1
|
Querry M, Botzung A, Sourty M, Chabran E, Sanna L, Loureiro de Sousa P, Cretin B, Demuynck C, Muller C, Ravier A, Schorr B, Philippi N, Blanc F. Functional Connectivity Changes Associated With Depression in Dementia With Lewy Bodies. Int J Geriatr Psychiatry 2025; 40:e70058. [PMID: 40011213 PMCID: PMC11865007 DOI: 10.1002/gps.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Depressive symptoms are frequent in the early stages of dementia with Lewy bodies (DLB), and more than half of DLB patients would have a history of depression. Our study sought to investigate the functional connectivity (FC) changes associated with depressive symptoms in prodromal to mild DLB patients compared with controls. METHODS MRI data were collected from 66 DLB patients and 18 controls. Depression was evaluated with the Mini International Neuropsychiatric Interview. Resting-state FC (rsFC) was investigated with the CONN toolbox using a seed-based approach and both regression and comparison analyses. RESULTS Correlations were found between the depression scores and the rsFC between fronto-temporal and primary visual areas in DLB patients (p < 0.05, FDR corrected). Depressed DLB patients also showed decreased rsFC within the salience network (SN), increased rsFC between the default mode network (DMN) and the language network (LN) and decreased rsFC between the cerebellar network (CN) and the fronto-parietal network (FPN) compared to non-depressed DLB patients (p < 0.05, uncorrected). Comparison analyses between antidepressant-treated and non-treated DLB patients highlighted FC changes in treated patients involving the SN, the DMN, the FPN and the dorsal attentional network (p < 0.05, uncorrected). CONCLUSIONS Our findings revealed that depressive symptoms would especially be associated with rsFC changes between fronto-temporal and primary visual areas in DLB patients. Such alterations could contribute to difficulties in regulating emotions, processing biases towards negative stimuli, and self-focused ruminations. TRIAL REGISTRATION This study is part of the cohort study AlphaLewyMA (https://clinicaltrials.gov/ct2/show/NCT01876459).
Collapse
Affiliation(s)
- Manon Querry
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Anne Botzung
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Marion Sourty
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Elena Chabran
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Léa Sanna
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Paulo Loureiro de Sousa
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
| | - Benjamin Cretin
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Catherine Demuynck
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Candice Muller
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Alix Ravier
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Benoît Schorr
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Nathalie Philippi
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| | - Frédéric Blanc
- University of Strasbourg and CNRSICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg)IMIS TeamStrasbourgFrance
- Geriatrics DivisionUniversity Hospitals of StrasbourgCM2R (Research and Resources Memory Centre)Geriatric Day HospitalStrasbourgFrance
| |
Collapse
|
2
|
Yao C, Zhao Y, Zhang Q, Zhao Z, Ai K, Zhang B, Lui S. The immediate alteration of cerebellar Glx/GABA and cerebello-thalamo-cortical connectivity in patients with schizophrenia after cerebellar TMS. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:12. [PMID: 39905027 PMCID: PMC11794885 DOI: 10.1038/s41537-025-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Cerebellar dysfunction is a key aspect of schizophrenia, with the cerebello-thalamo-cortical (CTC) hyperconnectivity serving as a neural signature. Abnormalities in gamma-aminobutyric acid (GABA) and glutamate + glutamine (Glx) levels also contribute to this pathology. Transcranial magnetic stimulation (TMS) applied to the cerebellum shows potential in alleviating schizophrenia symptoms, possibly by modulating functional connectivity or neurotransmitter levels. This study aims to explore the immediate effects of cerebellar TMS on CTC circuitry and neurotransmitter levels to elucidate its therapeutic mechanisms in schizophrenia.The study involved 19 stable schizophrenia patients and 26 healthy controls, diagnosed according to DSM-V criteria and assessed for symptom severity using the Positive and Negative Syndrome Scale (PANSS). MRI scans were conducted pre- and post-TMS to detect changes in CTC functional connectivity, GABA, Glx, and Glx/GABA. Linear Mixed-Effects Model (LMEM) and two-sample tests were employed to analyze changes in these variables from baseline to post-TMS. Pearson's correlation analysis was conducted to examine the relationships among these variables and their association with PANSS scores. Mediation analyses were employed to investigate whether GABA and/or Glx serve as potential mediators of CTC hyperconnectivity in patients with schizophrenia. Schizophrenia patients exhibit CTC hyperconnectivity, which remains at a relatively stable level after cerebellar TMS. Compared to healthy controls, schizophrenia patients have significantly higher cerebellar GABA levels, and cerebellar GABA has a significant mediation effect on CTC hyperconnectivity in patients. The Glx/GABA ratio was associated with the severity of clinical symptoms in patients, and cerebellar TMS partially normalized this ratio. Our findings demonstrate that aberrant cerebellar GABA levels contribute to CTC hyperconnectivity in schizophrenia. Additionally, our study shows that cerebellar TMS can increase Glx levels in schizophrenia patients, leading to the normalization of the Glx/GABA ratio, which may contribute to the therapeutic effects of TMS in schizophrenia.
Collapse
Grants
- Sichuan Science and Technology Program (Project No. 2022YFS0069)
- National Natural Science Foundation of China (Project Nos. 82120108014, 82071908), National Key R&D Program of China (Project Nos.2022YFC2009901, 2022YFC2009900), CAMS Innovation Fund for Medical Sciences (CIFMS) (Project No. 2021-I2M-C&T-A-022), Chengdu Science and Technology Office, major technology application demonstration project (Project Nos. 2022-YF09-00062-SN, 2022-GH03-00017-HZ), 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Project No. ZYGD23003), Sichuan Science and Technology Program (Project No. 2021JDTD0002), the Fundamental Research Funds for the Central Universities (Project No. ZYGX2022YGRH008).
Collapse
Affiliation(s)
- Chenyang Yao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Youjin Zhao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qian Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Ziyuan Zhao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, Xi'an, China
| | - Bo Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
3
|
Bachmann T, Mueller K, Kusnezow SNA, Schroeter ML, Piaggi P, Weise CM. Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling. Gigascience 2025; 14:giaf010. [PMID: 40072905 PMCID: PMC11899596 DOI: 10.1093/gigascience/giaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
Collapse
Affiliation(s)
- Tobias Bachmann
- Department of Neurology, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Neurology, First Faculty of Medicine and General University Hospital in Prague, Prague 12108, Czech Republic
| | - Simon N A Kusnezow
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Christopher M Weise
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| |
Collapse
|
4
|
Loprinzi P, Fuglaar L, Mangold R, Petty S, Jung M, Day LB, Patrick Z, Erickson KI, Kelemen WL. The effects of acute exercise intensity on memory: Controlling for state-dependence. Mem Cognit 2024:10.3758/s13421-024-01660-2. [PMID: 39542975 DOI: 10.3758/s13421-024-01660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The present experiment evaluated the effects of varying intensities of acute exercise on free-recall memory performance while controlling for potential state-dependent effects. Forty-eight young adults completed a within-subject experiment involving seven primary laboratory visits. The encoding and retrieval phases were matched or mismatched by taking place either during rest or during a less than 5-min bout of acute exercise, and at moderate or vigorous intensity. We did not find evidence that the effects of acute exercise on memory were state-dependent but instead demonstrated that memory recall was greater when memory retrieval occurred during vigorous-intensity exercise compared to rest. These findings have important implications for the strategic placement of exercise during the phases of memory (e.g., acquisition, storage, retrieval) to optimize memory performance and suggest boundary conditions of state-dependent learning. We discuss various theoretical accounts (e.g., shift in metabolic resources across brain regions) to explain these findings.
Collapse
Affiliation(s)
- Paul Loprinzi
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford, MS, 38655, USA.
- Department of Psychology, University of Mississippi, Oxford, MS, USA.
| | - Lauren Fuglaar
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Rylie Mangold
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Sierra Petty
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Myungjin Jung
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, TX, USA
| | - L B Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, Oxford, MS, USA
| | - Zakary Patrick
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford, MS, 38655, USA
| | - Kirk I Erickson
- Neuroscience Institute, AdventHealth Research Institute, Orlando, FL, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William L Kelemen
- Department of Psychology, Texas State University, San Marcos, TX, USA
| |
Collapse
|
5
|
van der Heijden ME. Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1754-1767. [PMID: 38780757 PMCID: PMC11489171 DOI: 10.1007/s12311-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA.
- Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Port AP, Paulo AJM, de Azevedo Neto RM, Lacerda SS, Radvany J, Santaella DF, Kozasa EH. Differences in brain connectivity between older adults practicing Tai Chi and Water Aerobics: a case-control study. Front Integr Neurosci 2024; 18:1420339. [PMID: 39323912 PMCID: PMC11422087 DOI: 10.3389/fnint.2024.1420339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Background This study aimed to investigate the neural mechanisms that differentiate mind-body practices from aerobic physical activities and elucidate their effects on cognition and healthy aging. We examined functional brain connectivity in older adults (age > 60) without pre-existing uncontrolled chronic diseases, comparing Tai Chi with Water Aerobics practitioners. Methods We conducted a cross-sectional, case-control fMRI study involving two strictly matched groups (n = 32) based on gender, age, education, and years of practice. Seed-to-voxel analysis was performed using the Salience, and Frontoparietal Networks as seed regions in Stroop Word-Color and N-Back tasks and Resting State. Results During Resting State condition and using Salience network as a seed, Tai Chi group exhibited a stronger correlation between Anterior Cingulate Cortex and Insular Cortex areas (regions related to interoceptive awareness, cognitive control and motor organization of subjective aspects of experience). In N-Back task and using Salience network as seed, Tai Chi group showed increased correlation between Left Supramarginal Gyrus and various cerebellar regions (related to memory, attention, cognitive processing, sensorimotor control and cognitive flexibility). In Stroop task, using Salience network as seed, Tai Chi group showed enhanced correlation between Left Rostral Prefrontal Cortex and Right Occipital Pole, and Right Lateral Occipital Cortex (areas associated with sustained attention, prospective memory, mediate attention between external stimuli and internal intention). Additionally, in Stroop task, using Frontoparietal network as seed, Water Aerobics group exhibited a stronger correlation between Left Posterior Parietal Lobe (specialized in word meaning, representing motor actions, motor planning directed to objects, and general perception) and different cerebellar regions (linked to object mirroring). Conclusion Our study provides evidence of differences in functional connectivity between older adults who have received training in a mind-body practice (Tai Chi) or in an aerobic physical activity (Water Aerobics) when performing attentional and working memory tasks, as well as during resting state.
Collapse
Affiliation(s)
| | | | | | | | - João Radvany
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | |
Collapse
|
7
|
Petrosini L, Picerni E, Termine A, Fabrizio C, Laricchiuta D, Cutuli D. The Cerebellum as an Embodying Machine. Neuroscientist 2024; 30:229-246. [PMID: 36052895 DOI: 10.1177/10738584221120187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas emotion theorists often keep their distance from the embodied approach, theorists of embodiment tend to treat emotion as a mainly physiologic process. However, intimate links between emotions and the body suggest that emotions are privileged phenomena to attempt to reintegrate mind and body and that the body helps the mind in shaping emotional responses. To date, research has favored the cerebrum over other parts of the brain as a substrate of embodied emotions. However, given the widely demonstrated contribution of the cerebellum to emotional processing, research in affective neuroscience should consider embodiment theory as a useful approach for evaluating the cerebellar role in emotion and affect. The aim of this review is to insert the cerebellum among the structures needed to embody emotions, providing illustrative examples of cerebellar involvement in embodied emotions (as occurring in empathic abilities) and in impaired identification and expression of embodied emotions (as occurring in alexithymia).
Collapse
Affiliation(s)
| | | | | | | | | | - Debora Cutuli
- Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| |
Collapse
|
8
|
Bolzan G, Müller Eyng ME, Leotti VB, Saraiva-Pereira ML, Jardim LB. Cognitive-affective manifestations since premanifest phases of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease. Cortex 2024; 171:370-382. [PMID: 38091940 DOI: 10.1016/j.cortex.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 09/29/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Cognitive deficits were related to Spinocerebellar Ataxia type 3/Machado-Joseph Disease (SCA3/MJD), but the Cerebellar Cognitive Affective Syndrome (CCAS) needs further investigation in this disorder. We aimed to characterize cognitive-affective deficits in manifest and premanifest SCA3/MJD carriers. METHODS Subjects at 50% risk, manifest carriers and unrelated controls were evaluated in-person or in virtual settings with CCAS Scale (CCAS-S), Stroop Color-Word Test (SCWT), Trail-Making Test (TMT), and Reading the Mind in the Eyes Test (RMET). Scale for Assessment and Rating of Ataxia (SARA) >2.5 or Friedreich Ataxia Rating Scale/Activities of Daily Living (FARS-adl) >4 divided carriers into manifest and premanifest. Time after onset or time left to gait ataxia onset (TimeToAfterOnset) were estimated. Differences between groups and correlations with TimeToAfterOnset, SARA and FARS-adl were checked. RESULTS After random selection to balance groups, 23 manifest and 35 premanifest carriers, and 58 controls were included. CCAS-S, semantic fluency, phonemic fluency, category switching, affect, SCWT, and RMET showed significant differences between manifest carriers and controls; premanifest carriers mostly displayed intermediate values between controls and manifest carriers. These variables correlated with TimeToAfterOnset and SARA scores of the carriers. Correlations with SARA were stronger in the pre-ataxic group. CCAS-S had the strongest correlations with time and SARA. DISCUSSION Cognitive-affective deficits in SCA3/MJD involve executive function, language, affect, and social cognition, which seem to be altered prior to the ataxia onset, and correlate with markers of motor progression. CCAS-S was the most promising biomarker and should be evaluated in longitudinal studies.
Collapse
Affiliation(s)
- Gabriela Bolzan
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria E Müller Eyng
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa B Leotti
- Departmento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria L Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura B Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Guell X, Schmahmann JD. Diaschisis in the human brain reveals specificity of cerebrocerebellar connections. J Comp Neurol 2023; 531:2185-2193. [PMID: 37609856 DOI: 10.1002/cne.25534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023]
Abstract
Anatomical studies in animals and imaging studies in humans show that cerebral sensorimotor areas map onto corresponding cerebellar sensorimotor areas and that cerebral association areas map onto cerebellar posterior lobe regions designated as the representation of the association (cognitive and limbic) cerebellum. We report a patient with unilateral left hemispheric status epilepticus, whose brain MRI revealed diffuse unihemispheric cerebral cortical FLAIR and diffusion signal hyperintensity but spared primary motor, somatosensory, visual, and to lesser extent auditory cerebral cortices. Crossed cerebellar diaschisis (dysfunction at a site remote from, but connected to, the location of the primary lesion) showed signal hyperintensity in the right cerebellar posterior lobe and lobule IX, with sparing of the anterior lobe, and lobule VIII. This unique topographic pattern of involvement and sparing of cerebral and cerebellar cortical areas matches the anatomical and functional connectivity specialization in the cerebrocerebellar circuit. This first demonstration of within-hemispheric specificity in the areas affected and spared by cerebrocerebellar diaschisis provides further confirmation in the human brain for topographic organization of connections between the cerebral hemispheres and the cerebellum.
Collapse
Affiliation(s)
- Xavier Guell
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Neurology, New York University Grossman School of Medicine, New York City, New York, USA
| | - Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
van der Giessen RS, Satoer D, Koudstaal PJ. The CODECS study: COgnitive DEficits in Cerebellar Stroke. Brain Cogn 2023; 173:106102. [PMID: 37922627 DOI: 10.1016/j.bandc.2023.106102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/28/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Part of the extra-pyramidal system, the cerebellum is more and more recognized by its non-motor functions known as the cerebellar cognitive affective syndrome. Several studies have identified disturbances specifically in executive and attentional functions after focal cerebellar lesions. However, most studies were performed in small and heterogeneous patient groups. Furthermore, there is a substantial variation in the methodology of assessment. Here, we present the results of a large and homogeneous cohort of patients with isolated uniform cerebellar lesions. After three months post-stroke all patients underwent structural neuroimaging to confirm an isolated lesion and were given neuropsychological testing. The results show that cerebellar lesions relate to mild but long-term cognitive impairment in a broad spectrum of neurocognitive functions compared to normative values. These findings confirm involvement of the cerebellum in cognitive processing and supports the theory of 'dysmetria of thought' based upon uniform cerebellar processing in multiple cognitive domains. This study highlights the following results: 1-Cognitive impairments after isolated cerebellar stroke is confirmed in several cognitive domains. 2-Semantic and phonemic fluency are most affected in cerebellar stroke patients. 3-Verbal deficits show an age-independent long term effect post-stroke and should be studied further in depth. 4-Cognitive disorders after cerebellar stroke are more prominent in women than men.
Collapse
Affiliation(s)
| | - Djaina Satoer
- Department of Neurosurgery, Erasmus University, Rotterdam, The Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus University, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Shinn AK, Hurtado-Puerto AM, Roh YS, Ho V, Hwang M, Cohen BM, Öngür D, Camprodon JA. Cerebellar transcranial magnetic stimulation in psychotic disorders: intermittent, continuous, and sham theta-burst stimulation on time perception and symptom severity. Front Psychiatry 2023; 14:1218321. [PMID: 38025437 PMCID: PMC10679721 DOI: 10.3389/fpsyt.2023.1218321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cerebellum contributes to the precise timing of non-motor and motor functions, and cerebellum abnormalities have been implicated in psychosis pathophysiology. In this study, we explored the effects of cerebellar theta burst stimulation (TBS), an efficient transcranial magnetic stimulation protocol, on temporal discrimination and self-reported mood and psychotic symptoms. Methods We conducted a case-crossover study in which patients with psychosis (schizophrenias, schizoaffective disorders, or bipolar disorders with psychotic features) were assigned to three sessions of TBS to the cerebellar vermis: one session each of intermittent (iTBS), continuous (cTBS), and sham TBS. Of 28 enrolled patients, 26 underwent at least one TBS session, and 20 completed all three. Before and immediately following TBS, participants rated their mood and psychotic symptoms and performed a time interval discrimination task (IDT). We hypothesized that cerebellar iTBS and cTBS would modulate these measures in opposing directions, with iTBS being adaptive and cTBS maladaptive. Results Reaction time (RT) in the IDT decreased significantly after iTBS vs. Sham (LS-mean difference = -73.3, p = 0.0001, Cohen's d = 1.62), after iTBS vs. cTBS (LS-mean difference = -137.6, p < 0.0001, d = 2.03), and after Sham vs. cTBS (LS-mean difference = -64.4, p < 0.0001, d = 1.33). We found no effect on IDT accuracy. We did not observe any effects on symptom severity after correcting for multiple comparisons. Conclusion We observed a frequency-dependent dissociation between the effects of iTBS vs. cTBS to the cerebellar midline on the reaction time of interval discrimination in patients with psychosis. iTBS showed improved (adaptive) while cTBS led to worsening (maladaptive) speed of response. These results demonstrate behavioral target engagement in a cognitive dimension of relevance to patients with psychosis and generate testable hypotheses about the potential therapeutic role of cerebellar iTBS in this clinical population. Clinical Trial Registration clinicaltrials.gov, identifier NCT02642029.
