1
|
Wang YM, Ge MX, Ran SZ, Pan X, Chi CF, Wang B. Antioxidant Peptides from Miiuy Croaker Swim Bladders: Ameliorating Effect and Mechanism in NAFLD Cell Model through Regulation of Hypolipidemic and Antioxidant Capacity. Mar Drugs 2025; 23:63. [PMID: 39997187 PMCID: PMC11857530 DOI: 10.3390/md23020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
In this work, the hypolipidemic and antioxidative capacity of FSGLR (S7) and GIEWA (S10) from miiuy croaker swim bladders was explored systematically in an oleic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model of HepG2 cells. Moreover, the hypolipidemic activity of S7 and S10 and their antioxidative abilities were preliminarily investigated in combination with molecular docking technology. The results indicated that S7 and S10 could decrease the amount of lipid accumulation and the content of triglycerides (TG) and total cholesterol (TC) in the OA-induced NAFLD cell model in a dose-dependent manner. In addition, S7 and S10 exhibited better bile salt binding, pancreatic lipase (PL) inhibition, and cholesterol esterase (CE) inhibition capacities. The hypolipidemic mechanisms of S7 and S10 were connected with the downregulation of the mRNA expression levels of adipogenic factors, including sterol-regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), sterol-regulatory element-binding protein (SREBP)-2, hydroxymethylglutaryl-CoA reductase (HMGR), and fatty acid synthase (FAS) (p < 0.01), and the upregulation of the mRNA expression of β-oxidation-related factors, including carnitine palmitoyltransferase 1 (CPT-1), acyl-CoA oxidase 1 (ACOX-1), and peroxisome proliferator-activated receptor α (PPARα). Moreover, FSGLR (S7) and GIEWA (S10) could significantly protect HepG2 cells against OA-induced oxidative damage, and their antioxidant mechanisms were related to the increased activity of intracellular antioxidant proteases (superoxide dismutase, SOD; glutathione peroxidase, GSH-PX; catalase, CAT) to remove excess reactive oxygen species (ROS) and decrease the production of malondialdehyde (MDA). The presented findings indicate that the hypolipidemic and antioxidant functions and mechanisms of S7 and S10 could make them potential hypolipidemic and antioxidant candidates for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.-M.W.)
| | - Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.-M.W.)
| | - Su-Zhen Ran
- School of Foundation Studies, Zhejiang Pharmaceutical University, Ningbo 316022, China
| | - Xin Pan
- National and Provincial Joint Laboratory of Exploration, Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration, Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (Y.-M.W.)
| |
Collapse
|
2
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
3
|
Książek E, Goluch Z, Bochniak M. Vaccinium spp. Berries in the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease: A Comprehensive Update of Preclinical and Clinical Research. Nutrients 2024; 16:2940. [PMID: 39275255 PMCID: PMC11396909 DOI: 10.3390/nu16172940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disorder marked by the buildup of triacylglycerols (TGs) in the liver. It includes a range of conditions, from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH), which can advance to fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD's prevalence is rising globally, estimated between 10% and 50%. The disease is linked to comorbidities such as obesity, type 2 diabetes, insulin resistance, and cardiovascular diseases and currently lacks effective treatment options. Therefore, researchers are focusing on evaluating the impact of adjunctive herbal therapies in individuals with NAFLD. One herbal therapy showing positive results in animal models and clinical studies is fruits from the Vaccinium spp. genus. This review presents an overview of the association between consuming fruits, juices, and extracts from Vaccinium spp. and NAFLD. The search used the following keywords: ((Vaccinium OR blueberry OR bilberry OR cranberry) AND ("non-alcoholic fatty liver disease" OR "non-alcoholic steatohepatitis")). Exclusion criteria included reviews, research notes, book chapters, case studies, and grants. The review included 20 studies: 2 clinical trials and 18 studies on animals and cell lines. The findings indicate that juices and extracts from Vaccinium fruits and leaves have significant potential in addressing NAFLD by improving lipid and glucose metabolism and boosting antioxidant and anti-inflammatory responses. In conclusion, blueberries appear to have the potential to alleviate NAFLD, but more clinical trials are needed to confirm these benefits.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Zuzanna Goluch
