1
|
Zhang Z, Zhang L, Chen B. Characterization of T cells in the progression of dry eye disease using single-cell RNA sequencing in mice. Eur J Med Res 2025; 30:338. [PMID: 40296131 PMCID: PMC12036131 DOI: 10.1186/s40001-025-02607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Increasing evidence indicated that T cells have significant effects in dry eye disease (DED). However, the regulatory role of T cells in DED remains unclear. METHODS In this study, we examined immune responses throughout the progression in murine DED model. Using cytometry by time-of-flight (CyTOF) and single-cell RNA sequencing (scRNA-seq), we observed dynamic alterations in the proportions of immune cell landscape. Pseudotime trajectory and cell-cell communication analyses further illustrated T-cell differentiation and interaction networks. RESULTS CD4+ and CD8+ T cells exhibited an initial decline on Day 3 (D3) and followed by a recovery on Day 7 (D7). Single-cell transcriptomics provided insights into 15 distinct subsets of T cells with heterogeneous functional states. Pseudotime trajectory analysis demonstrated coordinated differentiation patterns of CD4+ and CD8+ T cells, indicating their collaborative involvement in the inflammatory process. CONCLUSIONS Our results clarify the dynamics of the adaptive immune response in DED and indicate that targeting T cells may serve as a promising immune-modulatory approach in the treatment of DED model.
Collapse
Affiliation(s)
- Zhizhi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Cohen SM, Boobis AR, Jacobson-Kram D, Schoeny R, Rosol TJ, Williams GM, Kaminski NE, Eichenbaum GM, Guengerich FP, Nash JF. Mode of action approach supports a lack of carcinogenic potential of six organic UV filters. Crit Rev Toxicol 2025; 55:248-284. [PMID: 40208192 DOI: 10.1080/10408444.2025.2462642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 04/11/2025]
Abstract
Ultraviolet (UV) filters, the active ingredients in sunscreens, have been used for several decades to reduce the risk of acute and chronic damage to the skin from solar UV radiation, which can lead to skin cancer. Based on recent clinical studies showing that certain UV filters are absorbed systemically at low levels in humans, the US Food and Drug Administration (FDA) has requested supplementing existing safety data with preclinical studies including oral and dermal 2-year rodent carcinogenicity studies. Although the conduct of 2-year rodent carcinogenicity studies has been the standard approach for evaluating the carcinogenic potential of chemicals and new drugs for approximately 6 decades, there are multiple examples showing that such studies are not predictive of human cancer risk. Given these concerns with 2-year rodent carcinogenicity studies, we have developed and applied an alternative approach for supplementing existing data related to carcinogenic potential for six of the most commonly used UV filters in sunscreen products (i.e. avobenzone, ensulizole, homosalate, octinoxate, octisalate, and octocrylene). This approach evaluates their mode of action (MOA) based on in vivo, in vitro, and in silico data combined with an assessment of exposure margins. This approach is based on the substantial progress in understanding the MOAs that are responsible for tumor induction in humans. It is consistent with those being developed by the International Council for Harmonization (ICH) and other health authorities to replace 2-year carcinogenicity studies given their limitations and questionable biological relevance to humans. The available data for the six UV filters show that they are not genotoxic and show no evidence of biologically relevant carcinogenic MOAs. Furthermore, their systemic exposure levels in humans fall well below concentrations at which they have biologic activity. In conclusion, these data support the continued safe use of these six filters in sunscreen products.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology, Immunology, and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alan R Boobis
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | - Thomas J Rosol
- Histology Core Facility and Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Gary M Williams
- Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J F Nash
- Procter & Gamble, Mason, OH, USA
| |
Collapse
|
3
|
Roy A, Paul I, Paul T, Hazarika K, Dihidar A, Ray S. An in-silico receptor-pharmacophore based multistep molecular docking and simulation study to evaluate the inhibitory potentials against NS1 of DENV-2. J Biomol Struct Dyn 2024; 42:6136-6164. [PMID: 37517062 DOI: 10.1080/07391102.2023.2239925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/25/2023] [Indexed: 08/01/2023]
Abstract
