1
|
Binney RJ, Smith LJ, Rossit S, Demeyere N, Learmonth G, Olgiati E, Halai AD, Rounis E, Evans J, Edelstyn NMJ, McIntosh RD. Practical routes to preregistration: a guide to enhanced transparency and rigour in neuropsychological research. Brain Commun 2025; 7:fcaf162. [PMID: 40357015 PMCID: PMC12066951 DOI: 10.1093/braincomms/fcaf162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Preregistration is the act of formally documenting a research plan before collecting (or at least before analysing) the data. It allows those reading a final research report to know which aspects of a study were decided before sight of the data, and which were added later. This enables informed evaluation of the severity with which scientific claims have been tested. We, as the British Neuropsychological Society Open Research Group, conducted a survey to explore awareness and adoption of open research practices within our field. Neuropsychology involves the study of relatively rare or hard-to-access participants, creating practical challenges that, according to our survey, are perceived as barriers to preregistration. We survey the available routes to preregistration, and suggest that the barriers are all surmountable in one way or another. However, there is a tension, in that higher levels of bias control require greater restriction over the flexibility of preregistered studies, but such flexibility is often essential for neuropsychological research. Researchers must therefore consider which route provides the right balance of rigour and pragmatic flexibility to render a preregistered project viable for them. By mapping out the issues and potential solutions, and by signposting relevant resources and publication routes, we hope to facilitate well-reasoned decision-making and empower neuropsychologists to enhance the transparency and rigour of their research. Although we focus neuropsychology, our guidance is applicable to any field that studies hard-to-access human samples, or involves arduous or expensive means of data collection.
Collapse
Affiliation(s)
- Richard J Binney
- The British Neuropsychological Society, Open Research Group, London, UK
- Department of Psychology, Bangor University, Bangor, Wales LL57 2AS, UK
| | - Laura J Smith
- The British Neuropsychological Society, Open Research Group, London, UK
- Wolfson Institute of Population Health, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stephanie Rossit
- The British Neuropsychological Society, Open Research Group, London, UK
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nele Demeyere
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Gemma Learmonth
- The British Neuropsychological Society, Open Research Group, London, UK
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Elena Olgiati
- The British Neuropsychological Society, Open Research Group, London, UK
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Ajay D Halai
- The British Neuropsychological Society, Open Research Group, London, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EF, UK
| | - Elisabeth Rounis
- The British Neuropsychological Society, Open Research Group, London, UK
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EF, UK
| | - Jonathan Evans
- School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
| | - Nicola M J Edelstyn
- The British Neuropsychological Society, Open Research Group, London, UK
- School of Sciences, Bath Spa University, Bath BA2 9BN, UK
| | - Robert D McIntosh
- The British Neuropsychological Society, Open Research Group, London, UK
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
2
|
Yong K, Petzold A, Foster P, Young A, Bell S, Bai Y, Leff AP, Crutch S, Greenwood JA. The Graded Incomplete Letters Test (GILT): a rapid test to detect cortical visual loss, with UK Biobank implementation. Behav Res Methods 2024; 56:7748-7760. [PMID: 38890263 PMCID: PMC11362218 DOI: 10.3758/s13428-024-02448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Impairments of object recognition are core features of neurodegenerative syndromes, in particular posterior cortical atrophy (PCA; the 'visual-variant Alzheimer's disease'). These impairments arise from damage to higher-level cortical visual regions and are often missed or misattributed to common ophthalmological conditions. Consequently, diagnosis can be delayed for years with considerable implications for patients. We report a new test for the rapid measurement of cortical visual loss - the Graded Incomplete Letters Test (GILT). The GILT is an optimised psychophysical variation of a test used to diagnose cortical visual impairment, which measures thresholds for recognising letters under levels of increasing visual degradation (decreasing "completeness") in a similar fashion to ophthalmic tests. The GILT was administered to UK Biobank participants (total n=2,359) and participants with neurodegenerative conditions characterised by initial cortical visual (PCA, n=18) or memory loss (typical Alzheimer's disease, n=9). UK Biobank participants, including both typical adults and those with ophthalmological conditions, were able to recognise letters under low levels of completeness. In contrast, participants with PCA consistently made errors with only modest decreases in completeness. GILT sensitivity to PCA was 83.3% for participants reaching the 80% accuracy cut-off, increasing to 88.9% using alternative cut-offs (60% or 100% accuracy). Specificity values were consistently over 94% when compared to UK Biobank participants without or with documented visual conditions, regardless of accuracy cut-off. These first-release UK Biobank and clinical verification data suggest the GILT has utility in both rapidly detecting visual perceptual losses following posterior cortical damage and differentiating perceptual losses from common eye-related conditions.