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| | - Marta Bochniak
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
4
|
Xia M, Wu Z, Wang J, Buist-Homan M, Moshage H. The Coumarin-Derivative Esculetin Protects against Lipotoxicity in Primary Rat Hepatocytes via Attenuating JNK-Mediated Oxidative Stress and Attenuates Free Fatty Acid-Induced Lipid Accumulation. Antioxidants (Basel) 2023; 12:1922. [PMID: 38001774 PMCID: PMC10669015 DOI: 10.3390/antiox12111922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation. Primary cultures of rat hepatocytes were exposed to palmitic acid (PA) and palmitic acid plus oleic acid (OA/PA) as models of lipotoxicity and lipid accumulation, respectively. Esculetin significantly reduced oxidative stress in PA-treated hepatocytes, as shown by decreased total reactive oxygen species (ROS) and mitochondrial superoxide production and elevated expression of antioxidant genes, including Nrf2 and Gpx1. In addition, esculetin protects against PA-induced necrosis. Esculetin also improved lipid metabolism in primary hepatocytes exposed to nonlipotoxic OA/PA by decreasing the expression of the lipogenesis-related gene Srebp1c and increasing the expression of the fatty acid β-oxidation-related gene Ppar-α. Moreover, esculetin attenuated lipid accumulation in OA/PA-treated hepatocytes. The protective effects of esculetin against lipotoxicity and lipid accumulation were shown to be dependent on the inhibition of JNK and the activation of AMPK, respectively. We conclude that esculetin is a promising compound to target lipotoxicity and lipid accumulation in the treatment of MAFLD.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Ouyang G, Wu Z, Liu Z, Pan G, Wang Y, Liu J, Guo J, Liu T, Huang G, Zeng Y, Wei Z, He S, Yuan G. Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning. Front Immunol 2023; 14:1251750. [PMID: 37822923 PMCID: PMC10562635 DOI: 10.3389/fimmu.2023.1251750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND AIMS Cuproptosis has been identified as a key player in the development of several diseases. In this study, we investigate the potential role of cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). METHOD The gene expression profiles of NAFLD were obtained from the Gene Expression Omnibus database. Differential expression of cuproptosis-related genes (CRGs) were determined between NAFLD and normal tissues. Protein-protein interaction, correlation, and function enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was analyzed in both NAFLD patients and controls. Quantitative real-time PCR was employed to validate the expression of hub genes. RESULTS Four datasets containing 115 NAFLD and 106 control samples were included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1) were identified through the intersection of three machine learning algorithms. The receiver operating characteristic curve was plotted based on these three marker genes, and the area under the curve (AUC) value was 0.704. In the external GSE135251 dataset, the AUC value of the three key genes was as high as 0.970. Further nomogram, decision curve, calibration curve analyses also confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and gene set variation analysis showed these three marker genes involved in multiple pathways that are related to the progression of NAFLD. CIBERSORT and single-sample gene set enrichment analysis indicated that their expression levels in macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-infiltrating lymphocytes were higher in NAFLD compared with control liver samples. The ceRNA network demonstrated a complex regulatory relationship between the three hub genes. The mRNA level of these hub genes were further confirmed in a mouse NAFLD liver samples. CONCLUSION Our study comprehensively demonstrated the relationship between NAFLD and cuproptosis, developed a promising diagnostic model, and provided potential targets for NAFLD treatment and new insights for exploring the mechanism for NAFLD.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandong Pan
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital by Liuzhou Science and Technology Bureau, Liuzhou, Guangxi, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jixu Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Liu
