-5115. [PMID: 30888415 DOI: 10.1093/cercor/bhz051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
The posterior parietal cortex (PPC) is a central hub for the primate forebrain networks that control skilled manual behavior, including tool use. Here, we quantified and compared the sources of thalamic input to electrophysiologically-identified hand/forearm-related regions of several PPC areas, namely areas 5v, AIP, PFG, and PF, of the capuchin monkey (Sapajus sp). We found that these areas receive most of their thalamic connections from the Anterior Pulvinar (PuA), Lateral Posterior (LP) and Medial Pulvinar (PuM) nuclei. Each PPC area receives a specific combination of projections from these nuclei, and fewer additional projections from other nuclei. Moreover, retrograde labeling of the cells innervating different PPC areas revealed substantial intermingling of these cells within the thalamus. Differences in thalamic input may contribute to the different functional properties displayed by the PPC areas. Furthermore, the observed innervation of functionally-related PPC domains from partly intermingled thalamic cell populations accords with the notion that higher-order thalamic inputs may dynamically regulate functional connectivity between cortical areas.
Collapse
Affiliation(s)
- Andrei Mayer
- Department of Physiological Sciences, Federal University of Santa Catarina, 88040-900, Santa Catarina, Brazil
| | - Gabriela Lewenfus
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | | | - Francisco Clasca
- Department of Anatomy & Neuroscience, Autonoma University, Madrid, 28029 Spain
| | - João Guedes da Franca
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Baker CM, Burks JD, Briggs RG, Conner AK, Glenn CA, Taylor KN, Sali G, McCoy TM, Battiste JD, O'Donoghue DL, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 7: The Lateral Parietal Lobe. Oper Neurosurg (Hagerstown) 2019; 15:S295-S349. [PMID: 30260428 DOI: 10.1093/ons/opy261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022] Open
Abstract
In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 7, we specifically address regions relevant to the lateral parietal lobe.
Collapse
Affiliation(s)
- Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kathleen N Taylor
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tressie M McCoy
- Department of Physical Therapy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daniel L O'Donoghue
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
29
|
Corresponding anatomical and coactivation architecture of the human precuneus showing similar connectivity patterns with macaques. Neuroimage 2019; 200:562-574. [DOI: 10.1016/j.neuroimage.2019.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
|
30
|
Sharma S, Mantini D, Vanduffel W, Nelissen K. Functional specialization of macaque premotor F5 subfields with respect to hand and mouth movements: A comparison of task and resting-state fMRI. Neuroimage 2019; 191:441-456. [PMID: 30802514 DOI: 10.1016/j.neuroimage.2019.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022] Open
Abstract
Based on architectonic, tract-tracing or functional criteria, the rostral portion of ventral premotor cortex in the macaque monkey, also termed area F5, has been divided into several subfields. Cytoarchitectonical investigations suggest the existence of three subfields, F5c (convexity), F5p (posterior) and F5a (anterior). Electrophysiological investigations have suggested a gradual dorso-ventral transition from hand- to mouth-dominated motor fields, with F5p and ventral F5c strictly related to hand movements and mouth movements, respectively. The involvement of F5a in this respect, however, has received much less attention. Recently, data-driven resting-state fMRI approaches have also been used to examine the presence of distinct functional fields in macaque ventral premotor cortex. Although these studies have suggested several functional clusters in/near macaque F5, so far the parcellation schemes derived from these clustering methods do not completely retrieve the same level of F5 specialization as suggested by aforementioned invasive techniques. Here, using seed-based resting-state fMRI analyses, we examined the functional connectivity of different F5 seeds with key regions of the hand and face/mouth parieto-frontal-insular motor networks. In addition, we trained monkeys to perform either hand grasping or ingestive mouth movements in the scanner in order to compare resting-state with task-derived functional hand and mouth motor networks. In line with previous single-cell investigations, task-fMRI suggests involvement of F5p, dorsal F5c and F5a in the execution of hand grasping movements, while non-communicative mouth movements yielded particularly pronounced responses in ventral F5c. Corroborating with anatomical tracing data of macaque F5 subfields, seed-based resting-state fMRI suggests a transition from predominant functional correlations with the hand-motor network in F5p to mostly mouth-motor network functional correlations in ventral F5c. Dorsal F5c yielded robust functional correlations with both hand- and mouth-motor networks. In addition, the deepest part of the fundus of the inferior arcuate, corresponding to area 44, displayed a strikingly different functional connectivity profile compared to neighboring F5a, suggesting a different functional specialization for these two neighboring regions.