Collapse
Affiliation(s)
- Kxx Yong
- Queen Square Institute of Neurology, University College London, London, UK.
| | - A Petzold
- Queen Square Institute of Neurology, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Neuro-ophthalmology Expertise Centre, Amsterdam UMC, Amsterdam, NL, The Netherlands
| | - P Foster
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - A Young
- Big Data Institute, Nuffield, Department of Population Health, University of Oxford, Oxford, UK
| | - S Bell
- UK Biobank, Stockport, UK
| | - Y Bai
- Queen Square Institute of Neurology, University College London, London, UK
| | - A P Leff
- Queen Square Institute of Neurology, University College London, London, UK
| | - S Crutch
- Queen Square Institute of Neurology, University College London, London, UK
| | - J A Greenwood
- Experimental Psychology, University College London, London, UK.
| |
Collapse
|
3
|
Burns EJ. Improving the DSM-5 approach to cognitive impairment: Developmental prosopagnosia reveals the need for tailored diagnoses. Behav Res Methods 2024; 56:7872-7891. [PMID: 38977608 PMCID: PMC11362378 DOI: 10.3758/s13428-024-02459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
The Diagnostic Statistical Manual of Mental Disorders (DSM-5) recommends diagnosing neurocognitive disorders (i.e., cognitive impairment) when a patient scores beyond - 1 SD below neurotypical norms on two tests. I review how this approach will fail due to cognitive tests' power limitations, validity issues, imperfect reliabilities, and biases, before summarizing their resulting negative consequences. As a proof of concept, I use developmental prosopagnosia, a condition characterized by difficulties recognizing faces, to show the DSM-5 only diagnoses 62-70% (n1 = 61, n2 = 165) versus 100% (n1 = 61) through symptoms alone. Pooling the DSM-5 missed cases confirmed the presence of group-level impairments on objective tests, which were further evidenced through meta-analyses, thus validating their highly atypical symptoms. These findings support a paradigm shift towards bespoke diagnostic approaches for distinct cognitive impairments, including a symptom-based method when validated effective. I reject dogmatic adherence to the DSM-5 approach to neurocognitive disorders, and underscore the importance of a data driven, transdiagnostic approach to understanding patients' subjective cognitive impairments. This will ultimately benefit patients, their families, clinicians, and scientific progress.
Collapse
Affiliation(s)
- Edwin J Burns
- Department of Psychology, Swansea University, Swansea, UK.
| |
Collapse
|
4
|
Knights E, McIntosh RD, Ford C, Buckingham G, Rossit S. Peripheral and bimanual reaching in a stroke survivor with left visual neglect and extinction. Neuropsychologia 2024; 201:108901. [PMID: 38704116 DOI: 10.1016/j.neuropsychologia.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Whether attentional deficits are accompanied by visuomotor impairments following posterior parietal lesions has been debated for quite some time. This single-case study investigated reaching in a stroke survivor (E.B.) with left visual neglect and visual extinction following right temporo-parietal-frontal strokes. Unlike most neglect patients, E.B. did not present left hemiparesis, homonymous hemianopia nor show evidence of motor neglect or extinction allowing us to examine, for the first time, if lateralised attentional deficits co-occur with deficits in peripheral and bimanual reaching. First, we found a classic optic ataxia field effect: E.B.'s accuracy was impaired when reaching to peripheral targets in her neglected left visual field (regardless of the hand used). Second, we found a larger bimanual cost for movement time in E.B. than controls when both hands reached to incongruent locations. E.B.'s visuomotor profile is similar to the one of patients with optic ataxia showing that attentional deficits are accompanied by visuomotor deficits in the affected field.