- Department of General Surgery, Luzhai People’s Hospital, Liuzhou, Guangxi, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Becerril-Campos AA, Ramos-Gómez M, De Los Ríos-Arellano EA, Ocampo-Anguiano PV, González-Gallardo A, Macotela Y, García-Gasca T, Ahumada-Solórzano SM. Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease. Nutrients 2023; 15:2928. [PMID: 37447254 DOI: 10.3390/nu15132928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Bioactive compounds in plant-based food have protective effects against metabolic alterations, including non-alcoholic fatty liver disease (NAFLD). Bean leaves are widely cultivated in the world and are a source of dietary fiber and polyphenols. High fat/high fructose diet animal models promote deleterious effects in adipose and non-adipose tissues (lipotoxicity), leading to obesity and its comorbidities. Short-term supplementation of bean leaves exhibited anti-diabetic, anti-hyperlipidemic, and anti-obesity effects in high-fat/high-fructose diet animal models. This study aimed to evaluate the effect of bean leaves supplementation in the prevention of lipotoxicity in NAFLD and contribute to elucidating the possible mechanism involved for a longer period of time. During thirteen weeks, male Wistar rats (n = 9/group) were fed with: (1) S: Rodent Laboratory Chow 5001® (RLC); (2) SBL: 90% RLC+ 10% dry bean leaves; (3) H: high-fat/high-fructose diet; (4) HBL: H+ 10% of dry bean leaves. Overall, a HBL diet enhanced impaired glucose tolerance and ameliorated obesity, risk factors in NAFLD development. Additionally, bean leaves exerted antioxidant (↑serum GSH) and anti-inflammatory (↓mRNA TNFα in the liver) effects, prevented hepatic fat accumulation by enhanced ↑mRNA PPARα (β oxidation), and enhanced lipid peroxidation (↓liver MDA). These findings suggest that bean leaves ameliorated hepatic lipotoxicity derived from the consumption of a deleterious diet.
Collapse
Affiliation(s)
- Adriana Araceli Becerril-Campos
- Laboratory of Cellular and Molecular Biology, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
| | - Minerva Ramos-Gómez
- Food Research and Graduate Department, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico
| | | | - Perla Viridiana Ocampo-Anguiano
- Laboratory of Cellular and Molecular Biology, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
- Food Research and Graduate Department, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico
| | - Adriana González-Gallardo
- Proteogenomic Unit, Neurobiology Institute, National Autonomous University of Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Queretaro 76237, Mexico
| | - Teresa García-Gasca
- Laboratory of Cellular and Molecular Biology, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
| | - Santiaga Marisela Ahumada-Solórzano
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
| |
Collapse
|
7
|
Wu MF, Xi QH, Sheng Y, Wang YM, Wang WY, Chi CF, Wang B. Antioxidant Peptides from Monkfish Swim Bladders: Ameliorating NAFLD In Vitro by Suppressing Lipid Accumulation and Oxidative Stress via Regulating AMPK/Nrf2 Pathway. Mar Drugs 2023; 21:360. [PMID: 37367685 DOI: 10.3390/md21060360] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we investigate the ameliorating functions of QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) from monkfish swim bladders on an FFA-induced NAFLD model of HepG2 cells. The lipid-lowering mechanisms revealed that these five oligopeptides can up-regulate the expression of phospho-AMP-activated protein kinase (p-AMPK) proteins to inhibit the expression of the sterol regulatory element binding protein-1c (SREBP-1c) proteins on increasing lipid synthesis and up-regulating the expression of the PPAP-α and CPT-1 proteins on promoting the β-oxidation of fatty acids. Moreover, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) can significantly inhibit reactive oxygen species' (ROS) production, promote the activities of intracellular antioxidases (superoxide dismutase, SOD; glutathione peroxidase, GSH-PX; and catalase, CAT) and bring down the content of malondialdehyde (MDA) derived from lipid peroxidation. Further investigations revealed that the regulation of these five oligopeptides on oxidative stress was achieved through activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to raise the expression levels of the heme oxygenase 1 (HO-1) protein and downstream antioxidant proteases. Therefore, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) could serve as candidate ingredients to develop functional products for treating NAFLD.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Sheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wan-Yi Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
8
|
Chi CF, Wang B. Marine Bioactive Peptides-Structure, Function and Application. Mar Drugs 2023; 21:md21050275. [PMID: 37233469 DOI: 10.3390/md21050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Marine organisms live in harsh marine habitats, causing them to have significantly different and more diverse proteins than those of terrestrial organisms [...].
