1
|
Aishwarya D, Ramakant Dhampalwar V, Pallaprolu N, Peraman R. Nitrosamine Drug Substance-Related Impurities (NDSRIs) in Pharmaceuticals: Formation, Mitigation Strategies, and Emphasis on Mutagenicity Risks. Pharm Res 2025:10.1007/s11095-025-03857-9. [PMID: 40268857 DOI: 10.1007/s11095-025-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES To investigate the formation, detection, mutagenicity, and control strategies of nitrosamine drug substance-related impurities (NDSRIs) in pharmaceutical formulations, emphasizing regulatory compliance, risk mitigation, and the establishment of acceptable intake (AI) limits for enhanced drug safety. METHODS This study reviews the NDSRI formation and mutagenicity assessment methods, including in silico, in vitro, and in vivo assays. It also explores mitigation strategies and approaches for determining AI limits. RESULTS The findings indicate that NDSRIs are primarily formed through the nitrosation of APIs containing amine groups, with key risk factors including reactive functional groups and interactions between drugs and excipients. Mutagenicity evaluation revealed that while in silico and in vitro assays provide initial insights, in vivo assays offer more comprehensive and biologically relevant data by capturing complex metabolic processes and systemic interactions. Effective mitigation strategies, such as optimizing the manufacturing conditions and using nitrosation inhibitors, are crucial in reducing NDSRI formation. Approaches like the carcinogenic potency categorization (CPCA) and read-across methods are proposed for determining AI limits, facilitating safer exposure thresholds and supporting regulatory compliance. CONCLUSION A multifaceted approach is vital for managing NDSRIs in pharmaceuticals. Comprehensive mutagenicity testing, especially in vivo assays, provides biologically relevant insights into NDSRI-associated risks. Implementing control strategies and, determining AI limits are key to minimizing exposure. Strengthening regulatory frameworks and industry practices improves drug safety, quality, and public health protection.
Collapse
Affiliation(s)
- Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Vaishnavi Ramakant Dhampalwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Nikhil Pallaprolu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India.
| |
Collapse
|
2
|
Rigutto G, McHale CM, Singam ERA, Rana I, Zhang L, Smith MT. Mapping assays to the key characteristics of carcinogens to support decision-making. Database (Oxford) 2025; 2025:baaf026. [PMID: 40261741 PMCID: PMC12013474 DOI: 10.1093/database/baaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The key characteristics (KCs) of carcinogens are the properties common to known human carcinogens that can be used to search for, organize, and evaluate mechanistic data in support of hazard identification. A limiting factor in this approach is that relevant in vitro and in vivo assays, as well as corresponding biomarkers and endpoints, have been only partially documented for each of the 10 KCs (Smith MT, Guyton KZ, Kleinstreuer N et al. The key characteristics of carcinogens: relationship to the hallmarks of cancer, relevant biomarkers, and assays to measure them. Cancer Epidemiol Biomarkers Prev 2020;29:1887-903. https://doi.org/10.1158/1055-9965.EPI-19-1346). To address this limitation, a comprehensive database is described that catalogues these previously described methods and endpoints/biomarkers pertinent to the 10 KCs of carcinogens as well as those referenced as supporting evidence for each KC in the International Agency of Research on Cancer Monograph Volumes 112-131. Our comprehensive mapping of KCs to assays and endpoints can be used to facilitate mechanistic data searches, presents a useful tool for searching for assays and endpoints relevant to the 10 KCs, and can be used to create a roadmap for utilizing data to evaluate the strength of the evidence for each KC. The KC-Assay database is available to the public on the web at https://kcad.cchem.berkeley.edu and acts as a 'living document', with the ability to be updated and refined. Database URL: https://kcad.cchem.berkeley.edu.