Collapse
Affiliation(s)
- Ann K. Shinn
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Aura M. Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Youkyung S. Roh
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Victoria Ho
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| | - Melissa Hwang
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Joan A. Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Gatti D, Rinaldi L, Vecchi T, Ferrari C. Understanding cerebellar cognitive and social functions: methodological challenges and new directions for future transcranial magnetic stimulation studies. Curr Opin Behav Sci 2023; 53:101300. [DOI: 10.1016/j.cobeha.2023.101300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Luo L, Li Q, Wang Y, He N, Wang Y, You W, Zhang Q, Long F, Chen L, Zhao Y, Yao L, Sweeney JA, Gong Q, Li F. Shared and Disorder-Specific Alterations of Brain Temporal Dynamics in Obsessive-Compulsive Disorder and Schizophrenia. Schizophr Bull 2023; 49:1387-1398. [PMID: 37030006 PMCID: PMC10483459 DOI: 10.1093/schbul/sbad042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) and schizophrenia have distinct but also overlapping symptoms. Few studies have examined the shared and disorder-specific disturbances in dynamic brain function in the 2 disorders. STUDY DESIGN Resting-state functional magnetic resonance imaging data of 31 patients with OCD and 49 patients with schizophrenia, all untreated, and 45 healthy controls (HCs) were analyzed using spatial group independent component (IC) analysis. Time-varying degree centrality patterns across the whole brain were clustered into 3 reoccurring states, and state transition metrics were obtained. We further explored regional temporal variability of degree centrality for each IC across all time windows. STUDY RESULTS Patients with OCD and patients with schizophrenia both showed decreased occurrence of a state having the highest centrality in the sensorimotor and auditory networks. Additionally, patients with OCD and patients with schizophrenia both exhibited reduced dynamics of degree centrality in the superior frontal gyrus than controls, while dynamic degree centrality of the cerebellum was lower in patients with schizophrenia than with OCD and HCs. Altered dynamics of degree centrality nominally correlated with symptom severity in both patient groups. CONCLUSIONS Our study provides evidence of transdiagnostic and clinically relevant functional brain abnormalities across OCD and schizophrenia in neocortex, as well as functional dynamic alterations in the cerebellum specific to schizophrenia. These findings add to the recognition of overlap in neocortical alterations in the 2 disorders, and indicate that cerebellar alterations in schizophrenia may be specifically important in schizophrenia pathophysiology via impact on cerebellar thalamocortical circuitry.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Radiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qian Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fenghua Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
14
|
Wang X, Xia J, Wang W, Lu J, Liu Q, Fan J, Soondrum T, Yu Q, Tan C, Zhu X. Disrupted functional connectivity of the cerebellum with default mode and frontoparietal networks in young adults with major depressive disorder. Psychiatry Res 2023; 324:115192. [PMID: 37054552 DOI: 10.1016/j.psychres.2023.115192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Cerebellar dysconnectivity has repeatedly been documented in major depressive disorder (MDD). The cerebellum is composed of multiple functionally distinct subunits, and whether those subunits show similar or distinct dysconnectivity patterns with the cerebrum in MDD, is still unclear and needs to be further clarified. In this study, 91 MDD patients (23 male and 68 female) and 59 demographically matched healthy controls (22 male and 37 female) were enrolled to explore the cerebellar-cerebral dysconnectivity pattern in MDD by using the cutting-edge cerebellar partition atlas. Results showed that MDD patients exhibit decreased cerebellar connectivity with cerebral regions of default mode (DMN), frontoparietal networks (FPN), and visual areas. The dysconnectivity pattern was statistically similar across cerebellar subunits, with no significant diagnosis-by-subunit interactions. Correlation analyzes showed that cerebellar-dorsal lateral prefrontal cortex (DLPFC) connectivity is significantly correlated with anhedonia in MDD patients. Such dysconnectivity pattern was not affected by sex, which, however, should be further replicated in larger samples. These findings suggest a generalized disrupted cerebellar-cerebral connectivity pattern in MDD across all cerebellar subunits, which partially accounts for depressive symptoms in MDD, thus highlighting the pivotal role of the disrupted connectivity of cerebellum with DMN and FPN in the neuropathology of depression.
Collapse
Affiliation(s)
- Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Jie Xia
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Weiyan Wang
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingjie Lu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Qian Liu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Tamini Soondrum
- Association Alzheimer of Mauritius, Old Moka Road, Belle Rose, Quatre Bornes, Mauritius
| | - Quanhao Yu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Medical Psychological Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
15
|
Lu J, Zhou C, Pu J, Tian J, Yin X, Lv D, Guan X, Guo T, Zhang M, Zhang B, Yan Y, Zhao G. Brain microstructural changes in essential tremor patients and correlations with clinical characteristics: a diffusion kurtosis imaging study. J Neurol 2023; 270:2106-2116. [PMID: 36609498 DOI: 10.1007/s00415-023-11557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Essential tremor (ET) is the second most common movement disorder; however, the pathophysiological mechanism of ET is unclear. We aimed to investigate the microstructural degeneration of gray matter (GM) and white matter (WM) and their correlations with cognition and tremor in patients with ET. METHODS The participants were 63 patients with ET and 63 matched healthy controls (HCs) who underwent 3D-T1 weighted and diffusion kurtosis images (DKI). Microstructural degeneration was measured using high-level diffusion parameters derived from DKI. A voxel-wise analysis of the means of the GM-based spatial statistics and tract-based spatial statistics were conducted to assess differences in diffusion parameters between the ET and HC groups. The volume differences between the two groups were also assessed, and tremor severity and multi-domain cognitive performance were evaluated. Finally, the relationship between microstructural degeneration and clinical characteristics were assessed. RESULTS The ET group had significantly lower mean kurtosis of the temporal, parietal, and occipital lobes and the cerebellum and lower radial kurtosis in several tracts. These microstructural changes in GM and WM were correlated with tremor and cognitive scores. However, no significant difference in volume was found between the groups. CONCLUSION Our findings suggest that ET entails extensive GM and WM microstructural alterations, which support the neurodegenerative hypothesis of ET. Our study contributes to a better understanding of the mechanisms underlying tremor and cognitive impairment in ET.
Collapse
Affiliation(s)
- Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
16
|
Cao H, Wei X, Zhang W, Xiao Y, Zeng J, Sweeney JA, Gong Q, Lui S. Cerebellar Functional Dysconnectivity in Drug-Naïve Patients With First-Episode Schizophrenia. Schizophr Bull 2023; 49:417-427. [PMID: 36200880 PMCID: PMC10016395 DOI: 10.1093/schbul/sbac121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cerebellar functional dysconnectivity has long been implicated in schizophrenia. However, the detailed dysconnectivity pattern and its underlying biological mechanisms have not been well-charted. This study aimed to conduct an in-depth characterization of cerebellar dysconnectivity maps in early schizophrenia. STUDY DESIGN Resting-state fMRI data were processed from 196 drug-naïve patients with first-episode schizophrenia and 167 demographically matched healthy controls. The cerebellum was parcellated into nine functional systems based on a state-of-the-art atlas, and seed-based connectivity for each cerebellar system was examined. The observed connectivity alterations were further associated with schizophrenia risk gene expressions using data from the Allen Human Brain Atlas. STUDY RESULTS Overall, we observed significantly increased cerebellar connectivity with the sensorimotor cortex, default-mode regions, ventral part of visual cortex, insula, and striatum. In contrast, decreased connectivity was shown chiefly within the cerebellum, and between the cerebellum and the lateral prefrontal cortex, temporal lobe, and dorsal visual areas. Such dysconnectivity pattern was statistically similar across seeds, with no significant group by seed interactions identified. Moreover, connectivity strengths of hypoconnected but not hyperconnected regions were significantly correlated with schizophrenia risk gene expressions, suggesting potential genetic underpinnings for the observed hypoconnectivity. CONCLUSIONS These findings suggest a common bidirectional dysconnectivity pattern across different cerebellar subsystems, and imply that such bidirectional alterations may relate to different biological mechanisms.
Collapse
Affiliation(s)
- Hengyi Cao
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Xia Wei
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Radmard S, Zesiewicz TA, Kuo SH. Evaluation of Cerebellar Ataxic Patients. Neurol Clin 2023; 41:21-44. [PMID: 36400556 PMCID: PMC10354692 DOI: 10.1016/j.ncl.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebellar ataxia results from damage to the cerebellum and presents as movement incoordination and variability, gait impairment, and slurred speech. Patients with cerebellar ataxia can also have cognitive and mood changes. Although the identification of causes for cerebellar ataxia can be complex, age of presentation, chronicity, family history, and associated movement disorders may provide diagnostic clues. There are many genetic causes for cerebellar ataxia, and the common autosomal dominant and recessive ataxia are due to genetic repeat expansions. Step-by-step approach will lead to the identification of the causes. Symptomatic and potential disease-modifying therapies may benefit patients with cerebellar ataxia.