Collapse
Affiliation(s)
- Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
9
|
Farage AE, Abdo W, Osman A, Abdel-Kareem MA, Hakami ZH, Alsulimani A, Bin-Ammar A, Alanazi AS, Alsuwayt B, Alanazi MM, Antar SA, Kamel EM, Mahmoud AM. Betulin prevents high fat diet-induced non-alcoholic fatty liver disease by mitigating oxidative stress and upregulating Nrf2 and SIRT1 in rats. Life Sci 2023; 322:121688. [PMID: 37030617 DOI: 10.1016/j.lfs.2023.121688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic disorder characterized by hepatic lipid accumulation. This study explored the effect of betulin (BE), a terpenoid with promising antioxidant, anti-inflammatory and insulin sensitizing effects, on NAFLD induced by high fat diet (HFD). Rats received HFD and BE (15 and 30 mg/kg) for 12 weeks and blood and liver samples were collected for analyses. HFD caused hyperlipidemia, cholesterol and triglycerides accumulation in the liver, hepatocellular ballooning, fibrosis, insulin resistance (IR), lipid peroxidation (LPO), and NF-kB p65 upregulation. BE ameliorated serum and liver lipids, blood glucose, and insulin, liver LPO, prevented steatosis and fibrosis, suppressed NF-kB p65 and enhanced antioxidants in HFD-fed rats. BE downregulated ACC1 and FAS, and upregulated Nrf2, HO-1 and SIRT1 in the liver of HFD-fed rats. In silico investigations revealed the binding affinity of BE towards NF-kB, Keap1, HO-1 and SIRT1. In conclusion, BE attenuated HFD-induced NAFLD by ameliorating hyperlipidemia, IR, lipogenesis, liver lipid accumulation, and oxidative stress. The protective effect of BE was associated with enhanced Nrf2/HO-1 signaling and SIRT1.
Collapse
|
10
|
Zhu Z, Cao T, Chen H, Zhang B, Lin C, Cai H. Olanzapine-induced nonalcoholic fatty liver disease: The effects of differential food pattern and the involvement of PGRMC1 signaling. Food Chem Toxicol 2023; 176:113757. [PMID: 37019375 DOI: 10.1016/j.fct.2023.113757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Detrimental dietary habits with high-fat food are common in the psychiatric population, leading to higher obesity rate. Olanzapine (OLZ), as one of the mainstream antipsychotic drugs, shows superior efficacy in treating schizophrenia but limited by adverse effects such as obesity, dyslipidemia and liver injury, which are risk factors for the development of nonalcoholic fatty liver disease (NAFLD). Progesterone receptor component 1 (PGRMC1) is a key regulator associated with antipsychotic drug-induced metabolic disorders. Our study aims to investigate whether high-fat supplementation worsens OLZ-induced NAFLD and to validate the potential role of PGRMC1 pathway. In vivo, eight-week OLZ treatment successfully induced hepatic steatosis in female C57BL/6 mice fed with either a high-fat or normal diet, which is independent of body weight gain. Likewise, in vitro, OLZ markedly led to hepatocyte steatosis along with enhanced oxidative stress, which was aggravated by free fatty acids. Moreover, in vivo and in vitro, high-fat supplementation aggravated OLZ-induced hepatic lipid accumulation and oxidative stress via inhibition of hepatic PGRMC1-AMPK-mTORC1/Nrf2 pathways. Inspiringly, PGRMC1 overexpression effectively reversed OLZ-induced hepatocyte steatosis in vitro. Hence, hepatic PGRMC1 is attributable to OLZ-induced NAFLD especially with high-fat supplementation and potentially serves as a novel therapeutic target.