DENV-2 strain is the most fatal and infectious of the five dengue virus serotypes. The non-structural protein NS1 encoded by its genome is the most significant protein required for viral pathogenesis and replication inside the host body. Thus, targeting the NS1 protein and designing an inhibitor to limit its stability and secretion is a propitious attempt in our fight against dengue. Four novel inhibitors are designed to target the conserved cysteine residues (C55, C313, C316, and C329) and glycosylation sites (N130 and N207) of the NS1 protein in an attempt to halt the spread of the dengue infection in the host body altogether. Numerous computer-aided drug designing techniques including molecular docking, molecular dynamics simulation, virtual screening, principal component analysis, and dynamic cross-correlation matrix were employed to determine the structural and functional activity of the NS1-inhibitor complexes. From our analysis, it was evident that the extent of structural and atomic level fluctuations of the ligand-bound protein exhibited a declining trend in contrast to unbound protein which was prominently noticeable through the RMSD, RMSF, Rg, and SASA graphs. The ADMET analysis of the four ligands revealed a promising pharmacokinetics and pharmacodynamic profile, along with good bioavailability and toxicity properties. The proposed drugs when bound to the targeted cavities resulted in stable conformations in comparison to their unbound state, implying they have good affinity promising effective drug action. Thus, they can be tested in vitro and used as potential anti-dengue drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Tanwi Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Aritrika Dihidar
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
4
|
Cohen SM. Cell proliferation and carcinogenesis: an approach to screening for potential human carcinogens. Front Oncol 2024; 14:1394584. [PMID: 38868530 PMCID: PMC11168196 DOI: 10.3389/fonc.2024.1394584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer arises from multiple genetic errors occurring in a single stem cell (clonality). Every time DNA replicates, mistakes occur. Thus, agents can increase the risk of cancer either by directly damaging DNA (DNA-reactive carcinogens) or increasing the number of DNA replications (increased cell proliferation). Increased cell proliferation can be achieved either by direct mitogenesis or cytotoxicity with regenerative proliferation. Human carcinogens have a mode of action of DNA reactivity, immunomodulation (mostly immunosuppression), increased estrogenic activity (mitogenesis), or cytotoxicity and regeneration. By focusing on screening for these four effects utilizing in silico, in vitro, and short-term in vivo assays, a biologically based screening for human chemical carcinogens can be accomplished with greater predictivity than the traditional 2-year bioassay with considerably less cost, less time, and the use of fewer animals.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology, Microbiology, and Immunology and the Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Bassan A, Steigerwalt R, Keller D, Beilke L, Bradley PM, Bringezu F, Brock WJ, Burns-Naas LA, Chambers J, Cross K, Dorato M, Elespuru R, Fuhrer D, Hall F, Hartke J, Jahnke GD, Kluxen FM, McDuffie E, Schmidt F, Valentin JP, Woolley D, Zane D, Myatt GJ. Developing a pragmatic consensus procedure supporting the ICH S1B(R1) weight of evidence carcinogenicity assessment. FRONTIERS IN TOXICOLOGY 2024; 6:1370045. [PMID: 38646442 PMCID: PMC11027748 DOI: 10.3389/ftox.2024.1370045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.
Collapse
Affiliation(s)
| | | | - Douglas Keller
- Independent Consultant, Kennett Square, PA, United States
| | - Lisa Beilke
- Toxicology Solutions, Inc., Marana, AZ, United States
| | | | - Frank Bringezu
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - William J. Brock
- Brock Scientific Consulting, LLC, Hilton Head, SC, United States
| | | | | | | | | | | | - Douglas Fuhrer
- BioXcel Therapeutics, Inc., New Haven, CT, United States
| | | | - Jim Hartke
- Gilead Sciences, Inc., Foster City, CA, United States
| | | | | | - Eric McDuffie
- Neurocrine Bioscience, Inc., San Diego, CA, United States
| | | | | | | | - Doris Zane
- Gilead Sciences, Inc., Foster City, CA, United States
| | | |
Collapse
|
6
|
Nowak R, Trzeciak-Ryczek A, Ciechanowicz A, Brodkiewicz A, Urasińska E, Kostrzewa-Nowak D. The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells. Cells 2023; 12:cells12081119. [PMID: 37190028 DOI: 10.3390/cells12081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to assess the post-effort transcriptional changes of selected genes encoding receptors for chemokines and interleukins in young, physically active men to better understand the immunomodulatory effect of physical activity. The participants, aged 16-21 years, performed physical exercise tasks of either a maximal multistage 20 m shuttle-run test (beep test) or a repeated speed ability test. The expression of selected genes encoding receptors for chemokines and interleukins in nucleated peripheral blood cells was determined using RT-qPCR. Aerobic endurance activity was a positive stimulant that induced increased expression of CCR1 and CCR2 genes following lactate recovery, while the maximum expression of CCR5 was found immediately post-effort. The increase in the expression of inflammation-related genes encoding chemokine receptors triggered by aerobic effort strengthens the theory that physical effort induces sterile inflammation. Different profiles of studied chemokine receptor gene expression induced by short-term anaerobic effort suggest that not all types of physical effort activate the same immunological pathways. A significant increase in IL17RA gene expression after the beep test confirmed the hypothesis that cells expressing this receptor, including Th17 lymphocyte subsets, can be involved in the creation of an immune response after endurance efforts.
