1
|
Raglow Z, Lauring AS. Virus Evolution in Prolonged Infections of Immunocompromised Individuals. Clin Chem 2025; 71:109-118. [PMID: 39749520 DOI: 10.1093/clinchem/hvae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands. CONTENT In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts. SUMMARY There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.
Collapse
Affiliation(s)
- Zoe Raglow
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Banse P, Elena SF, Beslon G. Innovation in viruses: fitness valley crossing, neutral landscapes, or just duplications? Virus Evol 2024; 10:veae078. [PMID: 39386076 PMCID: PMC11463231 DOI: 10.1093/ve/veae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Viruses evolve by periods of relative stasis interleaved with sudden, rapid series of mutation fixations, known as evolutionary bursts. These bursts can be triggered by external factors, such as environmental changes, antiviral therapies, or spill-overs from reservoirs into novel host species. However, it has also been suggested that bursts may result from the intrinsic evolutionary dynamics of viruses. Indeed, bursts could be caused by fitness valley crossing, or a neutral exploration of a fitness plateau until an escape mutant is found. In order to investigate the importance of these intrinsic causes of evolutionary bursts, we used a simulation software package to perform massive evolution experiments of viral-like genomes. We tested two conditions: (i) after an external change and (ii) in a constant environment, with the latter condition guaranteeing the absence of an external triggering factor. As expected, an external change was almost systematically followed by an evolutionary burst. However, we also observed bursts in the constant environment as well, albeit much less frequently. We analyzed how many of these bursts are triggered by deleterious, quasi-neutral, or beneficial mutations and show that, while bursts can occasionally be triggered by valley crossing or traveling along neutral ridges, many of them were triggered by chromosomal rearrangements and, in particular, segmental duplications. Our results suggest that combinatorial differences between the different mutation types lead to punctuated evolutionary dynamics, with long periods of stasis occasionally interrupted by short periods of rapid evolution, akin to what is observed in virus evolution.
Collapse
Affiliation(s)
- Paul Banse
- INSA Lyon, INRIA, CNRS, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, Villeurbanne 69621, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia 46980, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Guillaume Beslon
- INSA Lyon, INRIA, CNRS, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, Villeurbanne 69621, France
| |
Collapse
|
3
|
Franzo G, Segalés J. Porcine circovirus 2 (PCV-2) genotype update and proposal of a new genotyping methodology. PLoS One 2018; 13:e0208585. [PMID: 30521609 PMCID: PMC6283538 DOI: 10.1371/journal.pone.0208585] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/20/2018] [Indexed: 11/23/2022] Open
Abstract
Porcine circovirus 2 (PCV-2) is one of the most widespread viral infections of swine, causing a remarkable economic impact because of direct losses and indirect costs for its control. As other ssDNA viruses, PCV-2 is characterized by a high evolutionary rate, leading to the emergence of a plethora of variants with different biological and epidemiological features. Over time, several attempts have been made to organize PCV-2 genetic heterogeneity in recognized genotypes. This categorization has clearly simplified the epidemiological investigations, allowing to identify different spatial and temporal patterns among genotypes. Additionally, variable virulence and vaccine effectiveness have also been hypothesized. However, the rapid increase in sequencing activity, coupled with the per se high viral variability, has challenged the previously established nomenclature, leading to the definition of several study-specific genotypes and hindering the capability of performing comparable epidemiological studies. Based on these premises, an updated classification scheme is herein reported. Recognizing the impossibility of defining a clear inter-cluster p-distance cut-off, the present study proposes a phylogeny-grounded genotype definition based on three criteria: maximum intra-genotype p-distance of 13% (calculated on the ORF2 gene), bootstrap support at the corresponding internal node higher than 70% and at least 15 available sequences. This scheme allowed defining 8 genotypes (PCV-2a to PCV-2h), which six of those had been previously proposed. To minimize the inconvenience of implementing a new classification, the most common names already adopted have been maintained when possible. The analysis of sequence-associated metadata highlighted a highly unbalanced sequencing activity in terms of geographical, host and temporal distribution. The PCV-2 molecular epidemiology scenario appears therefore characterized by a severe bias that could lead to spurious associations between genetic and epidemiological/biological viral features. While the suggested classification can establish a “common language” for future studies, further efforts should be paid to achieve a more homogeneous and informative representation of the PCV-2 global scenario.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
- * E-mail:
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra Spain
| |
Collapse
|
4
|
Aguirre J, Catalán P, Cuesta JA, Manrubia S. On the networked architecture of genotype spaces and its critical effects on molecular evolution. Open Biol 2018; 8:180069. [PMID: 29973397 PMCID: PMC6070719 DOI: 10.1098/rsob.180069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Evolutionary dynamics is often viewed as a subtle process of change accumulation that causes a divergence among organisms and their genomes. However, this interpretation is an inheritance of a gradualistic view that has been challenged at the macroevolutionary, ecological and molecular level. Actually, when the complex architecture of genotype spaces is taken into account, the evolutionary dynamics of molecular populations becomes intrinsically non-uniform, sharing deep qualitative and quantitative similarities with slowly driven physical systems: nonlinear responses analogous to critical transitions, sudden state changes or hysteresis, among others. Furthermore, the phenotypic plasticity inherent to genotypes transforms classical fitness landscapes into multiscapes where adaptation in response to an environmental change may be very fast. The quantitative nature of adaptive molecular processes is deeply dependent on a network-of-networks multilayered structure of the map from genotype to function that we begin to unveil.
