1
|
Jeong SJ, Lee KH, Cho JY. Comparative epigenomics to clinical trials in human breast cancer and canine mammary tumor. Anim Cells Syst (Seoul) 2025; 29:12-30. [PMID: 40115961 PMCID: PMC11924266 DOI: 10.1080/19768354.2025.2477024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Epigenetics and epigenomics are captivating fields of molecular biology, dedicated to the exploration of heritable alterations in gene expression and cellular phenotypes, which transpire devoid of any discernible modifications to the fundamental DNA sequence. This intricate regulatory apparatus encompasses multiple mechanisms, prominently featuring DNA methylation, histone modifications, and the involvement of non-coding RNA molecules in pivotal roles. To achieve a comprehensive grasp of these diverse mechanisms, it is imperative to conduct research employing animal models as proxies for human studies. Since experimental animal models like mice and rats struggle to replicate the diverse environmental conditions experienced by humans, this review focuses on comparing common epigenetic alterations in naturally occurring tumors in canine models, which share the human environment, with those in humans. Through this, we emphasize the importance of an epigenetic regulation in the comparative medical approach to a deeper understanding of cancers and further development of cancer treatments. Additionally, we elucidate epigenetic modifications pertinent to specific developmental stages, the ageing process, and the progression of various diseases.
Collapse
Affiliation(s)
- Su-Jin Jeong
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Ning M, Fang M, Shah K, Dixit V, Pade D, Musther H, Neuhoff S. A cross-species assessment of in silico prediction methods of steady-state volume of distribution using Simcyp simulators. J Pharm Sci 2025; 114:1410-1422. [PMID: 39732199 DOI: 10.1016/j.xphs.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Predicting steady-state volume of distribution (Vss) is a key component of pharmacokinetic predictions and often guided using preclinical data. However, when bottom-up prediction from physiologically-based pharmacokinetic (PBPK) models and observed Vss misalign in preclinical species, or predicted Vss from different models varies significantly, no consensus exists for selecting models or preclinical species to improve the prediction. Through systematic analysis of Vss prediction across rat, dog, monkey, and human, using common methods, a practical strategy for predicting human Vss, with or without integration of preclinical PK information is warranted. In this analysis, we curated a dataset of 57 diverse compounds with measured physicochemical and protein binding data, together with observed Vss in these species. Using a bottom-up approach, prediction performance was consistent across species for each method. Although no method consistently outperformed others for all compound types and across species, M2 (Rodgers-Rowland method) performed marginally better for acids. Comparable compound-specific global tissue Kp scalars were needed to match observed Vss for both, human and preclinical species. Consequently, application of geometric mean values of preclinical Kp scalar to human Vss prediction improved accuracy. We propose a decision tree for human Vss prediction using PBPK methods with or without integrating preclinical PK information.
Collapse
Affiliation(s)
- Miaoran Ning
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ma Fang
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kushal Shah
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals (Europe), 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, United Kingdom; Quantitative Clinical Pharmacology, Takeda Pharmaceuticals International Inc., 35 Landsdowne st, Cambridge, MA 02139, USA
| | - Vaishali Dixit
- Non-clinical development, Mersana Therapeutics, 840 Memorial Drive, Cambridge MA 02139, USA
| | - Devendra Pade
- Certara UK Ltd., Certara Predictive Technologies Division, 1 Concourse Way, Level 2-Acero, Sheffield S1 2BJ, United Kingdom; Pharmacokinetics and Drug Metabolism, Amgen Inc, 360 Binney St, Cambridge, MA 02141, USA
| | - Helen Musther
- Certara UK Ltd., Certara Predictive Technologies Division, 1 Concourse Way, Level 2-Acero, Sheffield S1 2BJ, United Kingdom
| | - Sibylle Neuhoff
- Certara UK Ltd., Certara Predictive Technologies Division, 1 Concourse Way, Level 2-Acero, Sheffield S1 2BJ, United Kingdom.