Collapse
Affiliation(s)
- Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | | | - Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, United States
| |
Collapse
|
3
|
Meier MJ, Caiment F, Corton JC, Frötschl R, Fujita Y, Jennen D, Mezencev R, Yauk C. Outcome of IWGT workshop on transcriptomic biomarkers for genotoxicity: Key considerations for bioinformatics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39676751 DOI: 10.1002/em.22644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a part of the International Workshop on Genotoxicity Testing (IWGT) in 2022, a workgroup was formed to evaluate the level of validation and regulatory acceptance of transcriptomic biomarkers that identify genotoxic substances. Several such biomarkers have been developed using various molecular techniques and computational approaches. Within the IWGT workgroup on transcriptomic biomarkers, bioinformatics was a central topic of discussion, focusing on the current approaches used to process the underlying molecular data to distill a reliable predictive signal; that is, a gene set that is indicative of genotoxicity and can then be used in later studies to predict potential DNA damaging properties for uncharacterized chemicals. While early studies used microarray data, a technological shift occurred in the past decade to incorporate modern transcriptome measuring techniques such as high-throughput transcriptomics, which in turn is based on high-throughput sequencing. Herein, we present the workgroup's review of the current bioinformatic approaches to identify genes comprising transcriptomic biomarkers. Within the context of regulatory toxicology, the reproducibility of a given analysis is critical. Therefore, the workgroup provides consensus recommendations on how to facilitate sufficient reporting of experimental parameters for the analytical procedures used in a transcriptomic biomarker study, including the recommendation to develop a biomarker-specific reporting module within the OECD Omics Reporting Framework.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Florian Caiment
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US-EPA, Research Triangle Park, North Carolina, USA
| | - Roland Frötschl
- BfArM-Bundesinstitut für Arzneimittel und Medizinprodukte, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Danyel Jennen
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Roman Mezencev
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, DC, USA
| | - Carole Yauk
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Wehr MM, Reamon-Buettner SM, Ritter D, Knebel J, Niehof M, Escher SE. A comparison of the TempO-Seq and Affymetrix microarray platform using RTqPCR validation. BMC Genomics 2024; 25:669. [PMID: 38961363 PMCID: PMC11223392 DOI: 10.1186/s12864-024-10586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Next-generation risk assessment relies on mechanistic data from new approach methods, including transcriptome data. Various technologies, such as high-throughput targeted sequencing methods and microarray technologies based on hybridization with complementary probes, are used to determine differentially expressed genes (DEGs). The integration of data from different technologies requires a good understanding of the differences arising from the use of various technologies.To better understand the differences between the TempO-Seq platform and Affymetrix chip technology, whole-genome data for the volatile compound dimethylamine were compared. Selected DEGs were also confirmed using RTqPCR validation. Although the overlap of DEGs between TempO-Seq and Affymetrix was no higher than 37%, a comparison of the gene regulation in terms of log2fold changes revealed a very high concordance. RTqPCR confirmed the majority of DEGs from either platform in the examined dataset. Only a few conflicts were found (11%), while 22% were not confirmed, and 3% were not detected.Despite the observed differences between the two platforms, both can be validated using RTqPCR. Here we highlight some of the differences between the two platforms and discuss their applications in toxicology.
Collapse
Affiliation(s)
- Matthias M Wehr
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | | | - Detlef Ritter
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Vahle JL, Dybowski J, Graziano M, Hisada S, Lebron J, Nolte T, Steigerwalt R, Tsubota K, Sistare FD. ICH S1 prospective evaluation study and weight of evidence assessments: commentary from industry representatives. FRONTIERS IN TOXICOLOGY 2024; 6:1377990. [PMID: 38845817 PMCID: PMC11153695 DOI: 10.3389/ftox.2024.1377990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Industry representatives on the ICH S1B(R1) Expert Working Group (EWG) worked closely with colleagues from the Drug Regulatory Authorities to develop an addendum to the ICH S1B guideline on carcinogenicity studies that allows for a weight-of-evidence (WoE) carcinogenicity assessment in some cases, rather than conducting a 2-year rat carcinogenicity study. A subgroup of the EWG composed of regulators have published in this issue a detailed analysis of the Prospective Evaluation Study (PES) conducted under the auspices of the ICH S1B(R1) EWG. Based on the experience gained through the Prospective Evaluation Study (PES) process, industry members of the EWG have prepared the following commentary to aid sponsors in assessing the standard WoE factors, considering how novel investigative approaches may be used to support a WoE assessment, and preparing appropriate documentation of the WoE assessment for presentation to regulatory authorities. The commentary also reviews some of the implementation challenges sponsors must consider in developing a carcinogenicity assessment strategy. Finally, case examples drawn from previously marketed products are provided as a supplement to this commentary to provide additional examples of how WoE criteria may be applied. The information and opinions expressed in this commentary are aimed at increasing the quality of WoE assessments to ensure the successful implementation of this approach.