Collapse
Affiliation(s)
- Sara Radmard
- Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, Floor 3, New York, NY 10032, USA.
| | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida (USF), USF Ataxia Research Center, Tampa, FL, USA; James A Haley Veteran's Hospital, Tampa, FL, USA
| | - Sheng-Han Kuo
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, 650 West 168th Street, Room 305, New York, NY 10032, USA.
| |
Collapse
|
18
|
de Carvalho M, Swash M. Upper and lower motor neuron neurophysiology and motor control. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:17-29. [PMID: 37562869 DOI: 10.1016/b978-0-323-98818-6.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
This chapter considers the principles that underlie neurophysiological studies of upper motor neuron or lower motor neuron lesions, based on an understanding of the normal structure and function of the motor system. Human motor neurophysiology consists of an evaluation of the active components of the motor system that are relevant to volitional movements. Relatively primitive motor skills include locomotion, much dependent on the spinal cord central pattern generator, reaching, involving proximal and distal muscles activation, and grasping. Humans are well prepared to perform complex movements like writing. The role of motor cortex is critical for the motor activity, very dependent on the continuous sensory feedback, and this is essential for adapting the force and speed control, which contributes to motor learning. Most corticospinal neurons in the brain project to brainstem and spinal cord, many with polysynaptic inhibitory rather than excitatory connections. The monosynaptic connections observed in humans and primates constitute a specialized pathway implicated in fractional finger movements. Spinal cord has a complex physiology, and local reflexes and sensory feedback are essential to control adapted muscular contraction during movement. The cerebellum has a major role in motor coordination, but also consistent roles in sensory activities, speech, and language, in motor and spatial memory, and in psychological activity. The motor unit is the final effector of the motor drive. The complex interplay between the lower motor neuron, its axon, motor end-plates, and muscle fibers allows a relevant plasticity in the movement output.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.
| | - Michael Swash
- Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Barts and London School of Medicine, Queen Mary University of London and Royal London Hospital, London, United Kingdom
| |
Collapse
|
19
|
Lin CR, Amokrane N, Chen S, Chen TX, Lai R, Trinh P, Minyetty MJ, Emmerich H, Pan M, Claassen DO, Kuo S. Cerebellar impulsivity-compulsivity assessment scale. Ann Clin Transl Neurol 2023; 10:48-57. [PMID: 36401598 PMCID: PMC9852385 DOI: 10.1002/acn3.51698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The cerebellum has been identified as the key brain region that modulates reward processing in animal models. Consistently, we recently found that people with cerebellar ataxia have impulsive and compulsive behaviors (ICBs), the main symptoms related to abnormal reward processing. Due to the lack of a validated scale to quantitatively measure ICBs in cerebellar disorders, we aim to develop and validate a new scale, Cerebellar Impulsivity-Compulsivity Assessment (CIA). METHODS We recruited 62 cerebellar ataxia cases, categorized into those with ICBs and those without. We developed a preliminary version of CIA, containing 17 questions. We studied the internal consistency, test-retest reliability, and inter-rater reliability to formulate the final version of CIA, which constitutes only 10 questions. The receiver operating characteristic curve (ROC) was generated to assess the sensitivity and specificity of CIA. RESULTS Cerebellar ataxia cases with ICBs have threefold higher total preliminary CIA scores than those without ICBs (12.06 ± 5.96 vs. 4.68 ± 3.50, p = 0.038). Cronbach's alpha revealed good internal consistency across all items (α > 0.70). By performing the test-retest reliability and inter-rater reliability on the preliminary version of CIA, we excluded seven questions (r < 0.70) and generated the final version of CIA. Based on the ROC, a score of 8.0 in CIA was chosen as the cut-off for ICBs in individuals with cerebellar ataxia with 81% sensitivity and 81% specificity. INTERPRETATION CIA is a novel tool to assess ICBs in cerebellar ataxia and broaden our understanding of the cerebellum-related cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Chi‐Ying R. Lin
- Parkinson's Disease Center and Movement Disorders Clinic, Department of NeurologyBaylor College of MedicineHoustonTexasUSA
- Alzheimer's Disease and Memory Disorders Center, Department of NeurologyBaylor College of MedicineHoustonTexasUSA
| | - Nadia Amokrane
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Serena Chen
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Tiffany X. Chen
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
- Department of Biomedical EngineeringWhiting School of Engineering, Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruo‐Yah Lai
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Paula Trinh
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Michael J. Minyetty
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Haidyn Emmerich
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| | - Ming‐Kai Pan
- Department of Medical ResearchNational Taiwan University HospitalTaipeiTaiwan
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Initiative of Columbia Ataxia and TremorColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
20
|
Guell X. Functional Gradients of the Cerebellum: a Review of Practical Applications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:1061-1072. [PMID: 34741753 PMCID: PMC9072599 DOI: 10.1007/s12311-021-01342-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Gradient-based analyses have contributed to the description of cerebellar functional neuroanatomy. More recently, functional gradients of the cerebellum have been used as a multi-purpose tool for neuroimaging research. Here, we provide an overview of the many practical applications of cerebellar functional gradient analyses. These practical applications include examination of intra-cerebellar and cerebellar-extracerebellar organization; transformation of functional gradients into parcellations with discrete borders; projection of functional gradients calculated within cerebellar structures to other extracerebellar structures; interpretation of cerebellar neuroimaging findings using qualitative and quantitative methods; detection of differences in patient populations; and other more complex practical applications of cerebellar gradient-based analyses. This review may serve as an introduction and catalog of options for neuroscientists who wish to design and analyze imaging studies using functional gradients of the cerebellum.
Collapse
Affiliation(s)
- Xavier Guell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 20114, USA.
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
22
|
Wang D, Yao Q, Lin X, Hu J, Shi J. Disrupted topological properties of the structural brain network in patients with cerebellar infarction on different sides are associated with cognitive impairment. Front Neurol 2022; 13:982630. [PMID: 36203973 PMCID: PMC9530262 DOI: 10.3389/fneur.2022.982630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To explore changes in the brain structural network in patients with cerebellar infarction on different sides and their correlations with changes in cognitive function. Methods Nineteen patients with acute left posterior cerebellar infarction and 18 patients with acute right posterior cerebellar infarction seen from July 2016 to September 2019 in the Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, were selected. A total of 27 healthy controls matched for sex, age, and years of education were recruited. The subjects underwent head diffusion magnetic resonance imaging examination and neuropsychological cognitive scale evaluation, and we analyzed changes in brain structural network properties in patients with cerebellar infarction and their correlation with changes in patients' cognitive function. Results The Mini-Mental Status Examination (MMSE), Montreal Cognitive Assessment (MOCA) and the Rey auditory verbal learning test (RAVLT) scores in the left and right cerebellar infarction groups were significantly lower than those in the healthy control group (p < 0.05). In addition, the digit span test (DST) scores were lower in the left cerebellar infarction group (p < 0.05); the trail-making test (TMT) times in the right cerebellar infarction group were significantly higher than those in the left cerebellar infarction group (p < 0.05). Meanwhile, the left and right cerebellar infarction groups had abnormal brain topological properties, including clustering coefficient, shortest path length, global efficiency, local efficiency and nodal efficiency. After unilateral cerebellar infarction, bilateral cerebral nodal efficiency was abnormal. Correlation analysis showed that there was a close correlation between decreased processing speed in patients with left cerebellar infarction and decreased efficiency of right cerebral nodes (p < 0.05), and there was a close relationship between executive dysfunction and decreased efficiency of left cerebral nodes in patients with right cerebellar infarction (p < 0.05). Conclusion Patients with cerebellar infarction have cognitive impairment. Unilateral cerebellar infarction can reduce the network efficiency of key regions in the bilateral cerebral hemispheres, and these abnormal changes are closely related to patient cognitive impairment. The results of this study provide evidence for understanding the underlying neural mechanisms of cerebellar cognitive impairment and suggest that brain topological network properties may be markers of cerebellar cognitive impairment.
Collapse
Affiliation(s)
- Duohao Wang
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Yao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Radiology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jingping Shi
| |
Collapse
|
23
|
Abderrakib A, Ligot N, Naeije G. Cerebellar cognitive affective syndrome after acute cerebellar stroke. Front Neurol 2022; 13:906293. [PMID: 36034280 PMCID: PMC9403248 DOI: 10.3389/fneur.2022.906293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The cerebellum modulates both motor and cognitive behaviors, and a cerebellar cognitive affective syndrome (CCAS) was described after a cerebellar stroke in 1998. Yet, a CCAS is seldom sought for, due to a lack of practical screening scales. Therefore, we aimed at assessing both the prevalence of CCAS after cerebellar acute vascular lesion and the yield of the CCAS-Scale (CCAS-S) in an acute stroke setting. Materials and methods All patients admitted between January 2020 and January 2022 with acute onset of a cerebellar ischemic or haemorrhagic first stroke at the CUB-Hôpital Erasme and who could be evaluated by the CCAS-S within a week of symptom onset were included. Results Cerebellar acute vascular lesion occurred in 25/1,580 patients. All patients could complete the CCAS-S. A definite CCAS was evidenced in 21/25 patients. Patients failed 5.2 ± 2.12 items out of 8 and had a mean raw score of 68.2 ± 21.3 (normal values 82–120). Most failed items of the CCAS-S were related to verbal fluency, attention, and working memory. Conclusion A definite CCAS is present in almost all patients with acute cerebellar vascular lesions. CCAS is efficiently assessed by CCAS-S at bedside tests in acute stroke settings. The magnitude of CCAS likely reflects a cerebello-cortical diaschisis.