Collapse
Affiliation(s)
- Jacobo Aguirre
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- UC3M-BS Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid, Getafe, Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
5
|
Schönherz AA, Forsberg R, Guldbrandtsen B, Buitenhuis AJ, Einer-Jensen K. Introduction of Viral Hemorrhagic Septicemia Virus into Freshwater Cultured Rainbow Trout Is Followed by Bursts of Adaptive Evolution. J Virol 2018; 92:e00436-18. [PMID: 29643236 PMCID: PMC5974487 DOI: 10.1128/jvi.00436-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV), a rhabdovirus infecting teleost fish, has repeatedly crossed the boundary from marine fish species to freshwater cultured rainbow trout. These naturally replicated cross-species transmission events permit the study of general and repeatable evolutionary events occurring in connection with viral emergence in a novel host species. The purpose of the present study was to investigate the adaptive molecular evolution of the VHSV glycoprotein, one of the key virus proteins involved in viral emergence, following emergence from marine species into freshwater cultured rainbow trout. A comprehensive phylogenetic reconstruction of the complete coding region of the VHSV glycoprotein was conducted, and adaptive molecular evolution was investigated using a maximum likelihood approach to compare different codon substitution models allowing for heterogeneous substitution rate ratios among amino acid sites. Evidence of positive selection was detected at six amino acid sites of the VHSV glycoprotein, within the signal peptide, the confirmation-dependent major neutralizing epitope, and the intracellular tail. Evidence of positive selection was found exclusively in rainbow trout-adapted virus isolates, and amino acid combinations found at the six sites under positive selection pressure differentiated rainbow trout- from non-rainbow trout-adapted isolates. Furthermore, four adaptive sites revealed signs of recurring identical changes across phylogenetic groups of rainbow trout-adapted isolates, suggesting that repeated VHSV emergence in freshwater cultured rainbow trout was established through convergent routes of evolution that are associated with immune escape.IMPORTANCE This study is the first to demonstrate that VHSV emergence from marine species into freshwater cultured rainbow trout has been accompanied by bursts of adaptive evolution in the VHSV glycoprotein. Furthermore, repeated detection of the same adaptive amino acid sites across phylogenetic groups of rainbow trout-adapted isolates indicates that adaptation to rainbow trout was established through parallel evolution. In addition, signals of convergent evolution toward the maintenance of genetic variation were detected in the conformation-dependent neutralizing epitope or in close proximity to disulfide bonds involved in the structural conformation of the neutralizing epitope, indicating adaptation to immune response-related genetic variation across freshwater cultured rainbow trout.
Collapse
Affiliation(s)
- Anna A Schönherz
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Albert J Buitenhuis
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Zhai Y, Deng Y, Cheng G, Peng L, Zheng Y, Yang Y, Xu J. Sugarcane Elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun 2015; 466:312-8. [PMID: 26362180 DOI: 10.1016/j.bbrc.2015.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022]
Abstract
Sugarcane (Saccharum sp. hybrid) provides the main source of sugar for humans. Sugarcane mosaic disease (SMD) is a major threat to sugarcane production. Currently, control of SMD is mainly dependent on breeding resistant cultivars through hybridization, which is time-consuming. Understanding the mechanism of viral infection may facilitate novel strategies to breed cultivars resistant to SMD and to control the disease. In this study, a wide interaction was detected between the viral VPg protein and host proteins. Several genes were screened from sugarcane cDNA library that could interact with Sugarcane streak mosaic virus VPg, including SceIF4E1 and ScELC. ScELC was predicted to be a cytoplasmic protein, but subcellular localization analysis showed it was distributed both in cytoplasmic and nuclear, and interactions were also detected between ScELC and VPg of SCMV or SrMV that reveal ScELC was widely used in the SMD pathogen infection process. ScELC and VPgs interacted in the nucleus, and may function to enhance the viral transcription rate. ScELC also interacted with SceIF4E2 both in the cytoplasm and nucleus, but not with SceIF4E1 and SceIF4E3. These results suggest that ScELC may be essential for the function of SceIF4E2, an isomer of eIF4E.
