2
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
3
|
Liu X, Liu Z, Wu Z, Ren J, Fan Y, Sun L, Cao G, Niu Y, Zhang B, Ji Q, Jiang X, Wang C, Wang Q, Ji Z, Li L, Esteban CR, Yan K, Li W, Cai Y, Wang S, Zheng A, Zhang YE, Tan S, Cai Y, Song M, Lu F, Tang F, Ji W, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023; 186:287-304.e26. [PMID: 36610399 DOI: 10.1016/j.cell.2022.12.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Baohu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanzhu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Aihua Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingao Cai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhao Z, Feng L, Peng X, Ma T, Tong R, Zhong L. Role of histone methyltransferase SETDB1 in regulation of tumourigenesis and immune response. Front Pharmacol 2022; 13:1073713. [PMID: 36582533 PMCID: PMC9793902 DOI: 10.3389/fphar.2022.1073713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations are implicated in tumour immune evasion and immune checkpoint blockade (ICB) resistance. SET domain bifurcated histone methyltransferase 1 (SETDB1) is a histone lysine methyltransferase that catalyses histone H3K9 di- and tri-methylation on euchromatin, and growing evidence indicates that SETDB1 amplification and abnormal activation are significantly correlated with the unfavourable prognosis of multiple malignant tumours and contribute to tumourigenesis and progression, immune evasion and ICB resistance. The main underlying mechanism is H3K9me3 deposition by SETDB1 on tumour-suppressive genes, retrotransposons, and immune genes. SETDB1 targeting is a promising approach to cancer therapy, particularly immunotherapy, because of its regulatory effects on endogenous retroviruses. However, SETDB1-targeted therapy remains challenging due to potential side effects and the lack of antagonists with high selectivity and potency. Here, we review the role of SETDB1 in tumourigenesis and immune regulation and present the current challenges and future perspectives of SETDB1 targeted therapy.
Collapse
Affiliation(s)
- Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lei Zhong,
| |
Collapse
|
6
|
Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P, Gupta RK, Fernandes L, Holt J, van der Veen AG, Giampazolias E, Burns KH, Maillard PV, Rowe HM. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun 2020; 11:5387. [PMID: 33144593 PMCID: PMC7609715 DOI: 10.1038/s41467-020-19170-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex.
Collapse
Affiliation(s)
- Hale Tunbak
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Rocio Enriquez-Gasca
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | | | - Poppy A Gould
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Petra Mlcochova
- Department of Medicine, University of Cambridge, CB2 0AF, Cambridge, UK
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, CB2 0AF, Cambridge, UK
| | - Liane Fernandes
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - James Holt
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Annemarthe G van der Veen
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Kathleen H Burns
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pierre V Maillard
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Helen M Rowe
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|