Collapse
Affiliation(s)
- John L. Vahle
- Lilly Research Laboratories, Indianapolis, IN, United States
| | - Joe Dybowski
- Alnylam Pharmaceuticals, Cambridge, MA, United States
| | | | - Shigeru Hisada
- Formerly ASKA Pharmaceutical Co., Ltd., Fujisawa-shi, Kanagawa, Japan
| | - Jose Lebron
- Merck & Co., Inc., Rahway, NJ, United States
| | - Thomas Nolte
- Development NCE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | |
Collapse
|
6
|
Lynch C, Sakamuru S, Ooka M, Huang R, Klumpp-Thomas C, Shinn P, Gerhold D, Rossoshek A, Michael S, Casey W, Santillo MF, Fitzpatrick S, Thomas RS, Simeonov A, Xia M. High-Throughput Screening to Advance In Vitro Toxicology: Accomplishments, Challenges, and Future Directions. Annu Rev Pharmacol Toxicol 2024; 64:191-209. [PMID: 37506331 PMCID: PMC10822017 DOI: 10.1146/annurev-pharmtox-112122-104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - David Gerhold
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Anna Rossoshek
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Suzanne Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
7
|
Li R, Tang J, Wang Y, Wang Y, Yang H, Wei H. Metabolomics and transcriptomics analysis of prefrontal cortex in the Pax2 neuron-specific deletion mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110858. [PMID: 37660748 DOI: 10.1016/j.pnpbp.2023.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Restricted and repetitive behaviors (RRBs) are one of the characteristics of various neuropsychiatric disorders with complex and diverse molecular mechanisms. Repetitive self-grooming behavior is one of the manifestations of RRBs in humans and rodents. Research on the neural mechanism of repetitive self-grooming behavior is expected to reveal the underlying logic of the occurrence of RRBs. Pax2 is an important member of the paired-box transcription factor family. It is expressed in different regions of the developing central nervous system. Our previous study showed that Pax2 heterozygous gene knockout mice (Pax2+/- KO mice) exhibit significantly increased self-grooming, which suggests that the Pax2 gene is involved in the control of self-grooming behavior, but the molecular mechanism is still unclear. In this study, we further constructed the Pax2 neuron-specific deletion mice (Nestin-Pax2 mice). Targeted metabolomics and transcriptomics techniques was used to analyze. The results showed that there is an excitatory/inhibitory imbalance of the neurotransmitter system and the Arc gene was significantly up-regulated in the prefrontal cortex (PFC) of Nestin-Pax2 mice. This study suggests that the potential regulatory mechanism of the increased repetitive self-grooming behavior in Pax2 gene deletion mice is that the deletion of the Pax2 gene affects the expression of Arc in the PFC, leading to impaired synaptic plasticity and excitatory/inhibitory imbalance, and participating in the occurrence of repetitive self-grooming behavior.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China; Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Jiaming Tang
- School of the Third Clinic, Shanxi University of Chinese Medicine, Taiyuan 030024, China
| | - Yizhuo Wang
- Department of Neurology, Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China
| | - Ying Wang
- Department of Neurology, Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China
| | - Hua Yang
- Department of Neurology, Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China; Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China.