Collapse
Affiliation(s)
- Ethan Knights
- Neuropsychology Laboratory, School of Psychology, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Robert D McIntosh
- Human Cognitive Neuroscience, Department of Psychology, The University of Edinburgh, EH8 9JZ, United Kingdom
| | - Catherine Ford
- Department of Clinical Psychology and Psychological Therapies, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gavin Buckingham
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Stéphanie Rossit
- Neuropsychology Laboratory, School of Psychology, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
5
|
Marlair C, Guillon A, Vynckier M, Crollen V. Enhancing mathematics learning through finger-counting: A study investigating tactile strategies in 2 visually impaired cases. APPLIED NEUROPSYCHOLOGY. CHILD 2024; 13:269-281. [PMID: 38569167 DOI: 10.1080/21622965.2024.2333832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Finger-counting plays a crucial role in grounding and establishing mathematics, one of the most abstract domains of human cognition. While the combination of visual and proprioceptive information enables the coordination of finger movements, it was recently suggested that the emergence of finger-counting primarily relies on visual cues. In this study, we aimed to directly test this assumption by examining whether explicit finger-counting training (through tactile stimulation) may assist visually impaired children in overcoming their difficulties in learning mathematics. Two visually impaired participants (2 boys of 8.5 and 7.5 years) were therefore trained to use their fingers to calculate. Their pre- and post-training performance were compared to two control groups of sighted children who underwent either the same finger counting training (8 boys, 10 girls, Mage = 5.9 years; 10 kindergarteners and eight 1st graders) or another control vocabulary training (10 boys, 8 girls, Mage = 5.9 years; 11 kindergarteners and seven 1st graders). Results demonstrated that sighted children's arithmetic performance improved much more after the finger training than after the vocabulary training. Importantly, the positive impact of the finger training was also observed in both visually impaired participants (for addition and subtraction in one child; only for addition in the other child). These results are discussed in relation to the sensory compensation hypothesis and emphasize the importance of early and appropriate instruction of finger-based representations in both sighted and visually impaired children.
Collapse
Affiliation(s)
- Cathy Marlair
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Aude Guillon
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Menik Vynckier
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of NeuroScience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Verbitsky R, Anderson B, Danckert J, Dukelow S, Striemer CL. Left Cerebellar Lesions may be Associated with an Increase in Spatial Neglect-like Symptoms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:431-443. [PMID: 36995498 DOI: 10.1007/s12311-023-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Each cerebellar hemisphere projects to the contralateral cerebral hemisphere. Previous research suggests a lateralization of cognitive functions in the cerebellum that mirrors the cerebral cortex, with attention/visuospatial functions represented in the left cerebellar hemisphere, and language functions in the right cerebellar hemisphere. Although there is good evidence supporting the role of the right cerebellum with language functions, the evidence supporting the notion that attention and visuospatial functions are left lateralized is less clear. Given that spatial neglect is one of the most common disorders arising from right cortical damage, we reasoned that damage to the left cerebellum would result in increased spatial neglect-like symptoms, without necessarily leading to an official diagnosis of spatial neglect. To examine this disconnection hypothesis, we analyzed neglect screening data (line bisection, cancellation, figure copying) from 20 patients with isolated unilateral cerebellar stroke. Results indicated that left cerebellar patients (n = 9) missed significantly more targets on the left side of cancellation tasks compared to a normative sample. No significant effects were observed for right cerebellar patients (n = 11). A lesion overlap analysis indicated that Crus II (78% overlap), and lobules VII and IX (66% overlap) were the regions most commonly damaged in left cerebellar patients. Our results are consistent with the notion that the left cerebellum may be important for attention and visuospatial functions. Given the poor prognosis typically associated with neglect, we suggest that screening for neglect symptoms, and visuospatial deficits more generally, may be important for tailoring rehabilitative efforts to help maximize recovery in cerebellar patients.