Collapse
Affiliation(s)
- Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska St., 71-415 Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska St., 71-415 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Child Nephrology, Dialysotherapy and Management of Acute Poisoning, Pomeranian Medical University, 4 Maczna St., 70-204 Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland
| |
Collapse
|
7
|
Borghoff SJ, Cohen SS, Jiang X, Lea IA, Klaren WD, Chappell GA, Britt JK, Rivera BN, Choski NY, Wikoff DS. Updated systematic assessment of human, animal and mechanistic evidence demonstrates lack of human carcinogenicity with consumption of aspartame. Food Chem Toxicol 2023; 172:113549. [PMID: 36493943 DOI: 10.1016/j.fct.2022.113549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Aspartame has been studied extensively and evaluated for its safety in foods and beverages yet concerns for its potential carcinogenicity have persisted, driven primarily by animal studies conducted at the Ramazzini Institute (RI). To address this controversy, an updated systematic review of available human, animal, and mechanistic data was conducted leveraging critical assessment tools to consider the quality and reliability of data. The evidence base includes 12 animal studies and >40 epidemiological studies reviewed by the World Health Organization which collectively demonstrate a lack of carcinogenic effect. Assessment of >1360 mechanistic endpoints, including many guideline-based genotoxicity studies, demonstrate a lack of activity associated with endpoints grouped to key characteristics of carcinogens. Other non-specific mechanistic data (e.g., mixed findings of oxidative stress across study models, tissues, and species) do not provide evidence of a biologically plausible carcinogenic pathway associated with aspartame. Taken together, available evidence supports that aspartame consumption is not carcinogenic in humans and that the inconsistent findings of the RI studies may be explained by flaws in study design and conduct (despite additional analyses to address study limitations), as acknowledged by authoritative bodies.
Collapse
Affiliation(s)
| | - Sarah S Cohen
- EpidStrategies, A Division of ToxStrategies, RTP, NC, USA
| | - Xiaohui Jiang
- EpidStrategies, A Division of ToxStrategies, RTP, NC, USA
| | - Isabel A Lea
- ToxStrategies, Inc., Research Triangle Park, NC, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Maddalon A, Iulini M, Melzi G, Corsini E, Galbiati V. New Approach Methodologies in Immunotoxicology: Challenges and Opportunities. Endocr Metab Immune Disord Drug Targets 2023; 23:1681-1698. [PMID: 37069707 DOI: 10.2174/1871530323666230413081128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
To maintain the integrity of an organism, a well-functioning immune system is essential. Immunity is dynamic, with constant surveillance needed to determine whether to initiate an immune response or to not respond. Both inappropriate immunostimulation and decreased immune response can be harmful to the host. A reduced immune response can lead to high susceptibility to cancer or infections, whereas an increased immune response can be related to autoimmunity or hypersensitivity reactions. Animal testing has been the gold standard for hazard assessment in immunotoxicity but a lot of efforts are ongoing to develop non-animal-based test systems, and important successes have been achieved. The term "new approach methodologies" (NAMs) refer to the approaches which are not based on animal models. They are applied in hazard and risk assessment of chemicals and include approaches such as defined approaches for data interpretation and integrated approaches to testing and assessment. This review aims to summarize the available NAMs for immunotoxicity assessment, taking into consideration both inappropriate immunostimulation and immunosuppression, including implication for cancer development.