Collapse
|
24
|
Wang Y, Chai L, Chu C, Li D, Gao C, Wu X, Yang Z, Zhang Y, Xu J, Nyengaard JR, Eickhoff SB, Liu B, Madsen KH, Jiang T, Fan L. Uncovering the genetic profiles underlying the intrinsic organization of the human cerebellum. Mol Psychiatry 2022; 27:2619-2634. [PMID: 35264730 DOI: 10.1038/s41380-022-01489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
The functional diversity of the human cerebellum is largely believed to be derived more from its extensive connections rather than being limited to its mostly invariant architecture. However, whether and how the determination of cerebellar connections in its intrinsic organization interact with microscale gene expression is still unknown. Here we decode the genetic profiles of the cerebellar functional organization by investigating the genetic substrates simultaneously linking cerebellar functional heterogeneity and its drivers, i.e., the connections. We not only identified 443 network-specific genes but also discovered that their co-expression pattern correlated strongly with intra-cerebellar functional connectivity (FC). Ninety of these genes were also linked to the FC of cortico-cerebellar cognitive-limbic networks. To further discover the biological functions of these genes, we performed a "virtual gene knock-out" by observing the change in the coupling between gene co-expression and FC and divided the genes into two subsets, i.e., a positive gene contribution indicator (GCI+) involved in cerebellar neurodevelopment and a negative gene set (GCI-) related to neurotransmission. A more interesting finding is that GCI- is significantly linked with the cerebellar connectivity-behavior association and many recognized brain diseases that are closely linked with the cerebellar functional abnormalities. Our results could collectively help to rethink the genetic substrates underlying the cerebellar functional organization and offer possible micro-macro interacted mechanistic interpretations of the cerebellum-involved high order functions and dysfunctions in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yaping Wang
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lin Chai
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Congying Chu
- University of Chinese Academy of Sciences, 100190, Beijing, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Deying Li
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chaohong Gao
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xia Wu
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhengyi Yang
- University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 311100, China
| | - Junhai Xu
- School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, China
| | - Jens Randel Nyengaard
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8000, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650, Hvidovre, Denmark
| | - Tianzi Jiang
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100190, Beijing, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Lingzhong Fan
- Sino-Danish Center, University of Chinese Academy of Sciences, 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100190, Beijing, China. .,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
25
|
Kawabata K, Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Functional connector hubs in the cerebellum. Neuroimage 2022; 257:119263. [PMID: 35500805 DOI: 10.1016/j.neuroimage.2022.119263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Medical University of Innsbruck, Austria.
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine and Institutes of Innovation for Future Society, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Aichi Medical University, Nagakute, Japan.
| |
Collapse
|
26
|
Dorfer C, Pletschko T, Seiger R, Chocholous M, Kasprian G, Krajnik J, Roessler K, Kollndorfer K, Schöpf V, Leiss U, Slavc I, Prayer D, Lanzenberger R, Czech T. Impact of childhood cerebellar tumor surgery on cognition revealed by precuneus hyperconnectivity. Neurooncol Adv 2022; 4:vdac050. [PMID: 35571986 PMCID: PMC9092637 DOI: 10.1093/noajnl/vdac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Childhood cerebellar pilocytic astrocytomas harbor excellent overall survival rates after surgical resection, but the patients may exhibit specific cognitive and behavioral problems. Functional MRI has catalyzed insights into brain functional systems and has already been linked with the neuropsychological performance. We aimed to exploit the question of whether resting-state functional MRI can be used as a biomarker for the cognitive outcome assessment of these patients. Methods We investigated 13 patients (median age 22.0 years; range 14.9-31.3) after a median interval between surgery and examination of 15.0 years (range 4.2-20.5) and 16 matched controls. All subjects underwent functional 3-Tesla MRI scans in a resting-state condition and battery neuropsychological tests. Results Patients showed a significantly increased functional connectivity in the precuneus compared with controls (P < .05) and at the same time impairments in various domains of neuropsychological functioning such as a lower mean Wechsler Intelligenztest für Erwachsene (WIE) IQ percentile (mean [M] = 48.62, SD = 29.14), lower scores in the Trail Making Test (TMT) letter sequencing (M = 49.54, SD = 30.66), worse performance on the WIE subtest Digit Symbol Coding (M = 38.92, SD = 35.29), subtest Symbol Search (M = 40.75, SD = 35.28), and test battery for attentional performance (TAP) divided attention task (M = 783.92, SD = 73.20). Conclusion Childhood cerebellar tumor treated by resection only strongly impacts the development of precuneus/posterior cingulate cortex functional connectivity. Functional MRI has the potential to help deciphering the pathophysiology of cerebellar-related cognitive impairments in these patients and could be an additional tool in their individual assessment and follow-up.
Collapse
Affiliation(s)
- Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - Thomas Pletschko
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy Medical University of Vienna, Austria
| | - Monika Chocholous
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Jacqueline Krajnik
- Department of Neurosurgery, Medical University of Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - Kathrin Kollndorfer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Veronika Schöpf
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Ulrike Leiss
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy Medical University of Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Austria
| |
Collapse
|
27
|
Zhou H, Zou H, Dai Z, Zhao S, Hua L, Xia Y, Han Y, Yan R, Tang H, Huang Y, Du Y, Wang X, Yao Z, Lu Q. Interoception Dysfunction Contributes to the Negative Emotional Bias in Major Depressive Disorder. Front Psychiatry 2022; 13:874859. [PMID: 35479498 PMCID: PMC9035634 DOI: 10.3389/fpsyt.2022.874859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous research studies have demonstrated that impaired interoception is involved in emotional information processing in major depressive disorder (MDD). Heartbeat-evoked potential (HEP) amplitudes, an index for interoception, could be manipulated by emotional faces in healthy people. Considering negative emotional bias is the core characteristic in MDD, we hypothesized that interoception dysfunction was associated with the negative emotional bias in MDD. Methods An electroencephalogram (EEG) study under an emotional faces task was applied to explore the relationship between interoception and emotional bias. HEPs before emotional faces stimuli were used to predict the late positive potential (LPP) amplitudes and it worked as an index of emotional bias. Twenty-seven patients with MDD and 27 healthy controls (HCs) participated in this study. Source analysis gave an auxiliary description for results in sensory level. Results Major depressive disorders (MDDs) had poor performance in the heartbeat count task (HCT) and attenuate HEP average amplitudes (455-550 ms). Compared with HCs, cluster-based permutation t-tests revealed that MDDs had attenuated LPP amplitudes (300-1,000 ms) over centroparietal regions and enhanced LPP amplitudes over frontocentral regions. Furthermore, abnormal attenuated HEPs could predict aberrant LPPs under sad face stimuli in MDDs, which could be associated with the dysfunction of the anterior cingulate cortex (ACC) and right insula. Conclusion Mediated by ACC and insula, interoception dysfunction contributes to the negative emotional bias of MDD, highlighting the importance of interoception in the disorder.
Collapse
Affiliation(s)
- Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haowen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhongpeng Dai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Shuai Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Hua
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingling Han
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Yan
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science of Ministry of Education, Nanjing, China
| |
Collapse
|
28
|
Blithikioti C, Nuño L, Guell X, Pascual-Diaz S, Gual A, Balcells-Olivero Μ, Miquel L. The cerebellum and psychological trauma: A systematic review of neuroimaging studies. Neurobiol Stress 2022; 17:100429. [PMID: 35146077 PMCID: PMC8801754 DOI: 10.1016/j.ynstr.2022.100429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Psychological trauma is highly prevalent among psychiatric disorders, however, the relationship between trauma, neurobiology and psychopathology is not yet fully understood. The cerebellum has been recognized as a crucial structure for cognition and emotion, however, it has been relatively ignored in the literature of psychological trauma, as it is not considered as part of the traditional fear neuro-circuitry. The aim of this review is to investigate how psychological trauma affects the cerebellum and to make conclusive remarks on whether the cerebellum forms part of the trauma-affected brain circuitry. A total of 267 unique records were screened and 39 studies were included in the review. Structural cerebellar alterations and aberrant cerebellar activity and connectivity in trauma-exposed individuals were consistently reported across studies. Early-onset of adverse experiences was associated with cerebellar alterations in trauma-exposed individuals. Several studies reported alterations in connectivity between the cerebellum and nodes of large-brain networks, which are implicated in several psychiatric disorders, including the default mode network, the salience network and the central executive network. Also, trauma-exposed individuals showed altered resting state and task based cerebellar connectivity with cortical and subcortical structures that are involved in emotion and fear regulation. Our preferred interpretation of the results is through the lens of the Universal Cerebellar Transform, the hypothesis that the cerebellum, given its homogeneous cytoarchitecture, performs a common computation for motor, cognitive and emotional functions. Therefore, trauma-induced alterations in this computation might set the ground for a variety of psychiatric symptoms.