Collapse
Affiliation(s)
- Ryan Verbitsky
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Britt Anderson
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - James Danckert
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Lowes J, Hancock PJB, Bobak AK. A new way of classifying developmental prosopagnosia: Balanced Integration Score. Cortex 2024; 172:159-184. [PMID: 38330779 DOI: 10.1016/j.cortex.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Despite severe everyday problems recognising faces, some individuals with developmental prosopagnosia (DP) can achieve typical accuracy scores on laboratory face recognition tests. To address this, studies sometimes also examine response times (RTs), which tend to be longer in DPs relative to control participants. In the present study, 24 potential (according to self-report) DPs and 110 age-matched controls completed the Cambridge Face and Bicycle Memory Tests, old new faces task, and a famous faces test. We used accuracy and the Balanced Integration Score (BIS), a measure that adjusts accuracy for RTs, to classify our sample at the group and individual levels. Subjective face recognition ability was assessed using the PI20 questionnaire and semi structured interviews. Fifteen DPs showed a major impairment using BIS compared with only five using accuracy alone. Logistic regression showed that a model incorporating the BIS measures was the most sensitive for classifying DP and showed highest area under the curve (AUC). Furthermore, larger between-group effect sizes were observed for a derived global (averaged) memory measure calculated using BIS versus accuracy alone. BIS is thus an extremely sensitive novel measure for attenuating speed-accuracy trade-offs that can otherwise mask impairment measured only by accuracy in DP.
Collapse
Affiliation(s)
- Judith Lowes
- Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom.
| | - Peter J B Hancock
- Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom
| | - Anna K Bobak
- Psychology, Faculty of Natural Sciences, University of Stirling, United Kingdom
| |
Collapse
|
8
|
Burns EJ, Gaunt E, Kidane B, Hunter L, Pulford J. A new approach to diagnosing and researching developmental prosopagnosia: Excluded cases are impaired too. Behav Res Methods 2023; 55:4291-4314. [PMID: 36459376 PMCID: PMC9718472 DOI: 10.3758/s13428-022-02017-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/04/2022]
Abstract
Developmental prosopagnosia is characterized by severe, lifelong difficulties when recognizing facial identity. Unfortunately, the most common diagnostic assessment (Cambridge Face Memory Test) misses 50-65% of individuals who believe that they have this condition. This results in such excluded cases' absence from scientific knowledge, effect sizes of impairment potentially overestimated, treatment efficacy underrated, and may elicit in them a negative experience of research. To estimate their symptomology and group-level impairments in face processing, we recruited a large cohort who believes that they have prosopagnosia. Matching prior reports, 56% did not meet criteria on the Cambridge Face Memory Test. However, the severity of their prosopagnosia symptoms and holistic perception deficits were comparable to those who did meet criteria. Excluded cases also exhibited face perception and memory impairments that were roughly one standard deviation below neurotypical norms, indicating the presence of objective problems. As the prosopagnosia index correctly classified virtually every case, we propose it should be the primary method for providing a diagnosis, prior to subtype categorization. We present researchers with a plan on how they can analyze these excluded prosopagnosia cases in their future work without negatively impacting their traditional findings. We anticipate such inclusion will enhance scientific knowledge, more accurately estimate effect sizes of impairments and treatments, and identify commonalities and distinctions between these different forms of prosopagnosia. Owing to their atypicalities in visual perception, we recommend that the prosopagnosia index should be used to screen out potential prosopagnosia cases from broader vision research.