Collapse
Affiliation(s)
- Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Cestonaro LV, Macedo SMD, Piton YV, Garcia SC, Arbo MD. Toxic effects of pesticides on cellular and humoral immunity: an overview. Immunopharmacol Immunotoxicol 2022; 44:816-831. [PMID: 35770924 DOI: 10.1080/08923973.2022.2096466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
People are exposed to pesticides through food, drinking water, and the environment. These compounds are associated with several disorders, such as inflammatory diseases, rheumatoid arthritis, cancer, and a condition related to metabolic syndrome. The immunotoxicants or immunotoxic compounds can cause a wide variety of effects on immune function, altering humoral immunity and cell-mediated immunity, resulting in adverse effects to the body. Here, immune system disorders are highlighted because they are closely linked to multiple organs, including the nervous, endocrine, reproductive, cardiovascular, and respiratory systems, leading to transient or permanent changes. Therefore, this study reviewed the mechanisms involved in the immunotoxicity of fungicides, herbicides, and insecticides in cells, animals, and humans in the past 11 years. According to the studies analyzed, the pesticides interfere with innate and adaptive immune functions, but the effects observed mainly on cellular and humoral immunity were highlighted. These compounds affected specific immune cells, causing apoptosis, changes in factor nuclear kappa B (NF-κB) expression, pro-inflammatory factors interleukin 6 (IL-6), interleukin 8 (IL-8), interferon-gamma (IFN-γ), chemokines (CXCL-c1c), and anti-inflammatory factor, such as interleukin 10 (IL-10). To verify the threats of these compounds, new evaluations with immunotoxicological biomarkers are necessary. HighlightsPesticides interfere with the innate and adaptive immune response.Cells, animals and human studies demonstrate the immunotoxicity of pesticides in the cellular and humoral immune response.Fungicides, herbicides, and insecticides alter the immune system by various mechanisms, such as pro-inflammatory and anti-inflammatory factors.
Collapse
Affiliation(s)
- Larissa Vivan Cestonaro
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Sandra Manoela Dias Macedo
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Yasmin Vendrusculo Piton
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Marcelo Dutra Arbo
- Departamento de Análises, Faculdade de Farmácia, Laboratório de Toxicologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.,Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
10
|
Kostrzewa-Nowak D, Nowak R. Differential Th Cell-Related Immune Responses in Young Physically Active Men after an Endurance Effort. J Clin Med 2020; 9:E1795. [PMID: 32526904 PMCID: PMC7356896 DOI: 10.3390/jcm9061795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
The participation of T cell subsets in the modulation of immunity in athletes triggered by maximal effort was investigated. In total, 80 physically active young men (range 16-20 years) were divided into 5 age groups: 16, 17, 18, 19, and 20 years old. They performed efficiency tests on mechanical treadmills until exhaustion. White blood cell (WBC) and lymphocyte (LYM) counts were determined, and the type 1 (Th1), type 2 (Th2) helper T cells, T helper 17 (Th17), and T regulatory (Treg) cell distribution and plasma levels of selected cytokines were analyzed. An increase in WBC and LYM counts after the test and in Th1 and Treg cells after the test and in recovery was observed. There were no changes in Th2 cells. An increase in interleukins (IL): IL-2 and IL-8 was observed. The IL-6 level was altered in all studied groups. IL-17A and interferon gamma (IFN-γ) levels were increased in all studied groups. The mechanism of differential T cell subset activation may be related to athletes' age. The novel findings of this study are the involvement of Th17 cells in post-effort immune responses and the participation of IL-6 in post-effort and the long-term biological effect of endurance effort.