Collapse
Affiliation(s)
- ZhenYu Zhu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| | - ChenQuan Lin
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
11
|
Xiao L, Xiong H, Deng Z, Peng X, Cheng K, Zhang H, Jiang L, Sun Y. Tetrastigma hemsleyanum leaf extracts ameliorate NAFLD in mice with low-grade colitis via the gut-liver axis. Food Funct 2023; 14:500-515. [PMID: 36519687 DOI: 10.1039/d2fo03028d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, manifested as oxidative stress, lipid accumulation, and inflammation of the liver. Tetrastigma hemsleyanum leaves (THL), which are rich in flavonoids and phenolic acids, have good anti-inflammatory, antioxidant, and hepatoprotective effects. However, it is unknown whether THL extracts can improve NAFLD and the underlying mechanisms are unknown. Hence, this study was designed to investigate the effects of THL extracts on NAFLD and perform a preliminary inquiry into the underlying mechanism based on the gut-liver axis. The results showed that THL extracts could reverse NAFLD-related oxidative stress, lipid accumulation, and inflammation. Additionally, the protective effect of THL extracts on the gut includes the maintenance of the intestinal barrier and the regulation of gut microbiota, which may be one of the mechanisms by which THL improves NAFLD. To be specific, in our study, THL extracts alleviated hepatic lipid accumulation and oxidative stress by regulating the expression of lipid synthesis/catabolism and the oxidative stress genes (SREBP-1c/ACC-1/PPAR-α/PPAR-γ/Keap1/Nrf2). In addition, THL extracts reduced damage to the intestinal barrier (ZO-1/Mucin2/occludin) and increased the relative abundance of Lactobacillales, Ruminococcaceae, and Bifidobacteriales in NAFLD mice. In short, THL extracts alleviated NAFLD-related oxidative stress, lipid accumulation, and inflammation in NAFLD mice which may be via the gut-liver axis (gut barrier integrity and gut microbiota).
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
12
|
Sun KL, Gao M, Wang YZ, Li XR, Wang P, Wang B. Antioxidant Peptides From Protein Hydrolysate of Marine Red Algae Eucheuma cottonii: Preparation, Identification, and Cytoprotective Mechanisms on H 2O 2 Oxidative Damaged HUVECs. Front Microbiol 2022; 13:791248. [PMID: 35531284 PMCID: PMC9069057 DOI: 10.3389/fmicb.2022.791248] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/10/2022] [Indexed: 01/02/2023] Open
Abstract
To screen, prepare, identify, and evaluate the activities of natural antioxidants for treating chronic diseases caused by oxidative stress. Two algal proteins, namely ZD10 and ZD60, precipitated with 10 and 60% (NH4)2SO4 were extracted from red algae Eucheuma cottonii (E. cottonii) and hydrolyzed using five proteolytic enzymes. The results showed that ZD60 played the most significant role in the enhancement of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH⋅) scavenging activity (25.91 ± 0.24%) among all protein hydrolysates. Subsequently, six antioxidant peptides (EP1-EP6) were isolated from the papain hydrolysate of ZD60 by ultrafiltration and chromatography methods. Their amino acid sequences were identified as Thr-Ala (EP1), Met-Asn (EP2), Tyr-Ser-Lys-Thr (EP3), Tyr-Ala-Val-Thr (EP4), Tyr-Leu-Leu (EP5), and Phe-Tyr-Lys-Ala (EP6) with molecular weights of 190.21, 263.33, 497.55, 452.51, 407.51, and 527.62 Da, respectively. Of which, EP3, EP4, EP5, and EP6 showed strong scavenging activities on DPPH⋅, hydroxyl radical (HO⋅), and superoxide anion radical (O- 2⋅). Moreover, EP4 and EP5 could significantly protect human umbilical vein endothelial cells (HUVECs) from H2O2-induced oxidative damage by increasing the levels of antioxidant enzyme systems including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to reduce the levels of reactive oxygen species (ROS) (60.51 and 51.74% of model group) and malondialdehyde (MDA) (75.36 and 64.45% of model group). In addition, EP4 and EP5 could effectively inhibit H2O2-induced apoptosis by preventing HUVECs from early apoptosis to late apoptosis. These results indicated that the antioxidant peptides derived from E. cottonii, especially EP4 and EP5, could serve as the natural antioxidants applied in pharmaceutical products to treat chronic cardiovascular diseases caused by oxidative damage, such as coronary heart disease, atherosclerosis, etc.