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China; Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan 030012, China.
| |
Collapse
|
8
|
Shockley KR, Dunnick JK. Gene expression profiling after exposure to a chemical carcinogen, Pentabrominated Diphenyl Ether, at different life stages. FRONTIERS IN TOXICOLOGY 2023; 4:1028309. [PMID: 36687508 PMCID: PMC9847571 DOI: 10.3389/ftox.2022.1028309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to environmental hazards occurs at different stages of our lifetime-infant, child, adult. This study integrates recently published toxicogenomics data to examine how exposure to a known rat chemical carcinogen (pentabrominated diphenyl ether (PBDE)) upregulated liver transcriptomic changes at different life cycle stages (PND 4, PND 22, adult). We found that at all three life cycle stages PBDE exposure induced hepatocellular transcriptomic changes in disease pathways including cancer, metabolic, membrane function, and Nrf2 antioxidant pathways, pathways all characteristics of chemical carcinogens. In addition, in the adult rat after a 5-day exposure to the chemical carcinogen, there was upregulation of members of the Ras oncogenic pathway, a specific pathway found to be activated in the PBDE-induced tumors in rats in a previous hazard identification cancer study. The findings of liver transcript changes characteristic of carcinogenic activity after early life exposures and after short-term adult exposures provides data to support the use of transcriptomic data to predict the apical cancer endpoints in model studies. Using data from gene expression profiling studies after neonatal, young, or adult short-term chemical exposure helps to meet the 21st century toxicology goal of developing study designs to reduce, refine, and replace the use of traditional 2-year rodent cancer studies to provide hazard identification information. The studies reported here find that key transcripts associated with carcinogenesis were elevated in neonate (PND 4), young (PND 22) and adult animals after short-term exposure to PBDE, a known experimental chemical carcinogen in model systems.
Collapse
Affiliation(s)
- Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - June K. Dunnick
- Systems Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
9
|
Zhang W, Qu S, Chen Q, Yang X, Yu J, Zeng S, Chu Y, Zou H, Zhang Z, Wang X, Jing R, Wu Y, Liu Z, Xu R, Wu C, Huang C, Huang J. Development and characterization of reference materials for EGFR, KRAS, NRAS, BRAF, PIK3CA, ALK, and MET genetic testing. Technol Health Care 2023; 31:485-495. [PMID: 36093718 DOI: 10.3233/thc-220102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Along with the dramatic development of molecular diagnostic testing for the detection of oncogene variations, reference materials (RMs) have become increasingly important in performance evaluation of genetic testing. OBJECTIVE In this study, we built a set of RMs for genetic testing based on next-generation sequencing (NGS). METHOD Solid tumor tissues were selected as the samples of RMs for preparation. NGS was used to determine and validate the variants and the mutation frequency in DNA samples. Digital PCR was used to determine the copy numbers of RNA samples. The performance of the RMs was validated by six laboratories. RESULTS Thirty common genetic alterations were designed based on these RMs. RMs consisted of a positive reference, a limit of detection reference, and a negative reference. The validation results confirmed the performance of the RMs. CONCLUSION These RMs may be an attractive tool for the development, validation, and quality monitoring of molecular genetic testing.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shoufang Qu
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Qiong Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Medical Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xuexi Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuang Zeng
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yuxing Chu
- Geneplus-Beijing Clinical Laboratory Co., Ltd., Beijing, China
| | - Hao Zou
- Novogene (Tianjin) Bioinformatics Technology Co., Ltd., Tianjin, China
| | - Zhihong Zhang
- Guangzhou Burning Rock Dx Co., Ltd., Guangzhou, Guangdong, China
| | | | | | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhipeng Liu
- Research Institute, Guangzhou Darui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ren Xu
- Shanghai Yuanqi Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanfeng Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jie Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
10
|