Collapse
Affiliation(s)
- Dorota Kostrzewa-Nowak
- Centre for Human Structural and Functional Research, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland;
| | | |
Collapse
|
11
|
Costa C, Briguglio G, Catanoso R, Giambò F, Polito I, Teodoro M, Fenga C. New perspectives on cytokine pathways modulation by pesticide exposure. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
T helper cell-related changes in peripheral blood induced by progressive effort among soccer players. PLoS One 2020; 15:e0227993. [PMID: 31990927 PMCID: PMC6986753 DOI: 10.1371/journal.pone.0227993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives The regulatory mechanisms affecting the modulation of the immune system accompanying the progressive effort to exhaustion, particularly associated with T cells, are not fully understood. We analysed the impact of two progressive effort protocols on T helper (Th) cell distribution and selected cytokines. Methods Sixty-two male soccer players with a median age of 17 (16–29) years performed different protocols for progressive exercise until exhaustion: YO-YO (YYRL1) and Beep. Blood samples for all analyses were taken three times: at baseline, post-effort, and in recovery. Results The percentage of Th1 cells increased post-effort and in recovery. The post-effort percentage of Th1 cells was higher in the Beep group compared to the YYRL1 group. Significant post-effort increase in Th17 cells was observed in both groups. The post-effort percentage of regulatory T cells (Treg) increased in the Beep group. An increased post-effort concentration of IL-2, IL-6, IL-8 and IFN-γ in both groups was observed. Post-effort TNF-α and IL-10 levels were higher than baseline in the YYRL1 group, while the post-effort IL-17A concentration was lower than baseline only in the Beep group. The recovery IL-2, IL-4, TNF-α and IFN-γ levels were higher than baseline in the YYRL1 group. The recovery IL-4, IL-6, IL-8, TNF-α and IFN-γ values were higher than baseline in the Beep group. Conclusion The molecular patterns related to cytokine secretion are not the same between different protocols for progressive effort. It seems that Treg cells are probably the key cells responsible for silencing the inflammation and enhancing anti-inflammatory pathways.
Collapse
|
13
|
Ogungbesan A, Neal-Kluever A, Rice P. Exploring the use of current immunological assays for the developmental immunotoxicity assessment of food contact materials. Food Chem Toxicol 2019; 133:110801. [PMID: 31499121 DOI: 10.1016/j.fct.2019.110801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
The mammalian immune system is a highly complex, interactive network of cells that facilitates innate and adaptive immune responses. The neonatal immune system may be more susceptible to chemical perturbations than that of the adult. The effects of immunotoxicants during development may not be fully detected in toxicity studies performed on adult animals. Studies characterizing the ontogeny of the immune system in developing animals have shown that there are different critical windows of susceptibility to immunotoxicants. Developmental differences are evident among species compared to humans. Functional immune assays, such as the T-cell antibody dependent response assay, in rat models have been validated for use in the assessment of immunotoxicity with other assays. Recently, published studies have explored the feasibility of using additional techniques, such as in vitro studies using human whole blood cells or cell lines, mostly lacking either sensitivity or proper validation for regulatory purposes. However, some techniques may be developed further to enable translation of animal toxicity findings to human risk assessment of potential immunotoxicants. This paper summarizes the information on the developing immune system in humans versus rats and how the currently available assays might be used to contribute to the safety assessment of food contact substances.
Collapse
Affiliation(s)
- Adejoke Ogungbesan
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA.
| | - April Neal-Kluever
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | - Penny Rice
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| |
Collapse
|
14
|
Dornbos P, LaPres JJ. Incorporating population-level genetic variability within laboratory models in toxicology: From the individual to the population. Toxicology 2018; 395:1-8. [PMID: 29275117 PMCID: PMC5801153 DOI: 10.1016/j.tox.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Humans respond to chemical exposures differently due to many factors, such as previous and concurrent stressors, age, sex, and genetic background. The vast majority of laboratory-based toxicology studies, however, have not considered the impact of population-level variability within dose-response relationships. The lack of data dealing with the influence of genetic diversity on the response to chemical exposure provides a difficult challenge for risk assessment as individuals within the population will display a wide-range of responses following toxicant challenge. Notably, the genetic background of individuals plays a major role in the variability seen in a population-level response to a drug or chemical and, thus, there is growing interest in including genetic diversity into laboratory-models. Here we outline several laboratory-based models that can be used to assay the influence of genetic variability on an individual's response to chemicals: 1) genetically-diverse cell lines, 2) human primary cells, 3) and genetically-diverse mouse panels. We also provide a succinct review for several seminal studies to highlight the capability, feasibility, and power of each of these models. This article is intended to highlight the need to include population-level genetic diversity into toxicological study designs via laboratory-based models with the goal to provide and supplement evidence in assessing the risk posed by chemicals to the human population. As such, incorporation of genetic variability will positively impact human-based risk assessment and provide empirical data to aid and influence decision-making processes in relation to chemical exposures.
Collapse
Affiliation(s)
- Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|