Collapse
Affiliation(s)
- Kun-Lai Sun
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Min Gao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yue-Zhen Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xue-Rong Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
13
|
Mahmoudi A, Butler AE, Majeed M, Banach M, Sahebkar A. Investigation of the Effect of Curcumin on Protein Targets in NAFLD Using Bioinformatic Analysis. Nutrients 2022; 14:1331. [PMID: 35405942 PMCID: PMC9002953 DOI: 10.3390/nu14071331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder. Defects in function/expression of genes/proteins are critical in initiation/progression of NAFLD. Natural products may modulate these genes/proteins. Curcumin improves steatosis, inflammation, and fibrosis progression. Here, bioinformatic tools, gene−drug and gene-disease databases were utilized to explore targets, interactions, and pathways through which curcumin could impact NAFLD. METHODS: Significant curcumin−protein interaction was identified (high-confidence:0.7) in the STITCH database. Identified proteins were investigated to determine association with NAFLD. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for significantly involved targets (p < 0.01). Specificity of obtained targets with NAFLD was estimated and investigated in Tissue/Cells−gene associations (PanglaoDB Augmented 2021, Mouse Gene Atlas) and Disease−gene association-based EnrichR algorithms (Jensen DISEASES, DisGeNET). RESULTS: Two collections were constructed: 227 protein−curcumin interactions and 95 NAFLD-associated genes. By Venn diagram, 14 significant targets were identified, and their biological pathways evaluated. Based on gene ontology, most targets involved stress and lipid metabolism. KEGG revealed chemical carcinogenesis, the AGE-RAGE signaling pathway in diabetic complications and NAFLD as the most common significant pathways. Specificity to diseases database (EnrichR algorithm) revealed specificity for steatosis/steatohepatitis. CONCLUSION: Curcumin may improve, or inhibit, progression of NAFLD through activation/inhibition of NAFLD-related genes.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran;
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | | | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| |
Collapse
|
14
|
Electrophilic thymol isobutyrate from Inula nervosa Wall. (Xiaoheiyao) ameliorates steatosis in HepG2 cells via Nrf2 activation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Wang YL, Wu J, Li RX, Sun YT, Ma YJ, Zhao CY, Zou J, Zhang YY, Sun XD. A double-edged sword: The Kelch-like ECH-associated protein 1-nuclear factor erythroid-derived 2-related factor 2-antioxidant response element pathway targeted pharmacological modulation in nonalcoholic fatty liver disease. Curr Opin Pharmacol 2021; 60:281-290. [PMID: 34500407 DOI: 10.1016/j.coph.2021.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Nutraceuticals activating the Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1)-nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway are widely used for nonalcoholic fatty liver disease (NAFLD) because no specific drugs are approved yet. The pathology of NAFLD is summarized as the 'two-hit' hypothesis. The 'first hit' includes insulin resistance and lipid accumulation. Oxidative stress, lipid peroxidation, and inflammation are regarded as the 'second hit'. Now there is controversial evidence about the roles of the Keap1-Nrf2-ARE pathway and its activators in NAFLD. When the 'first hit' occurs, the hepatocyte-specific Nrf2 deficiency reduces insulin resistance and significantly attenuates lipid accumulation. However, when the 'second hit' occurs, Nrf2 activation reduces oxidative stress and combats inflammation. We reviewed the roles of the Keap1-Nrf2-ARE pathway as a double-edged sword in the development of NAFLD, its inhibitors as a novel therapeutic approach for early NAFLD, and the nutraceutical character of its activators.
Collapse
Affiliation(s)
- Yong-Lun Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Jiao Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Rui-Xi Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yu-Ting Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yi-Jia Ma
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Chen-Yu Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Jie Zou
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China.