Collapse
Affiliation(s)
- S Sharma
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - D Mantini
- Movement Control & Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; Functional Neuroimaging Laboratory, Fondazione Ospedale San Camillo - IRCCS, Venezia, Italy
| | - W Vanduffel
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - K Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
31
|
Bahmer A, Gupta DS. Role of Oscillations in Auditory Temporal Processing: A General Model for Temporal Processing of Sensory Information in the Brain? Front Neurosci 2018; 12:793. [PMID: 30429770 PMCID: PMC6220050 DOI: 10.3389/fnins.2018.00793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We review the role of oscillations in the brain and in the auditory system showing that the ability of humans to distinguish changes in pitch can be explained as a precise analysis of temporal information in auditory signals by neural oscillations. The connections between auditory brain stem chopper neurons construct neural oscillators, which discharge spikes at various constant intervals that are integer multiples of 0.4 ms, contributing to the temporal processing of auditory cochlear output. This is subsequently spatially mapped in the inferior colliculus. Electrophysiological measurements of auditory chopper neurons in different species show oscillations with periods which are integer multiples of 0.4 ms. The constant intervals of 0.4 ms can be attributed to the smallest synaptic delay between interconnected simulated chopper neurons. We also note the patterns of similarities between microcircuits in the brain stem and other parts of the brain (e.g., the pallidum, reticular formation, locus coeruleus, oculomotor nuclei, limbic system, amygdala, hippocampus, basal ganglia and substantia nigra), dedicated to the processing of temporal information. Similarities in microcircuits across the brain reflect the importance of one of the key mechanisms in the information processing in the brain, namely the temporal coupling of different neural events via coincidence detection.
Collapse
Affiliation(s)
- Andreas Bahmer
- Comprehensive Hearing Center, ENT Clinic, University of Würzburg, Würzburg, Germany
| | - Daya Shankar Gupta
- Biology Department, Camden County College, Gloucester Township, NJ, United States
| |
Collapse
|
32
|
Chorghay Z, Káradóttir RT, Ruthazer ES. White Matter Plasticity Keeps the Brain in Tune: Axons Conduct While Glia Wrap. Front Cell Neurosci 2018; 12:428. [PMID: 30519159 PMCID: PMC6251003 DOI: 10.3389/fncel.2018.00428] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
Precise timing of neuronal inputs is crucial for brain circuit function and development, where it contributes critically to experience-dependent plasticity. Myelination therefore provides an important adaptation mechanism for vertebrate circuits. Despite its importance to circuit activity, the interplay between neuronal activity and myelination has yet to be fully elucidated. In recent years, significant attention has been devoted to uncovering and explaining the phenomenon of white matter (WM) plasticity. Here, we summarize some of the critical evidence for modulation of the WM by neuronal activity, ranging from human diffusion tensor imaging (DTI) studies to experiments in animal models. These experiments reveal activity-dependent changes in the differentiation and proliferation of the oligodendrocyte lineage, and in the critical properties of the myelin sheaths. We discuss the implications of such changes for synaptic function and plasticity, and present the underlying mechanisms of neuron–glia communication, with a focus on glutamatergic signaling and the axomyelinic synapse. Finally, we examine evidence that myelin plasticity may be subject to critical periods. Taken together, the present review aims to provide insights into myelination in the context of brain circuit formation and function, emphasizing the bidirectional interplay between neurons and myelinating glial cells to better inform future investigations of nervous system plasticity.