Feng Z, McLamb F, Vu JP, Gong S, Gersberg RM, Bozinovic G. Physiological and transcriptomic effects of hexafluoropropylene oxide dimer acid in Caenorhabditis elegans during development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114047. [PMID: 36075119 DOI: 10.1016/j.ecoenv.2022.114047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals resistant to degradation. While such a feature is desirable in consumer and industrial products, some PFAS, including perfluorooctanoic acid (PFOA), are toxic and bioaccumulate. Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging PFAS developed to replace PFOA, has not been extensively studied. To evaluate the potential toxicity of HFPO-DA with a cost- and time-efficient approach, we exposed C. elegans larvae for 48 h to 4 × 10-9-4 g/L HFPO-DA in liquid media and measured developmental, behavioral, locomotor, and transcriptional effects at various exposure levels. Worms exposed to 1.5-4 g/L HFPO-DA were developmentally delayed, and progeny production was significantly delayed (p < 0.05) in worms exposed to 2-4 g/L HFPO-DA. Statistically significant differential gene expression was identified in all fourteen HFPO-DA exposure groups ranging from 1.25 × 10-5 to 4 g/L, except for 6.25 × 10-5 g/L. Among 10298 analyzed genes, 2624 differentially expressed genes (DEGs) were identified in the developmentally delayed 4 g/L group only, and 78 genes were differentially expressed in at least one of the thirteen groups testing 1.25 × 10-5-2 g/L HFPO-DA exposures. Genes encoding for detoxification enzymes including cytochrome P450 and UDP glucuronosyltransferases were upregulated in 0.25-4 g/L acute exposure groups. DEGs were also identified in lower exposure level groups, though they did not share biological functions except for six ribosomal protein-coding genes. While our transcriptional data is inconclusive to infer mechanisms of toxicity, the significant gene expression differences at 1.25 × 10-5 g/L, the lowest concentration tested for transcriptional changes, calls for further targeted analyses of low-dose HFPO-DA exposure effects.
Collapse
Affiliation(s)
- Zuying Feng
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Richard M Gersberg
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA.
| |
Collapse
|
11
|
Mennen R, Hallmark N, Pallardy M, Bars R, Tinwell H, Piersma A. Genome-wide expression screening in the cardiac embryonic stem cell test shows additional differentiation routes that are regulated by morpholines and piperidines. Curr Res Toxicol 2022; 3:100086. [PMID: 36157598 PMCID: PMC9489494 DOI: 10.1016/j.crtox.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The cardiac embryonic stem cell test (ESTc) is a well-studied non-animal alternative test method based on cardiac cell differentiation inhibition as a measure for developmental toxicity of tested chemicals. In the ESTc, a heterogenic cell population is generated besides cardiomyocytes. Using the full biological domain of ESTc may improve the sensitivity of the test system, possibly broadening the range of chemicals for which developmental effects can be detected in the test. In order to improve our knowledge of the biological and chemical applicability domains of the ESTc, we applied a hypothesis-generating data-driven approach on control samples as follows. A genome-wide expression screening was performed, using Next Generation Sequencing (NGS), to map the range of developmental pathways in the ESTc and to search for a predictive embryotoxicity biomarker profile, instead of the conventional read-out of beating cardiomyocytes. The detected developmental pathways included circulatory system development, skeletal system development, heart development, muscle and organ tissue development, and nervous system and cell development. Two pesticidal chemical classes, the morpholines and piperidines, were assessed for perturbation of differentiation in the ESTc using NGS. In addition to the anticipated impact on cardiomyocyte differentiation, the other developmental pathways were also regulated, in a concentration-response fashion. Despite the structural differences between the morpholine and piperidine pairs, their gene expression effect patterns were largely comparable. In addition, some chemical-specific gene regulation was also observed, which may help with future mechanistic understanding of specific effects with individual test compounds. These similar and unique regulations of gene expression profiles by the test compounds, adds to our knowledge of the chemical applicability domain, specificity and sensitivity of the ESTc. Knowledge of both the biological and chemical applicability domain contributes to the optimal placement of ESTc in test batteries and in Integrated Approaches to Testing and Assessment (IATA).