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China.
| |
Collapse
|
16
|
Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol Res 2021; 167:105484. [PMID: 33771699 DOI: 10.1016/j.phrs.2021.105484] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Recently non-alcoholic fatty liver disease (NAFLD) has grabbed considerable scientific attention, owing to its rapid increase in prevalence worldwide and growing burden on end-stage liver diseases. Metabolic syndrome including obesity, diabetes, and hypertension poses a grave risk to NAFLD etiology and progression. With no drugs available, the mainstay of NAFLD management remains lifestyle changes with exercise and dietary modifications. Nonselective drugs such as metformin, thiazolidinediones (TZDs), ursodeoxycholic acid (UDCA), silymarin, etc., are also being used to target the interrelated pathways for treating NAFLD. Considering the enormous disease burden and the unmet need for drugs, fresh insights into pathogenesis and drug discovery are required. The emergence of the field of epigenetics offers a convincing explanation for the basis of lifestyle, environmental, and other risk factors to influence NAFLD pathogenesis. Therefore, understanding these epigenetic modifications to target the primary cause of the disease might prove a rational strategy to prevent the disease and develop novel therapeutic interventions. Apart from describing the role of epigenetics in the pathogenesis of NAFLD as in other reviews, this review additionally provides an elaborate discussion on exploiting the high plasticity of epigenetic modifications in response to environmental cues, for developing novel therapeutics for NAFLD. Besides, this extensive review provides evidence for epigenetic mechanisms utilized by several potential drugs for NAFLD.
Collapse
|
17
|
Moreto F, Ferron AJT, Francisqueti-Ferron FV, D'Amato A, Garcia JL, Costa MR, Silva CCVA, Altomare A, Correa CR, Aldini G, Ferreira ALA. Differentially expressed proteins obtained by label-free quantitative proteomic analysis reveal affected biological processes and functions in Western diet-induced steatohepatitis. J Biochem Mol Toxicol 2021; 35:1-11. [PMID: 33729641 DOI: 10.1002/jbt.22751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a pathological manifestation with a progressive incidence in response to the epidemic of hepatic steatosis caused primarily by excessive energy intake. The present study unravels affected biological processes and functions by the presence of NASH in rats using a label-free quantitative proteomic strategy. NASH was induced by a Western high-sugar and high-fat diet for 20 weeks. The liver tissue was collected for histology and for a mass spectrometry-based proteomic protocol. The NASH group showed severe lipidosis, hepatocyte ballooning, and the presence of collagen deposition. Among upregulated proteins in NASH perilipin-2 (Plin-2; F6QBA3; difference [diff]: 2.29), ferritin heavy (Fth1; Q66HI5; diff: 2.19) and light (Ftl1; P02793; diff: 1.75) chains, macrophage migration inhibitory factor 1 (Mif; P30904; diff: 1.69), and fibronectin (Fn1; F1LST1; diff: 0.35) were observed, whereas among downregulated proteins, plectin (Q6S399; diff: -3.34), some Cyp2 family proteins of the cytochrome P450 complex, glutathione S-transferases, flavin-containing monooxygenase 1 (Fmo1; P36365; diff: -2.08), acetyl-CoA acetyltransferase 2 (Acat2; Q5XI22; diff: -2.25), acyl-CoA oxidase 2 (Acox2; F1LNW3; diff: -1.59), and acyl-CoA oxidase 3 (Acox3; F1M9A7; diff: -2.41) were observed. Also, biological processes and functions such as LPS/IL-1 inhibition of RXR, fatty acid metabolism, Nrf2-mediated oxidative stress response, xenobiotic metabolism, and PXR/RXR and CAR/RXR activations were predicted to be affected. In conclusion, the liver of rats with NASH induced by Western diet shows a decreased capacity of metabolizing lipids, fatty acids, and xenobiotic compounds that predispose fibrosis development.