Collapse
Affiliation(s)
- C. Blithikioti
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L. Nuño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - X. Guell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - S. Pascual-Diaz
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A. Gual
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Μ. Balcells-Olivero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| | - L. Miquel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Grup de Recerca en Addiccions Clinic. GRAC, Institut Clinic de Neurosciències, Barcelona, Spain
| |
Collapse
|
29
|
Cerebellar Contribution to Emotional Body Language Perception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:141-153. [DOI: 10.1007/978-3-030-99550-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Schutter DJLG. The Cerebellum and Disorders of Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:273-283. [DOI: 10.1007/978-3-030-99550-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Anteraper S, Guell X, Whitfield-Gabrieli S. Big contributions of the little brain for precision psychiatry. Front Psychiatry 2022; 13:1021873. [PMID: 36339842 PMCID: PMC9632752 DOI: 10.3389/fpsyt.2022.1021873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work using 3T functional Magnetic Resonance Imaging (fMRI) parcellated the human dentate nuclei (DN), the primary output of the cerebellum, to three distinct functional zones each contributing uniquely to default-mode, salience-motor, and visual brain networks. In this perspective piece, we highlight the possibility to target specific functional territories within the cerebellum using non-invasive brain stimulation, potentially leading to the refinement of cerebellar-based therapeutics for precision psychiatry. Significant knowledge gap exists in our functional understanding of cerebellar systems. Intervening early, gauging severity of illness, developing intervention strategies and assessing treatment response, are all dependent on our understanding of the cerebello-cerebral networks underlying the pathology of psychotic disorders. A promising yet under-examined avenue for biomarker discovery is disruptions in cerebellar output circuitry. This is primarily because most 3T MRI studies in the past had to exclude cerebellum from the field of view due to limitations in spatiotemporal resolutions. Using recent technological advances in 7T MRI (e.g., parallel transmit head coils) to identify functional territories of the DN, with a focus on dentato-cerebello-thalamo-cortical (CTC) circuitry can lead to better characterization of brain-behavioral correlations and assessments of co-morbidities. Such an improved mechanistic understanding of psychiatric illnesses can reveal aspects of CTC circuitry that can aid in neuroprognosis, identification of subtypes, and generate testable hypothesis for future studies.
Collapse
Affiliation(s)
- Sheeba Anteraper
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States.,Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Susan Whitfield-Gabrieli
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
32
|
Cerebellum, Embodied Emotions, and Psychological Traits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:255-269. [DOI: 10.1007/978-3-030-99550-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
The Neurophysiology of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:87-108. [DOI: 10.1007/978-3-030-99550-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Jacob MS, Roach BJ, Sargent KS, Mathalon DH, Ford JM. Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study. Neuroimage 2021; 245:118705. [PMID: 34798229 DOI: 10.1016/j.neuroimage.2021.118705] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.
Collapse
Affiliation(s)
- Michael S Jacob
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Kaia S Sargent
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| |
Collapse
|
35
|
Demichelis G, Pinardi C, Giani L, Medina JP, Gianeri R, Bruzzone MG, Becker B, Proietti A, Leone M, Chiapparini L, Ferraro S, Nigri A. Chronic cluster headache: A study of the telencephalic and cerebellar cortical thickness. Cephalalgia 2021; 42:444-454. [PMID: 34875879 DOI: 10.1177/03331024211058205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Previous studies on brain morphological alterations in chronic cluster headache revealed inconsistent findings. METHOD The present cross-sectional explorative study determined telencephalic and cerebellar cortex thickness alterations in a relatively wide sample of chronic cluster headache patients (n = 28) comparing them to matched healthy individuals. RESULTS The combination of two highly robust state-of-the-art approaches for thickness estimation (Freesurfer, CERES), strengthened by functional characterization of the identified abnormal regions, revealed four main results: chronic cluster headache patients show 1) cortical thinning in the right middle cingulate cortex, left posterior insula, and anterior cerebellar lobe, regions involved in nociception's sensory and sensory-motor aspects and possibly in autonomic functions; 2) cortical thinning in the left anterior superior temporal sulcus and the left collateral/lingual sulcus, suggesting neuroplastic maladaptation in areas possibly involved in social cognition, which may promote psychiatric comorbidity; 3) abnormal functional connectivity among some of these identified telencephalic areas; 4) the identified telencephalic areas of cortical thinning present robust interaction, as indicated by the functional connectivity results, with the left posterior insula possibly playing a pivotal role. CONCLUSION The reported results constitute a coherent and robust picture of the chronic cluster headache brain. Our study paves the way for hypothesis-driven studies that might impact our understanding of the pathophysiology of this condition.
Collapse
Affiliation(s)
- Greta Demichelis
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pinardi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Giani
- Department of Neurology and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jean Paul Medina
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ruben Gianeri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Benjiamin Becker
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Alberto Proietti
- Department of Neurology and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Leone
- Department of Neurology and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Ferraro
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Anna Nigri
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
36
|
Li P, Zhou M, Yan W, Du J, Lu S, Xie S, Zhang R. Altered resting-state functional connectivity of the right precuneus and cognition between depressed and non-depressed schizophrenia. Psychiatry Res Neuroimaging 2021; 317:111387. [PMID: 34509807 DOI: 10.1016/j.pscychresns.2021.111387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023]
Abstract
The study investigated the resting-state functional connectivity (FC) and cognitive changes in patients with depressed schizophrenia(DS) and non-depressed schizophrenia(NDS). Eighty patients with first-episode schizophrenia and 50 healthy controls (HC) were included to conduct resting-state fMRI. All participants completed MATRICS Consensus Cognitive Battery (MCCB). The right precuneus was selected as the seed in whole-brain FC analysis. Our results showed the cognitive function (All MCCB dimensions) of all schizophrenia patients were worse than HC, but no differences were found between DS and NDS. The DS had decreased FC than NDS between the right precuneus and left middle cingulate gyrus, left cerebellum, right cerebellum. The DS had increased FC than HC between the right precuneus and temporal lobe, occipital lobe, and decreased FC between the right precuneus and left cerebellum. However, the NDS had increased FC than HC between the right precuneus and left cerebellum, right cerebellum, temporal lobe, occipital lobe, left superior parietal lobule. Correlation analysis showed that FC between the right precuneus and occipital lobe was negatively correlated with visual learning in DS and with social cognition in NDS. Our results suggest DS and NDS patients have different patterns of FC, and their FC changes correlate with different domains of cognition.
Collapse
Affiliation(s)
- Pingping Li
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Min Zhou
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Wei Yan
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jinglun Du
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shuiping Lu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shiping Xie
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Rongrong Zhang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
37
|
Tang E, Jones C, Smith-MacDonald L, Brown MRG, Vermetten EHGJM, Brémault-Phillips S. Decreased Emotional Dysregulation Following Multi-Modal Motion-Assisted Memory Desensitization and Reconsolidation Therapy (3MDR): Identifying Possible Driving Factors in Remediation of Treatment-Resistant PTSD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12243. [PMID: 34831999 PMCID: PMC8621264 DOI: 10.3390/ijerph182212243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022]
Abstract
Multi-modal motion-assisted memory desensitization and reconsolidation therapy (3MDR), an interactive, virtual reality-assisted, exposure-based intervention for PTSD, has shown promising results for treatment-resistant posttraumatic stress disorder (TR-PTSD) among military members (MMs) and veterans in randomized controlled trials (RCT). Previous research has suggested that emotional regulation (ER) and emotional dysregulation (ED) may be factors which are correlated with symptom severity and maintenance of TR-PTSD. This embedded mixed-methods pilot study (n = 9) sought to explore the impact of 3MDR on ER and ED of MMs and veterans. Difficulties in Emotional Regulation Scale (DERS-18) data were collected at baseline, prior to each session, and at one week, one month, and three months postintervention and analyzed. Qualitative data collected from sessions, debriefs, and follow-up interviews were transcribed and descriptively analyzed. Results demonstrated statistically significant decreases in DERS-18 scores from preintervention to postintervention at each timepoint. Qualitatively, participants perceived improvements in ER within specified DERS-18 domains. We describe how 3MDR's unique and novel approach addresses ED through cognitive-motor stimulation, narration, divergent thinking, reappraisal of aversive stimuli, dual-task processing, and reconsolidation of traumatic memories. More studies are needed to better understand the underlying neurobiological mechanisms by which 3MDR addresses ER and PTSD.
Collapse
Affiliation(s)
- Emily Tang
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (E.T.); (L.S.-M.)
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (C.J.); (M.R.G.B.)
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Chelsea Jones
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (C.J.); (M.R.G.B.)
- Alberta Health Services, Edmonton, AB T5E 5R8, Canada
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Lorraine Smith-MacDonald
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (E.T.); (L.S.-M.)
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (C.J.); (M.R.G.B.)
| | - Matthew R. G. Brown
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (C.J.); (M.R.G.B.)
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Eric H. G. J. M. Vermetten
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- ARQ National Psychotrauma Center, 1112 XE Diemen, The Netherlands
- Military Mental Health, Dutch Ministry of Defense, 3584 EZ Utrecht, The Netherlands
| | - Suzette Brémault-Phillips
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (E.T.); (L.S.-M.)