Collapse
Affiliation(s)
- R.H. Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - N. Hallmark
- Bayer AG Crop Science Division, Monheim, Germany
| | - M. Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM UMR996, Châtenay-Malabry 92296, France
| | - R. Bars
- Bayer Crop Science, Sophia-Antipolis, France
| | - H. Tinwell
- Bayer Crop Science, Sophia-Antipolis, France
| | - A.H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
12
|
Zhang Q, Taniguchi S, So K, Tsuda M, Higuchi Y, Hashida M, Yamashita F. CREB is a potential marker associated with drug-induced liver injury: Identification and validation through transcriptome database analysis. J Toxicol Sci 2022; 47:337-348. [PMID: 35922923 DOI: 10.2131/jts.47.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug-induced liver injury (DILI) is the main cause of failure in drug development and postapproval withdrawal. Although toxicogenomic techniques provide an unprecedented opportunity for mechanistic assessment and biomarker discovery, they are not suitable for the screening of large numbers of exploratory compounds in early drug discovery. Using a comprehensive analysis of toxicogenomics (TGx) data, we aimed to find DILI-relevant transcription factors (TFs) that could be incorporated into a reporter gene assay system. Gene set enrichment analysis (GSEA) of the Open TG-GATEs dataset highlighted 4 DILI-relevant TFs, including CREB, NRF2, ELK-1, and E2F. Using ten drugs with already assigned idiosyncratic toxicity (IDT) risks, reporter gene assays were conducted in HepG2 cells in the presence of the S9 mix. There were weak correlations between NRF2 activity and IDT risk, whereas strong correlations were observed between CREB activity and IDT risk. In addition, CREB activation associated with 3 Withdrawn/Black box Warning drugs was reversed by pretreatment with a PKA inhibitor. Collectively, we suggest that CREB might be a sensitive biomarker for DILI prediction, and its response to stress induced by high-risk drugs might be primarily regulated by the PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiyue Zhang
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shiori Taniguchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kanako So
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masahiro Tsuda
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University.,Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
13
|
Corton JC, Mitchell CA, Auerbach S, Bushel P, Ellinger-Ziegelbauer H, Escobar PA, Froetschl R, Harrill AH, Johnson K, Klaunig JE, Pandiri AR, Podtelezhnikov AA, Rager JE, Tanis KQ, van der Laan JW, Vespa A, Yauk CL, Pettit SD, Sistare FD. A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicol Sci 2022; 188:4-16. [PMID: 35404422 PMCID: PMC9238304 DOI: 10.1093/toxsci/kfac041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Constance A Mitchell
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Scott Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Pierre Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | - Patricia A Escobar
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Roland Froetschl
- BfArM-Bundesinstitut für Arzneimittel und Medizinprodukte, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Alison H Harrill
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Arun R Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Julia E Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keith Q Tanis
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht, The Netherlands
| | - Alisa Vespa
- Therapeutic Products Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Syril D Pettit
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Frank D Sistare
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Neuparth T, Alves N, Machado AM, Pinheiro M, Montes R, Rodil R, Barros S, Ruivo R, Castro LFC, Quintana JB, Santos MM. Neuroendocrine pathways at risk? Simvastatin induces inter and transgenerational disruption in the keystone amphipod Gammarus locusta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106095. [PMID: 35121565 DOI: 10.1016/j.aquatox.2022.106095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The primary focus of environmental toxicological studies is to address the direct effects of chemicals on exposed organisms (parental generation - F0), mostly overlooking effects on subsequent non-exposed generations (F1 and F2 - intergenerational and F3 transgenerational, respectively). Here, we addressed the effects of simvastatin (SIM), one of the most widely prescribed human pharmaceuticals for the primary treatment of hypercholesterolemia, using the keystone crustacean Gammarus locusta. We demonstrate that SIM, at environmentally relevant concentrations, has significant inter and transgenerational (F1 and F3) effects in key signaling pathways involved in crustaceans' neuroendocrine regulation (Ecdysteroids, Catecholamines, NO/cGMP/PKG, GABAergic and Cholinergic signaling pathways), concomitantly with changes in apical endpoints, such as depressed reproduction and growth. These findings are an essential step to improve hazard and risk assessment of biological active compounds, such as SIM, and highlight the importance of studying the transgenerational effects of environmental chemicals in animals' neuroendocrine regulation.