Collapse
Affiliation(s)
- Edwin J Burns
- Department of Psychology, Edge Hill University, Ormskirk, UK.
| | - Elizabeth Gaunt
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Betiel Kidane
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Lucy Hunter
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Jaylea Pulford
- Department of Psychology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
9
|
Cardeña E, Lindström L, Goldin P, van Westen D, Mårtensson J. A neurophenomenological fMRI study of a spontaneous automatic writer and a hypnotic cohort. Brain Cogn 2023; 170:106060. [PMID: 37421816 DOI: 10.1016/j.bandc.2023.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE To evaluate the neurophenomenology of automatic writing (AW) in a spontaneous automatic writer (NN) and four high hypnotizables (HH). METHODS During fMRI, NN and the HH were cued to perform spontaneous (NN) or induced (HH) AW, and a comparison task of copying complex symbols, and to rate their experience of control and agency. RESULTS Compared to copying, for all participants AW was associated with less sense of control and agency and decreased BOLD signal responses in brain regions implicated in the sense of agency (left premotor cortex and insula, right premotor cortex, and supplemental motor area), and increased BOLD signal responses in the left and right temporoparietal junctions and the occipital lobes. During AW, the HH differed from NN in widespread BOLD decreases across the brain and increases in frontal and parietal regions. CONCLUSIONS Spontaneous and induced AW had similar effects on agency, but only partly overlapping effects on cortical activity.
Collapse
Affiliation(s)
- Etzel Cardeña
- CERCAP, Department of Psychology, Lund University, Sweden.
| | - Lena Lindström
- CERCAP, Department of Psychology, Lund University, Sweden
| | | | - Danielle van Westen
- Institution for Clinical Sciences, Diagnostic Radiology, Lund University, Sweden
| | - Johan Mårtensson
- Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Sweden
| |
Collapse
|
10
|
de Freitas PH, Monteiro RC, Bertani R, Perret CM, Rodrigues PC, Vicentini J, de Morais TMG, Rozental SF, Galvão GF, de Mattos F, Vasconcelos FA, Dorio IS, Hayashi CY, dos Santos JR, Werneck GL, Tocquer CTF, Capitão C, da Cruz LCH, Tulviste J, Fiorani M, da Silva MM, Paiva WS, Podell K, Federoff HJ, Patel DH, Lado F, Goldberg E, Llinás R, Bennett MV, Rozental R. E.L., a modern-day Phineas Gage: Revisiting frontal lobe injury. LANCET REGIONAL HEALTH. AMERICAS 2022; 14:100340. [PMID: 36777390 PMCID: PMC9903712 DOI: 10.1016/j.lana.2022.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND How the prefrontal cortex (PFC) recovers its functionality following lesions remains a conundrum. Recent work has uncovered the importance of transient low-frequency oscillatory activity (LFO; < 4 Hz) for the recovery of an injured brain. We aimed to determine whether persistent cortical oscillatory dynamics contribute to brain capability to support 'normal life' following injury. METHODS In this 9-year prospective longitudinal study (08/2012-2021), we collected data from the patient E.L., a modern-day Phineas Gage, who suffered from lesions, impacting 11% of his total brain mass, to his right PFC and supplementary motor area after his skull was transfixed by an iron rod. A systematic evaluation of clinical, electrophysiologic, brain imaging, neuropsychological and behavioural testing were used to clarify the clinical significance of relationship between LFO discharge and executive dysfunctions and compare E.L.´s disorders to that attributed to Gage (1848), a landmark in the history of neurology and neuroscience. FINDINGS Selective recruitment of the non-injured left hemisphere during execution of unimanual right-hand movements resulted in the emergence of robust LFO, an EEG-detected marker for disconnection of brain areas, in the damaged right hemisphere. In contrast, recruitment of the damaged right hemisphere during contralateral hand movement, resulted in the co-activation of the left hemisphere and decreased right hemisphere LFO to levels of controls enabling performance, suggesting a target for neuromodulation. Similarly, transcranial magnetic stimulation (TMS), used to create a temporary virtual-lesion over E.L.'s healthy hemisphere, disrupted the modulation of contralateral LFO, disturbing behaviour and impairing executive function tasks. In contrast to Gage, reasoning, planning, working memory, social, sexual and family behaviours eluded clinical inspection by decreasing LFO in the delta frequency range during motor and executive functioning. INTERPRETATION Our study suggests that modulation of LFO dynamics is an important mechanism by which PFC accommodates neurological injuries, supporting the reports of Gage´s recovery, and represents an attractive target for therapeutic interventions. FUNDING Fundação de Amparo Pesquisa Rio de Janeiro (FAPERJ), Universidade Federal do Rio de Janeiro (intramural), and Fiocruz/Ministery of Health (INOVA Fiocruz).