- Heroes in Mind, Advocacy and Research Consortium (HiMARC), Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; (C.J.); (M.R.G.B.)
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
38
|
Jain FA, Chernyak S, Nickerson L, Abrams M, Iacoboni M, Christov-Moore L, Connolly CG, Fisher LB, Sakurai H, Bentley K, Tan E, Pittman M, Lavretsky H, Leuchter AF. Mentalizing imagery therapy for depressed family dementia caregivers: Feasibility, clinical outcomes and brain connectivity changes. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 5. [PMID: 34498016 PMCID: PMC8423372 DOI: 10.1016/j.jadr.2021.100155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background Family dementia caregivers experience high rates of depression and anxiety that often go untreated due to time demands. We aimed to determine the feasibility of a brief, 4-week Mentalizing Imagery Therapy intervention, which couples mindfulness with guided imagery practices aimed at bolstering mentalizing capacity, to reduce caregiver psychological symptoms and to explore potential impact on dorsolateral prefrontal cortex connectivity. Methods Twenty-four family dementia caregivers with moderate depression symptoms (a score of 10 in Patient Health Questionnaire-9) were assigned to either group Mentalizing Imagery Therapy (MIT, n = 12) or a waitlist augmented by optional relaxation exercises (n = 12). Participants completed questionnaires to measure depression and anxiety at baseline and followup, and those eligible also underwent resting state functional magnetic resonance (fMRI) brain imaging at these time points. Results Eleven of 12 caregivers assigned to MIT completed the intervention and attended weekly groups 98% of the time. MIT home practice logs indicated average practice of 5 ± 2 sessions per week for 23 ± 8 min per session. All participants in waitlist completed the post-assessment. MIT participants exhibited significantly greater improvement than waitlist on self-reported depression and anxiety symptoms (p<.05) after 4 weeks. Neuroimaging results revealed increased dorsolateral prefrontal cortex connectivity with a putative emotion regulation network in the MIT group (p = .05) but not in waitlist (p = 1.0). Limitations Sample size limitations necessitate validation of findings in larger, randomized controlled trials. Conclusions A 4-week group MIT program was feasible for caregivers, with high levels of participation in weekly group meetings and home practice exercises.
Collapse
Affiliation(s)
- Felipe A Jain
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sergey Chernyak
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lisa Nickerson
- Applied Neuroimaging Statistics Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Michelle Abrams
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Marco Iacoboni
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Leonardo Christov-Moore
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Colm G Connolly
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Lauren B Fisher
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hitoshi Sakurai
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kate Bentley
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Emily Tan
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael Pittman
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Lavretsky
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Andrew F Leuchter
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| |
Collapse
|
39
|
Structural and resting state functional connectivity beyond the cortex. Neuroimage 2021; 240:118379. [PMID: 34252527 DOI: 10.1016/j.neuroimage.2021.118379] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Mapping the structural and functional connectivity of the central nervous system has become a key area within neuroimaging research. While detailed network structures across the entire brain have been probed using animal models, non-invasive neuroimaging in humans has thus far been dominated by cortical investigations. Beyond the cortex, subcortical nuclei have traditionally been less accessible due to their smaller size and greater distance from radio frequency coils. However, major neuroimaging developments now provide improved signal and the resolution required to study these structures. Here, we present an overview of the connectivity between the amygdala, brainstem, cerebellum, spinal cord and the rest of the brain. While limitations to their imaging and analyses remain, we also provide some recommendations and considerations for mapping brain connectivity beyond the cortex.
Collapse
|
40
|
Bukhari Q, Ruf SF, Guell X, Whitfield-Gabrieli S, Anteraper S. Interaction Between Cerebellum and Cerebral Cortex, Evidence from Dynamic Causal Modeling. THE CEREBELLUM 2021; 21:225-233. [PMID: 34146220 DOI: 10.1007/s12311-021-01284-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 01/05/2023]
Abstract
The interaction of the cerebellum with cerebral cortical dynamics is still poorly understood. In this paper, dynamical causal modeling is used to examine the interaction between cerebellum and cerebral cortex as indexed by MRI resting-state functional connectivity in three large-scale networks on healthy young adults (N = 200; Human Connectome Project dataset). These networks correspond roughly to default mode, task positive, and motor as determined by prior cerebellar functional gradient analyses. We find uniform interactions within all considered networks from cerebellum to cerebral cortex, providing support for the notion of a universal cerebellar transform. Our results provide a foundation for future analyses to quantify and further investigate whether this is a property that is unique to the interactions from cerebellum to cerebral cortex.
Collapse
Affiliation(s)
- Qasim Bukhari
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian F Ruf
- Department of Psychology, Northeastern University, Boston, MA, USA. .,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.
| | - Xavier Guell
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Psychology, Northeastern University, Boston, MA, USA
| | - Sheeba Anteraper
- Department of Psychology, Northeastern University, Boston, MA, USA.,Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, MA, USA.,Carle Foundation Hospital, Urbana, IL, USA
| |
Collapse
|
41
|
Day LB, Helmhout W, Pano G, Olsson U, Hoeksema JD, Lindsay WR. Correlated evolution of acrobatic display and both neural and somatic phenotypic traits in manakins (Pipridae). Integr Comp Biol 2021; 61:1343-1362. [PMID: 34143205 DOI: 10.1093/icb/icab139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Brightly colored manakin (Aves: Pipridae) males are known for performing acrobatic displays punctuated by non-vocal sounds (sonations) in order to attract dull colored females. The complexity of the display sequence and assortment of display elements involved (e.g., sonations, acrobatic maneuvers, and cooperative performances) varies considerably across manakin species. Species-specific display elements coevolve with display-distinct specializations of the neuroanatomical, muscular, endocrine, cardiovascular, and skeletal systems in the handful of species studied. Conducting a broader comparative study, we previously found positive associations between display complexity and both brain mass and body mass across 8 manakin genera, indicating selection for neural and somatic expansion to accommodate display elaboration. Whether this gross morphological variation is due to overall brain and body mass expansion (concerted evolution) versus size increases in only functionally relevant brain regions and growth of particular body ("somatic") features (mosaic evolution) remains to be explored. Here we test the hypothesis that cross-species variation in male brain mass and body mass is driven by mosaic evolution. We predicted positive associations between display complexity and variation in the volume of the cerebellum and sensorimotor arcopallium, brain regions which have roles in sensorimotor processes, and learning and performance of precisely timed and sequenced thoughts and movements, respectively. In contrast, we predicted no associations between the volume of a limbic arcopallial nucleus or a visual thalamic nucleus and display complexity as these regions have no-specific functional relationship to display behavior. For somatic features, we predicted that the relationship between body mass and complexity would not include contributions of tarsus length based on a recent study suggesting selection on tarsus length is less labile than body mass. We tested our hypotheses in males from 12 manakin species and a closely related flycatcher. Our analyses support mosaic evolution of neural and somatic features functionally relevant to display and indicate sexual selection for acrobatic complexity may increase the capacity for procedural learning via cerebellar enlargement and maneuverability via a reduction in tarsus length in species with lower overall complexity scores.
Collapse
Affiliation(s)
- Lainy B Day
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Wilson Helmhout
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Glendin Pano
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Urban Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Willow R Lindsay
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
42
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Baltruschat S, Cándido A, Maldonado A, Verdejo-Lucas C, Catena-Verdejo E, Catena A. There Is More to Mindfulness Than Emotion Regulation: A Study on Brain Structural Networks. Front Psychol 2021; 12:659403. [PMID: 33868133 PMCID: PMC8046916 DOI: 10.3389/fpsyg.2021.659403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Dispositional mindfulness and emotion regulation are two psychological constructs closely interrelated, and both appear to improve with the long-term practice of mindfulness meditation. These constructs appear to be related to subcortical, prefrontal, and posterior brain areas involved in emotional processing, cognitive control, self-awareness, and mind wandering. However, no studies have yet discerned the neural basis of dispositional mindfulness that are minimally associated with emotion regulation. In the present study, we use a novel brain structural network analysis approach to study the relationship between structural networks and dispositional mindfulness, measured with two different and widely used instruments [Mindfulness Attention Awareness Scale (MAAS) and Five Facet Mindfulness Questionnaire (FFMQ)], taking into account the effect of emotion regulation difficulties. We observed a number of different brain regions associated with the different scales and dimensions. The total score of FFMQ and MAAS overlap with the bilateral parahippocampal and fusiform gyri. Additionally, MAAS scores were related to the bilateral hippocampus and the FFMQ total score to the right insula and bilateral amygdala. These results indicate that, depending on the instrument used, the characteristics measured could differ and could also involve different brain systems. However, it seems that brain areas related to emotional reactivity and semantic processing are generally related to Dispositional or trait mindfulness (DM), regardless of the instrument used.