Collapse
Affiliation(s)
- T Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - N Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - A M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - M Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados - Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - R Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
McKinzie PB, Bishop ME. A Streamlined and High-Throughput Error-Corrected Next-Generation Sequencing Method for Low Variant Allele Frequency Quantitation. Toxicol Sci 2021; 173:77-85. [PMID: 31621867 DOI: 10.1093/toxsci/kfz221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Quantifying mutant or variable allele frequencies (VAFs) of ≤10-3 using next-generation sequencing (NGS) has utility in both clinical and nonclinical settings. Two common approaches for quantifying VAFs using NGS are tagged single-strand sequencing and duplex sequencing. While duplex sequencing is reported to have sensitivity up to 10-8 VAF, it is not a quick, easy, or inexpensive method. We report a method for quantifying VAFs that are ≥10-4 that is as easy and quick for processing samples as standard sequencing kits, yet less expensive than the kits. The method was developed using PCR fragment-based VAFs of Kras codon 12 in log10 increments from 10-5 to 10-1, then applied and tested on native genomic DNA. For both sources of DNA, there is a proportional increase in the observed VAF to input VAF from 10-4 to 100% mutant samples. Variability of quantitation was evaluated within experimental replicates and shown to be consistent across sample preparations. The error at each successive base read was evaluated to determine if there is a limit of read length for quantitation of ≥10-4, and it was determined that read lengths up to 70 bases are reliable for quantitation. The method described here is adaptable to various oncogene or tumor suppressor gene targets, with the potential to implement multiplexing at the initial tagging step. While easy to perform manually, it is also suited for robotic handling and batch processing of samples, facilitating detection and quantitation of genetic carcinogenic biomarkers before tumor formation or in normal-appearing tissue.
Collapse
Affiliation(s)
- Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | - Michelle E Bishop
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| |
Collapse
|
16
|
Wang M, He J, Zhou Y, Lv N, Zhao M, Wei H, Li R. Integrated analysis of miRNA and mRNA expression profiles in the brains of BTBR mice. Int J Dev Neurosci 2020; 80:221-233. [PMID: 32086829 DOI: 10.1002/jdn.10019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023] Open
Abstract
The BTBR T+ Itpr3tf (BTBR) mouse has developmental disorders in brain and many aberrant neuroanatomical structures and brain dysfunction. However, identification of the pathological mechanisms underlying abnormal brain development in the brains of BTBR mice is still lacking. Increasingly evidence showed that epigenetics plays an important role in the processes of brain development. In this study, we analyzed microRNA (miRNA) and mRNA expression profiles in the cortical brain tissue from BTBR mice, using RNA sequencing. As compared to C57BL/6J (B6) mice, 1,271 differentially expressed genes (DEGs) and 36 known differentially expressed miRNAs (DEMs) were found in the brain from BTBR mice. The functional annotation and categories of DEGs and DEMs were analyzed. Integration analysis identified 103 known miRNA-mRNA interaction pairs. We further verified selected several genes and miRNAs which may be associated with brain development using quantitative RT-PCR (qRT-PCR). Finally, we speculate that reduced myelin-associated oligodendrocytic basic protein and transmembrane proteins 260 may be linked with abnormal brain development in BTBR mice.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jing He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yun Zhou
- Nephrology Division, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Na Lv
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Min Zhao
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Nephrology Division, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Christopher Corton J. Integrating gene expression biomarker predictions into networks of adverse outcome pathways. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Corton JC, Kleinstreuer NC, Judson RS. Identification of potential endocrine disrupting chemicals using gene expression biomarkers. Toxicol Appl Pharmacol 2019; 380:114683. [DOI: 10.1016/j.taap.2019.114683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|