Collapse
Affiliation(s)
- Pedro H.M. de Freitas
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ruy C. Monteiro
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Raphael Bertani
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Caio M. Perret
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Pedro C. Rodrigues
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Joana Vicentini
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | | | | | - Gustavo F. Galvão
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fabricio de Mattos
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernando A. Vasconcelos
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
- Dept Neurocirurgia, HUGG, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), RJ, 20270-004, Brazil
| | - Ivan S. Dorio
- Miguel Couto Municipal Hospital, Rio de Janeiro, RJ, 22430-160, Brazil
| | - Cintya Y. Hayashi
- Dept Neurologia, Universidade do Estado de São Paulo, SP, 05402-000, Brazil
| | | | - Guilherme L. Werneck
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | | | | | | | - Jaan Tulviste
- University of Tartu, Institute of Psychology, Tartu, Estonia
| | - Mario Fiorani
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcos M. da Silva
- Dept Neurologia, HUCFF, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Kenneth Podell
- Neurological Institute, Houston Methodist, TX, 77030, USA
| | | | | | - Fred Lado
- Northwell Health, Manhasset, NY, 11030, USA
| | - Elkhonon Goldberg
- Dept Neurology, New York University, School of Medicine, NY, 10016, USA
| | - Rodolfo Llinás
- Dept. Physiology and Neuroscience, New York University, School of Medicine, NY, 10016, USA
| | | | - Renato Rozental
- Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, RJ, 21941-902, Brazil
- Dept Neuroscience, Albert Einstein Coll Medicine, Bronx, NY, 10461, USA
- Centro Desenvolvimento Tecnológico (CDTS), FIOCRUZ, Rio de Janeiro, 21040-361, Brazil
| |
Collapse
|
11
|
Dissociations in neuropsychological single-case studies: Should one subtract raw or standardized (z) scores? Neuropsychologia 2022; 169:108193. [PMID: 35247434 DOI: 10.1016/j.neuropsychologia.2022.108193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
Abstract
This work tackles the problem of whether the dissociation between two performances in a single-case study should be computed as the difference between the raw or between the standardized (e.g. z) scores. A wrong choice can lead to serious inflation of the probability of finding false dissociations and missing true dissociations. Two common misconceptions are that (i) standardized scores are a universally valid choice, or (ii) raw scores can be subtracted when the two performances concern the same "task/test", otherwise standardized scores are better. These and other rules are shown to fail in specific cases and a solution is proposed in terms of in-depth analysis of the meaning of each score. The scores that should be subtracted are those that better reflect "deficit severities" - the latent, unobservable degrees of damage to the cognitive systems that are being compared. Thus explicit theoretical modelling of the investigated cognitive function(s) - the "scenario" - is required. A flowchart is provided that guides such analysis, and shows how a given neuropsychological scenario leads to the selection of an appropriate statistical method for detecting dissociations, introducing the critical concept of "deficit equivalence criterion" - the definition of what exactly a non-dissociation should look like. One further, overlooked problem concerning standardized scores in general (as measures of effect size, of which neuropsychological dissociations are just one example) is that they cannot be meaningfully compared if they have different reliabilities. In conclusion, when studying dissociations, increases in false-positive and false-negative risks are likely to occur when no explicit neuropsychological theory is offered that justifies the definition of what are to be considered as equivalent deficit severities in both performances, and which would lead to appropriate selection of raw, standardized, or any other type of score. More generally, the choice of any measure in any research context needs explicit theoretical modelling, without which statistical risks cannot be controlled.