Collapse
Affiliation(s)
- Sabina Baltruschat
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Antonio Cándido
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Antonio Maldonado
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | | | | | - Andrés Catena
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
44
|
Social Cognition in Chiari Malformation Type I: a Preliminary Characterization. THE CEREBELLUM 2021; 19:392-400. [PMID: 32048182 DOI: 10.1007/s12311-020-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chiari malformation type I (CM-I) is a neurological disorder in which cerebellar tonsils are herniated through the foramen magnum into the spinal canal. A wide spectrum of cognitive deficits underlying this pathology has been reported, but the literature about social cognition is insufficient. Clinical research has pointed out the cerebellar role in Theory of Mind (ToM), indicating that there are several disorders with cerebellar pathology that reveal a poorer performance in social cognition tasks. The main purpose of this study is to compare the performance on ToM tasks between CM-I patients and healthy controls. The protocol includes Faux Pas test, Happé's Strange Stories test, Ice-Cream Van task, the FEEL test, and the Word Accentuation Test. In order to eliminate the possible influence of covariables, physical pain and anxious-depressive symptomatology have been controlled for. According to the results, CM-I patients performed worse than matched healthy controls on ToM tasks, except for facial emotion recognition. These differences remained even after controlling for the neuropsychiatric variables and physical pain. Thus, it can be suggested that patients with CM-I are impaired in their social skills related to their performance on ToM tasks. These findings can be considered to be a preliminary approach to the specific study of social cognition in relation to CM-I since it is similar to other cerebellar pathologies and to previous literature on the cerebellum's role in social cognition.
Collapse
|
45
|
Gatti D, Vecchi T, Mazzoni G. Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex 2020; 135:78-91. [PMID: 33360762 DOI: 10.1016/j.cortex.2020.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Traditionally, the cerebellum has been linked to motor functions, but recent evidence suggest that it is also involved in a wide range of cognitive processes. Given the uniformity of cerebellar cortex microstructure, it has been proposed that the same computational process might underlie cerebellar involvement in both motor and cognitive functions. Within motor functions, the cerebellum it is involved in procedural memory and associative learning. Here, we hypothesized that the cerebellum may participate to semantic memory as well. To test whether the cerebellum is causally involved in semantic memory, we carried out two experiments in which participants performed the Deese-Roediger-McDermott paradigm (DRM) while online transcranial magnetic stimulation (TMS) was administered over the right cerebellum or over a control site. In Experiment 1, cerebellar TMS selectively affected participants' discriminability for critical lures without affecting participants' discriminability for unrelated words and in Experiment 2 we found that the higher was the semantic association between new and studied words, the higher was the memory impairment caused by the TMS. These results indicate that the right cerebellum is causally involved in semantic memory and provide evidence consistent with theories that proposed the existence of a unified cerebellar function within motor and cognitive domains, as well with recent perspectives about cerebellar involvement in semantic memory and predictive functions.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Cognitive Psychology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuliana Mazzoni
- Faculty of Medicine and Psychology, University La Sapienza, Rome, Italy; School of Life Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
46
|
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, Guell X, Heleven E, Lupo M, Ma Q, Michelutti M, Olivito G, Pu M, Rice LC, Schmahmann JD, Siciliano L, Sokolov AA, Stoodley CJ, van Dun K, Vandervert L, Leggio M. Consensus Paper: Cerebellum and Social Cognition. CEREBELLUM (LONDON, ENGLAND) 2020; 19:833-868. [PMID: 32632709 PMCID: PMC7588399 DOI: 10.1007/s12311-020-01155-1] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mario Manto
- Mediathèque Jean Jacquy, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, Mons, Belgium
| | - Zaira Cattaneo
- University of Milano-Bicocca, 20126 Milan, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Clausi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marco Michelutti
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Min Pu
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laura C. Rice
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Libera Siciliano
- Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Arseny A. Sokolov
- Service de Neurologie & Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Service de Neurologie Lausanne, Lausanne, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital Inselspital, University of Bern, Bern, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
- Neuroscape Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA USA
| | - Catherine J. Stoodley
- Department of Psychology and Department of Neuroscience, American University, Washington, DC USA
| | - Kim van Dun
- Neurologic Rehabilitation Research, Rehabilitation Research Institute (REVAL), Hasselt University, 3590 Diepenbeek, Belgium
| | - Larry Vandervert
- American Nonlinear Systems, 1529 W. Courtland Avenue, Spokane, WA 99205-2608 USA
| | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG. The Role of the Cerebellum in Huntington's Disease: a Systematic Review. THE CEREBELLUM 2020; 20:254-265. [PMID: 33029762 DOI: 10.1007/s12311-020-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a rare neurological disorder characterized by progressive motor, cognitive, and psychiatric disturbances. Although striatum degeneration might justify most of the motor symptoms, there is an emerging evidence of involvement of extra-striatal structures, such as the cerebellum. To elucidate the cerebellar involvement and its afferences with motor, psychiatric, and cognitive symptoms in HD. A systematic search in the literature was performed in MEDLINE, LILACS, and Google Scholar databases. The research was broadened to include the screening of reference lists of review articles for additional studies. Studies available in the English language, dating from 1993 through May 2020, were included. Clinical presentation of patients with HD may not be considered as the result of an isolated primary striatal dysfunction. There is evidence that cerebellar involvement is an early event in HD and may occur independently of striatal degeneration. Also, the loss of the compensation role of the cerebellum in HD may be an explanation for the clinical onset of HD. Although more studies are needed to elucidate this association, the current literature supports that the cerebellum may integrate the natural history of neurodegeneration in HD.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alex T Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
| | - Nayra S C Lima
- Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
48
|
Dong D, Luo C, Guell X, Wang Y, He H, Duan M, Eickhoff SB, Yao D. Compression of Cerebellar Functional Gradients in Schizophrenia. Schizophr Bull 2020; 46:1282-1295. [PMID: 32144421 PMCID: PMC7505192 DOI: 10.1093/schbul/sbaa016] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our understanding of cerebellar involvement in brain disorders has evolved from motor processing to high-level cognitive and affective processing. Recent neuroscience progress has highlighted hierarchy as a fundamental principle for the brain organization. Despite substantial research on cerebellar dysfunction in schizophrenia, there is a need to establish a neurobiological framework to better understand the co-occurrence and interaction of low- and high-level functional abnormalities of cerebellum in schizophrenia. To help to establish such a framework, we investigated the abnormalities in the distribution of sensorimotor-supramodal hierarchical processing topography in the cerebellum and cerebellar-cerebral circuits in schizophrenia using a novel gradient-based resting-state functional connectivity (FC) analysis (96 patients with schizophrenia vs 120 healthy controls). We found schizophrenia patients showed a compression of the principal motor-to-supramodal gradient. Specifically, there were increased gradient values in sensorimotor regions and decreased gradient values in supramodal regions, resulting in a shorter distance (compression) between the sensorimotor and supramodal poles of this gradient. This pattern was observed in intra-cerebellar, cerebellar-cerebral, and cerebral-cerebellar FC. Further investigation revealed hyper-connectivity between sensorimotor and cognition areas within cerebellum, between cerebellar sensorimotor and cerebral cognition areas, and between cerebellar cognition and cerebral sensorimotor areas, possibly contributing to the observed compressed pattern. These findings present a novel mechanism that may underlie the co-occurrence and interaction of low- and high-level functional abnormalities of cerebellar and cerebro-cerebellar circuits in schizophrenia. Within this framework of abnormal motor-to-supramodal organization, a cascade of impairments stemming from disrupted low-level sensorimotor system may in part account for high-level cognitive cerebellar dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Hui He
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
49
|
Cerebello-basal ganglia connectivity fingerprints related to motor/cognitive performance in Parkinson's disease. Parkinsonism Relat Disord 2020; 80:21-27. [PMID: 32932024 DOI: 10.1016/j.parkreldis.2020.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The role of the cerebellum in Parkinson's disease (PD) has attracted increasing attention; however, the role of functional connectivity (FC) between the basal ganglia and particular cerebellar subregions remains to be elucidated. We aimed to clarify the FC and its contribution to motor and cognitive performances in patients with PD. METHODS We included 99 patients with PD and 99 age- and sex-matched healthy controls in this study. We created a cerebellar functional parcellation by performing cerebellum-only independent component analysis. Using the functional parcellation map, we performed seed-based connectivity analysis using each region as a seed and extracted the mean correlation coefficients within the thalamus and basal ganglia, including the caudate, pallidum, putamen and subthalamic nucleus. We examined the group differences and correlations with the motor and general cognitive scores. In addition, we conducted a mediation analysis to clarify the relationship among FC, motor severity, and cognition. RESULTS The PD group showed decreased FC between a wide range of cerebellar subregions and the basal ganglia. Motor severity was correlated with FC between the subthalamic nucleus and posterior Crus I/II, and general cognitive performance scores correlated with FC between the caudate nucleus and medial-posterior part of the Crus I/II (p < 0.05, corrected for multiple comparisons). The cerebello-caudate network had a direct effect on cognitive performance (p = 9.0 × 10-3), although partially mediated by motor performance (p = 8.2 × 10-3). CONCLUSION FC between cerebellar Crus I/II and divergent basal ganglia related to motor and cognitive performance in PD.
Collapse
|
50
|
Anteraper SA, Guell X, Hollinshead MO, D'Mello A, Whitfield-Gabrieli S, Biederman J, Joshi G. Functional Alterations Associated with Structural Abnormalities in Adults with High-Functioning Autism Spectrum Disorder. Brain Connect 2020; 10:368-376. [DOI: 10.1089/brain.2020.0746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sheeba Arnold Anteraper
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xavier Guell
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marisa O. Hollinshead
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Anila D'Mello
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Joseph Biederman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Gagan Joshi
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|