| |
Collapse
|
3
|
Mariager T, Bjarkam C, Nielsen H, Bodilsen J. Experimental animal models for brain abscess: a systematic review. Br J Neurosurg 2024; 38:1294-1301. [PMID: 36579498 DOI: 10.1080/02688697.2022.2160865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Brain abscess (BA) is a rare, but severe infection and experimental BA animal models may prove crucial for advances in treatment. This review describes the development of experimental BA models and the clinical advances obtained from these, in a historical perspective. MATERIAL AND METHODS Experimental BA studies from inception until June 15, 2022, were included by searching the PubMed and Embase databases. Inclusion required the use of an experimental BA animal model. Non-bacterial BA models, in vitro studies, veterinarian case-reports, and articles written in non-English language were excluded. Bias was not systematically assessed, and the review was not registered at the PROSPERO. RESULTS 79 studies were included. The majority of animal BA models have been based on small rodents using Staphylococcus aureus. The models have delineated the natural development of BA and provided detailed descriptions of the histopathological characteristics consisting of a necrotic centre surrounded by layers of inflammatory cells and fibroblasts encapsulated by a dense collagenous layer. Radiological studies of animal BA have been shown to correlate with the corresponding stages of human BA in both computed tomography and magnetic resonance imaging and may guide diagnosis as well as the timing of neurosurgical intervention. Moreover, pharmacokinetic studies of the intracavitary penetration of various antimicrobials have helped inform medical treatment of BA. Other studies have examined the diverse effects of corticosteroids including decreased cerebral oedema, intracranial pressure, and intracavitary drug concentration, whereas concerns on decreased or weakened capsule formation could not be confirmed. Finally, studies on the immunological response to BA have highlighted potential future immunomodulatory targets. CONCLUSIONS Animal models have been vital for improvements in the management of BA. Experimental BA models resembling human disease including polymicrobial infection by oral cavity flora in large animals are needed.
Collapse
Affiliation(s)
- Theis Mariager
- Department of Infectious Disease, Aalborg University Hospital, Aalborg, Denmark
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - Carsten Bjarkam
- Department of Neurosurgery, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Disease, Aalborg University Hospital, Aalborg, Denmark
| | - Jacob Bodilsen
- Department of Infectious Disease, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
4
|
Fastner J, Teikari J, Hoffmann A, Köhler A, Hoppe S, Dittmann E, Welker M. Cyanotoxins associated with macrophytes in Berlin (Germany) water bodies - Occurrence and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159433. [PMID: 36244489 DOI: 10.1016/j.scitotenv.2022.159433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fatal dog poisoning after uptake of neurotoxic cyanobacteria associated with aquatic macrophytes in Tegeler See (Berlin, Germany) raised concerns about critical exposure of humans, especially children, to cyanotoxins produced by macrophyte associated cyanobacteria during recreational activity. From 2017 to 2021 a total of 398 samples of macrophytes washed ashore at bathing sites located at 19 Berlin lakes were analysed for anatoxins, microcystins, and cylindrospermopsins, as were 463 water samples taken in direct proximity to macrophyte accumulations. Cyanotoxins were detected in 66 % of macrophyte samples and 50 % of water samples, with anatoxins being the most frequently detected toxin group in macrophyte samples (58 %) and cylindrospermopsins in water samples (41 %). Microcoleus sp. associated with the water moss Fontinalis antipyretica was identified as anatoxin producing cyanobacterium in isolated strains as well as in field samples from Tegeler See. Anatoxin contents in macrophyte samples rarely exceeded 1 μg/g macrophyte fresh weight and peaked at 9. 2 μg/g f.w. Based on established toxicological points of departure, a critical anatoxin content of macrophyte samples of 3 μg/g f.w. is proposed. Five samples, all taken in Tegeler See and all associated with the water moss Fontinalis antipyretica, exceeded this value. Contents and concentrations of microcystins and cylindrospermopsins did not reach critical levels. The potential exposure risks to anatoxins for children and dogs are assessed and recommendations are given.
Collapse
Affiliation(s)
- Jutta Fastner
- German Environment Agency, Schichauweg 58, 12307 Berlin, Germany.
| | - Jonna Teikari
- Dept. of Agricultural Sciences, University of Helsinki, Finland
| | - Anja Hoffmann
- Berlin Brandenburg State Laboratory, Rudower Chaussee 39, 12489 Berlin, Germany
| | - Antje Köhler
- Berlin Senate Department for the Environment, Transport and Climate Protection, Am Köllnischen Park 3, Berlin 10179, Germany
| | - Sebastian Hoppe
- State Office for Health and Social Affairs (LAGeSo), Working Group Water Hygiene & Environmental Health, Turmstraße 21, 10559 Berlin, Germany
| | - Elke Dittmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| | - Martin Welker
- State Office for Health and Social Affairs (LAGeSo), Working Group Water Hygiene & Environmental Health, Turmstraße 21, 10559 Berlin, Germany
| |
Collapse
|
5
|
Kidney Transporters Drug Discovery, Development, and Safety. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|