Collapse
|
12
|
Tuckute G, Paunov A, Kean H, Small H, Mineroff Z, Blank I, Fedorenko E. Frontal language areas do not emerge in the absence of temporal language areas: A case study of an individual born without a left temporal lobe. Neuropsychologia 2022; 169:108184. [DOI: 10.1016/j.neuropsychologia.2022.108184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
13
|
Mitchell AG, Rossit S, Pal S, Hornberger M, Warman A, Kenning E, Williamson L, Shapland R, McIntosh RD. Peripheral reaching in Alzheimer's disease and mild cognitive impairment. Cortex 2022; 149:29-43. [PMID: 35184013 PMCID: PMC9007170 DOI: 10.1016/j.cortex.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Recent evidence has implicated areas within the posterior parietal cortex (PPC) as among the first to show pathophysiological changes in Alzheimer's disease (AD). Focal brain damage to the PPC can cause optic ataxia, a specific deficit in reaching to peripheral targets. The present study describes a novel investigation of peripheral reaching ability in AD and mild cognitive impairment (MCI), to assess whether this deficit is common among these patient groups. Individuals with a diagnosis of mild-to-moderate AD, or MCI, and healthy older adult controls were required to reach to targets presented in central vision or in peripheral vision using two reaching tasks; one in the lateral plane and another presented in radial depth. Pre-registered case–control comparisons identified 1/10 MCI and 3/17 AD patients with significant peripheral reaching deficits at the individual level, but group-level comparisons did not find significantly higher peripheral reaching error in either AD or MCI by comparison to controls. Exploratory analyses showed significantly increased reach duration in both AD and MCI groups relative to controls, accounted for by an extended Deceleration Time of the reach movement. These findings suggest that peripheral reaching deficits like those observed in optic ataxia are not a common feature of AD. However, we show that cognitive decline is associated with a generalised slowing of movement which may indicate a visuomotor deficit in reach planning or online guidance.
Collapse
Affiliation(s)
- Alexandra G Mitchell
- Department of Psychology, University of Edinburgh, Edinburgh, UK; Center for Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | - Stephanie Rossit
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK.
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
| | | | - Annie Warman
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK.
| | - Elise Kenning
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | - Laura Williamson
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | - Rebecca Shapland
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | | |
Collapse
|
14
|
Jurkiewicz T, Salemme R, Froment C, Pisella L. Role of the Dorsal Posterior Parietal Cortex in the Accurate Perception of Object Magnitude in Peripheral Vision. Iperception 2021; 12:20416695211058476. [PMID: 34900214 PMCID: PMC8652191 DOI: 10.1177/20416695211058476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Following superior parietal lobule and intraparietal sulcus (SPL-IPS) damage, optic ataxia patients underestimate the distance of objects in the ataxic visual field such that they produce hypometric pointing errors. The metrics of these pointing errors relative to visual target eccentricity fit the cortical magnification of central vision. The SPL-IPS would therefore implement an active “peripheral magnification” to match the real metrics of the environment for accurate action. We further hypothesized that this active compensation of the central magnification by the SPL-IPS contributes to actual object’ size perception in peripheral vision. Three optic ataxia patients and 10 age-matched controls were assessed in comparing the thickness of two rectangles flashed simultaneously, one in central and another in peripheral vision. The bilateral optic ataxia patient exhibited exaggerated underestimation bias and uncertainty compared to the control group in both visual fields. The two unilateral optic ataxia patients exhibited a pathological asymmetry between visual fields: size perception performance was affected in their contralesional peripheral visual field compared to their healthy side. These results demonstrate that the SPL-IPS contributes to accurate size perception in peripheral vision.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | - Romeo Salemme
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | - Caroline Froment
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| |
Collapse
|