Collapse
Affiliation(s)
- Zahraa Chorghay
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ragnhildur Thóra Káradóttir
- Department of Veterinary Medicine, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Zanon M, Borgomaneri S, Avenanti A. Action-related dynamic changes in inferior frontal cortex effective connectivity: A TMS/EEG coregistration study. Cortex 2018; 108:193-209. [DOI: 10.1016/j.cortex.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
|
34
|
Selective Inhibition of Volitional Hand Movements after Stimulation of the Dorsoposterior Parietal Cortex in Humans. Curr Biol 2018; 28:3303-3309.e3. [DOI: 10.1016/j.cub.2018.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 11/21/2022]
|
35
|
Meredith MA, Wallace MT, Clemo HR. Do the Different Sensory Areas Within the Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent a Network Multisensory Hub? Multisens Res 2018; 31:793-823. [PMID: 31157160 PMCID: PMC6542292 DOI: 10.1163/22134808-20181316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current theory supports that the numerous functional areas of the cerebral cortex are organized and function as a network. Using connectional databases and computational approaches, the cerebral network has been demonstrated to exhibit a hierarchical structure composed of areas, clusters and, ultimately, hubs. Hubs are highly connected, higher-order regions that also facilitate communication between different sensory modalities. One region computationally identified network hub is the visual area of the Anterior Ectosylvian Sulcal cortex (AESc) of the cat. The Anterior Ectosylvian Visual area (AEV) is but one component of the AESc that also includes the auditory (Field of the Anterior Ectosylvian Sulcus - FAES) and somatosensory (Fourth somatosensory representation - SIV). To better understand the nature of cortical network hubs, the present report reviews the biological features of the AESc. Within the AESc, each area has extensive external cortical connections as well as among one another. Each of these core representations is separated by a transition zone characterized by bimodal neurons that share sensory properties of both adjoining core areas. Finally, core and transition zones are underlain by a continuous sheet of layer 5 neurons that project to common output structures. Altogether, these shared properties suggest that the collective AESc region represents a multiple sensory/multisensory cortical network hub. Ultimately, such an interconnected, composite structure adds complexity and biological detail to the understanding of cortical network hubs and their function in cortical processing.
Collapse
Affiliation(s)
- M. Alex Meredith
- Department of Anatomy and Neurobiology, Virginia
Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Mark T. Wallace
- Vanderbilt Brain Institute, Vanderbilt University,
Nashville, TN 37240 USA
| | - H. Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia
Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
36
|
Affiliation(s)
- Marco Catani
- NatBrainLab, Department of Neuroimaging and Department of Forensic and Neurodevelopmental Science, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
37
|
Catani M, Robertsson N, Beyh A, Huynh V, de Santiago Requejo F, Howells H, Barrett RLC, Aiello M, Cavaliere C, Dyrby TB, Krug K, Ptito M, D'Arceuil H, Forkel SJ, Dell'Acqua F. Short parietal lobe connections of the human and monkey brain. Cortex 2017; 97:339-357. [PMID: 29157936 DOI: 10.1016/j.cortex.2017.10.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/28/2022]
Abstract
The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing. In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only. Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans.
Collapse
Affiliation(s)
- Marco Catani
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Naianna Robertsson
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ahmad Beyh
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Vincent Huynh
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Spinal Cord Injury Center, Research, University of Zurich, Balgrist University Hospital, Zurich, Switzerland
| | - Francisco de Santiago Requejo
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Henrietta Howells
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rachel L C Barrett
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco Aiello
- NAPLab, IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Carlo Cavaliere
- NAPLab, IRCCS SDN Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maurice Ptito
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark; Ecole d'Optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Helen D'Arceuil
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, USA
| | - Stephanie J Forkel
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
38
|
Matheson HE, Buxbaum LJ, Thompson-Schill SL. Differential Tuning of Ventral and Dorsal Streams during the Generation of Common and Uncommon Tool Uses. J Cogn Neurosci 2017; 29:1791-1802. [PMID: 28654359 PMCID: PMC5623132 DOI: 10.1162/jocn_a_01161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally.
Collapse
|
39
|
Abstract
BACKGROUND There have been several studies concerning rudimentary coordination of the eyes, hands, and mouth in the human newborn. The author attempted to clarify the ontogenetic significance of the coordination during the earliest period of human life through a systematic review. The neural mechanism underlying the coordination was also discussed based on the current knowledge of cognitive neuroscience. METHODS Searches were conducted on PubMed and Google Scholar from their inception through March 2017. RESULTS Studies have demonstrated that the coordination is a visually guided goal-directed motor behavior with intension and emotion. Current cognitive research has proved that feeding requires a large-scale neural network extending over several cortices. CONCLUSION The eye-hand-mouth coordination in the newborn can be regarded as a precursor of subsequent self-feeding, and the coordination is very likely mediated through the underdeveloped but essentially the same network interconnecting cortices as in the adult.
Collapse
|
40
|
Hernández-Pérez R, Cuaya LV, Rojas-Hortelano E, Reyes-Aguilar A, Concha L, de Lafuente V. Tactile object categories can be decoded from the parietal and lateral-occipital cortices. Neuroscience 2017; 352:226-235. [DOI: 10.1016/j.neuroscience.2017.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
|
41
|
Borra E, Gerbella M, Rozzi S, Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 2017; 75:65-90. [DOI: 10.1016/j.neubiorev.2017.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|