Collapse
Affiliation(s)
- Fernando Moreto
- Medical School, Sao Paulo State University, Botucatu, Brazil
| | | | | | - Alfonsina D'Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Mariane R Costa
- Medical School, Sao Paulo State University, Botucatu, Brazil
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
18
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
19
|
Li L, Fu J, Liu D, Sun J, Hou Y, Chen C, Shao J, Wang L, Wang X, Zhao R, Wang H, Andersen ME, Zhang Q, Xu Y, Pi J. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression. Redox Biol 2020; 30:101412. [PMID: 31901728 PMCID: PMC6940621 DOI: 10.1016/j.redox.2019.101412] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging global disease with increasing prevalence. However, the mechanism of NAFLD development is not fully understood. To elucidate the cell-specific role of nuclear factor erythroid-derived 2-like 2 (NRF2) in the pathogenesis of NAFLD, we utilized hepatocyte- and macrophage-specific Nrf2-knockout [Nrf2(L)-KO and Nrf2(Mϕ)-KO] mice to examine the progress of NAFLD induced by high-fat diet (HFD). Compared to Nrf2-LoxP littermates, Nrf2(L)-KO mice showed less liver enlargement, milder inflammation and less hepatic steatosis after HFD feeding. In contrast, Nrf2(Mϕ)-KO mice displayed no significant difference in HFD-induced hepatic steatosis from Nrf2-LoxP control mice. Mechanistic investigations revealed that Nrf2 deficiency in hepatocytes dampens the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its downstream lipogenic genes in the liver and/or primary hepatocytes induced by HFD and palmitate exposure, respectively. While PPARγ agonists augmented PPARγ expression and its transcriptional activity in primary hepatocytes in a NRF2-dependent manner, forced overexpression of PPARγ1 or γ2 distinctively reversed the decreased expression of their downstream genes fatty acid binding protein 4, lipoprotein lipase and/or fatty acid synthase caused by Nrf2 deficiency. We conclude that NRF2-dependent expression of PPARγ in hepatocytes is a critical initiating process in the development of NAFLD, suggesting that inhibition of NRF2 specifically in hepatocytes may be a valuable approach to prevent the disease.
Collapse
Affiliation(s)
- Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Dan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Junbo Shao
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Linlin Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xin Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | | | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
20
|
Ferramosca A, Treppiccione L, Di Giacomo M, Aufiero VR, Mazzarella G, Maurano F, Gerardi C, Rossi M, Zara V, Mita G, Bergamo P. Prunus Mahaleb Fruit Extract Prevents Chemically Induced Colitis and Enhances Mitochondrial Oxidative Metabolism via the Activation of the Nrf2 Pathway. Mol Nutr Food Res 2019; 63:e1900350. [PMID: 31410984 DOI: 10.1002/mnfr.201900350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Polyphenols exhibit their antioxidant activity downstream the activation of the nuclear factor erythroid 2-related factor 2 pathway (Nrf2), but the connection between lipid metabolism and the Nrf2 pathway is still unknown. Flavonoid-rich concentrated extract from Prunus mahaleb (mahaleb concentrated fruit extract; MCFE) may act on oxido-reductive homeostasis and hepatic lipid metabolism via Nrf2. METHODS & RESULTS MCFE ability to enhance the activity of Nrf2-mediated antioxidant/detoxifying enzymes is investigated in liver and colon of BALB/c mice. After a 4-week supplementation, macroscopic, histological, and biochemical signs of colitis are examined in mouse colon pulsed with 5% (w/v) dextran sodium sulfate (DSS). Untreated or DSS-supplemented mice are used as negative or positive control. MCFE effect on liver lipid metabolism and its possible link with the Nrf2 pathway is investigated. MCFE intake increases antioxidant defenses in mice colon and its pretreatment blunts pathological signs of colitis, as compared to positive control. In the liver, the increase in antioxidant defenses is associated with enhanced oxidative metabolism and with higher levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and of hemeoxygenase-1 (HO-1), in comparison with negative controls. CONCLUSION Cytoprotective and hypolipidemic effect produced by MCFE intake results, at least in part, by the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | | | - Mariangela Di Giacomo
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | | | | | | | - Carmela Gerardi
- Institute of Sciences of Food Production, CNR, 73100, Lecce, Italy
| | - Mauro Rossi
- Institute of Food Sciences, CNR, 83100, Avellino, Italy
| | - Vincenzo Zara
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Giovanni Mita
- Institute of Sciences of Food Production, CNR, 73100, Lecce, Italy
| | - Paolo Bergamo
- Institute of Food Sciences, CNR, 83100, Avellino, Italy
| |
Collapse
|