Collapse
Affiliation(s)
- Yushan Zhai
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China
| | - Yuqing Deng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China
| | - Guangyuan Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China
| | - Lei Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China
| | - Yanru Zheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China
| | - Yongqing Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China.
| | - Jingsheng Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, MOA, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
7
|
Kim KW, Won YL, Ko KS. Ethnic Differences in the Metabolism of Toluene: Comparisons between Korean and Foreign Workers Exposed to Toluene. Toxicol Res 2015; 31:25-32. [PMID: 25874030 PMCID: PMC4395652 DOI: 10.5487/tr.2015.31.1.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
The objectives of this study were to investigate the individual characteristics, lifestyle habits, exposure levels, and genetic diversity of xenobiotic-metabolizing enzymes involved in toluene metabolism in Korean and foreign workers exposed to toluene at a manufacturing plant. This study was conducted to determine the effects of culture or ethnicity on toluene metabolism. The results showed that blood and urinary toluene concentrations were dependent on the level of exposure to toluene. We analyzed the correlation between toluene metabolism and genetic diversity in glutathione S-transferase (GST) (M1), GSTT1, and cytochrome p-450 (CYP) 2E1*5 as well as lifestyle habits (smoking, drinking, and exercise habits). The results revealed significant correlations between toluene metabolism and GSTM1 and GSTT1 genetic diversity, as well as smoking and exercise.
Collapse
Affiliation(s)
- Ki-Woong Kim
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| | - Young Lim Won
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| | - Kyung Sun Ko
- Occupational Safety and Health Research Institute, KOSHA, Ulsan, Korea
| |
Collapse
|
8
|
Lefeuvre P, Moriones E. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr Opin Virol 2015; 10:14-9. [DOI: 10.1016/j.coviro.2014.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
9
|
Abstract
RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal mutagenesis.
Collapse
|
10
|
Getting to Know Viral Evolutionary Strategies: Towards the Next Generation of Quasispecies Models. Curr Top Microbiol Immunol 2015; 392:201-17. [PMID: 26271604 DOI: 10.1007/82_2015_457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral populations are formed by complex ensembles of genomes with broad phenotypic diversity. The adaptive strategies deployed by these ensembles are multiple and often cannot be predicted a priori. Our understanding of viral dynamics is mostly based on two kinds of empirical approaches: one directed towards characterizing molecular changes underlying fitness changes and another focused on population-level responses. Simultaneously, theoretical efforts are directed towards developing a formal picture of viral evolution by means of more realistic fitness landscapes and reliable population dynamics models. New technologies, chiefly the use of next-generation sequencing and related tools, are opening avenues connecting the molecular and the population levels. In the near future, we hope to be witnesses of an integration of these still decoupled approaches, leading into more accurate and realistic quasispecies models able to capture robust generalities and endowed with a satisfactory predictive power.
Collapse
|
11
|
Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Sci Rep 2014; 4:4625. [PMID: 24713667 PMCID: PMC3980229 DOI: 10.1038/srep04625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/21/2014] [Indexed: 11/08/2022] Open
Abstract
The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy.
Collapse
|
12
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Closing the gap: the challenges in converging theoretical, computational, experimental and real-life studies in virus evolution. Curr Opin Virol 2012; 2:515-8. [PMID: 23025914 PMCID: PMC4096944 DOI: 10.1016/j.coviro.2012.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Perales C, Iranzo J, Manrubia SC, Domingo E. The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 2012; 20:595-603. [PMID: 22989762 DOI: 10.1016/j.tim.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/31/2023]
Abstract
The application of quasispecies theory to viral populations has boosted our understanding of how endogenous and exogenous features condition their adaptation. Mounting empirical evidence demonstrates that internal interactions within mutant spectra may cause unexpected responses to antiviral treatments. In this scenario, increased mutagenesis could be efficient at low mutagen doses due to the lethal action of defective genomes, whereas sequential administration of antiviral drugs might be superior to combination therapies. Our ability to predict the outcome of a particular therapy takes advantage of the complementary use of in vivo observations, in vitro experiments, and mathematical models.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco 28049, Madrid, Spain
| | | | | | | |
Collapse
|