1
|
Sosin DV, Baranovskii DS, Nechaev DN, Sosina MA, Shaposhnikov AV, Trusov GA, Titova AG, Krasnikov BF, Lomov AN, Makarov VV, Yudin VS, Keskinov AA, Yudin SM, Klabukov ID. Population Studies and Molecular Mechanisms of Human Radioadaptive Capabilities: Is It Time to Rethink Radiation Safety Standards? Int J Mol Sci 2024; 25:13543. [PMID: 39769306 PMCID: PMC11676322 DOI: 10.3390/ijms252413543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The evolution of man on Earth took place under conditions of constant exposure to background ionizing radiation (IR). From this point of view, it would be reasonable to hypothesize the existence of adaptive mechanisms that enable the human organism to safely interact with IR at levels approximating long-term natural background levels. In some situations, the successful operation of molecular mechanisms of protection against IR is observed at values significantly exceeding the natural background level, for example, in cancer cells. In 15-25% of cancer patients, cancer cells develop a phenotype that is resistant to high doses of IR. While further investigations are warranted, the current evidence suggests a strong probability of observing positive health effects, including an increased lifespan, a reduced cancer risk, and a decreased incidence of congenital pathologies, precisely at low doses of ionizing radiation. This review offers arguments primarily based on a phenomenological approach and critically reconsidering existing methodologies for assessing the biological risks of IR to human health. Currently, in the most economically developed countries, there are radiation safety rules that interpret low-dose radiation as a clearly negative environmental factor. Nowadays, this approach may pose significant challenges to the advancement of radiomedicine and introduce complexities in the regulation of IR sources. The review also examines molecular mechanisms that may play a key role in the formation of the positive effects of low-dose IR on human radioadaptive capabilities.
Collapse
Affiliation(s)
- Dmitry Vitalievich Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| | - Denis Nikolaevich Nechaev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Mariya Aleksandrovna Sosina
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, 127051 Moscow, Russia;
| | - Alexander Vladimirovich Shaposhnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Georgy Aleksandrovich Trusov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anastasia Germanovna Titova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Boris Fedorovich Krasnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Alexey Nikolaevich Lomov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Valentin Vladimirovich Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Vladimir Sergeevich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anton Arturovich Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Sergey Mihailovich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Ilya Dmitrievich Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| |
Collapse
|
2
|
Zhang T, Yang S, Ge Y, Yin L, Pu Y, Gu Z, Chen Z, Liang G. Unveiling the Heart's Hidden Enemy: Dynamic Insights into Polystyrene Nanoplastic-Induced Cardiotoxicity Based on Cardiac Organoid-on-a-Chip. ACS NANO 2024; 18:31569-31585. [PMID: 39482939 DOI: 10.1021/acsnano.4c13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Exposure to micro- and nanoplastics (MNPs) has been implicated in potential cardiotoxicity. However, in vitro models based on cardiomyocyte cell lines lack crucial cardiac characteristics, while interspecies differences in animal models compromise the reliability of the conclusions. In addition, current research has predominantly focused on single-time point exposures to MNPs, neglecting comparative analyses of cardiac injury across early and late stages. Moreover, there remains a large gap in understanding the susceptibility to MNPs under pathological conditions. To address these limitations, this study integrated cardiac organoids (COs) and organ-on-a-chip (OoC) technology to develop the cardiac organoid-on-a-chip (COoC), which was validated for cardiotoxicity evaluation through multiple dimensions. Based on COoC, we conducted a dynamic observation of the cardiac damage caused by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Oxidative stress, inflammation, disruption of calcium ion homeostasis, and mitochondrial dysfunction were confirmed as the potential mechanisms of PS-NP-induced cardiotoxicity and the crucial events in the early stages, while cardiac fibrosis emerged as a prominent feature in late stages. Notably, low-dose exposure exacerbated myocardial infarction symptoms under pathological states, despite no significant cardiotoxicity shown in healthy models. In conclusion, these findings further deepened our understanding of PS-NP-induced cardiotoxic effects and introduced a promising in vitro platform for assessing cardiotoxicity.
Collapse
Affiliation(s)
- Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
- Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou 215163, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
3
|
Tryfon P, Sperdouli I, Moustaka J, Adamakis IDS, Giannousi K, Dendrinou-Samara C, Moustakas M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int J Mol Sci 2024; 25:8350. [PMID: 39125918 PMCID: PMC11312163 DOI: 10.3390/ijms25158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m-2 s-1) and at high irradiance (HI) (1000 μmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | | | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Moustakas M, Sperdouli I, Adamakis IDS, Şaş B, İşgören S, Moustaka J, Morales F. Mechanistic Approach on Melatonin-Induced Hormesis of Photosystem II Function in the Medicinal Plant Mentha spicata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4025. [PMID: 38068660 PMCID: PMC10708495 DOI: 10.3390/plants12234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024]
Abstract
Melatonin (MT) is considered a new plant hormone having a universal distribution from prokaryotic bacteria to higher plants. It has been characterized as an antistress molecule playing a positive role in the acclimation of plants to stress conditions, but its impact on plants under non-stressed conditions is not well understood. In the current research, we evaluated the impact of MT application (10 and 100 μM) on photosystem II (PSII) function, reactive oxygen species (ROS) generation, and chlorophyll content on mint (Mentha spicata L.) plants in order to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process that under non-stressed conditions is still unclear. Seventy-two hours after the foliar spray of mint plants with 100 μM MT, the improved chlorophyll content imported a higher amount of light energy capture, which caused a 6% increase in the quantum yield of PSII photochemistry (ΦPSII) and electron transport rate (ETR). Nevertheless, the spray with 100 μM MT reduced the efficiency of the oxygen-evolving complex (OEC), causing donor-side photoinhibition, with a simultaneous slight increase in ROS. Even so, the application of 100 μM MT decreased the excess excitation energy at PSII implying superior PSII efficiency. The decreased excitation pressure at PSII, after 100 μM MT foliar spray, suggests that MT induced stomatal closure through ROS production. The response of ΦPSII to MT spray corresponds to a J-shaped hormetic curve, with ΦPSII enhancement by 100 μM MT. It is suggested that the hormetic stimulation of PSII functionality was triggered by the non-photochemical quenching (NPQ) mechanism that stimulated ROS production, which enhanced the photosynthetic function. It is concluded that MT molecules can be used under both stress and non-stressed conditions as photosynthetic biostimulants for enhancing crop yields.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 19710 Saint-Petersburg, Russia
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
5
|
Zhong S, Xu Z, Li Y, Li C, Yu Y, Wang C, Du D. What modulates the impacts of acid rain on the allelopathy of the two Asteraceae invasives? ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:114-126. [PMID: 36652123 DOI: 10.1007/s10646-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.
Collapse
Affiliation(s)
- Shanshan Zhong
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhelun Xu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuang Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Youli Yu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
6
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Agathokleous E, Moore MN, Calabrese EJ. Environmental hormesis: A tribute to Anthony Stebbing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154996. [PMID: 35417830 DOI: 10.1016/j.scitotenv.2022.154996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK; Plymouth Marine Laboratory, Plymouth, Devon, UK; School of Biological & Marine Sciences, University of Plymouth, Plymouth, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|