1
|
Venu E, Ramya A, Babu PL, Srinivas B, Kumar S, Reddy NK, Babu YM, Majumdar A, Manik S. Exogenous dsRNA-Mediated RNAi: Mechanisms, Applications, Delivery Methods and Challenges in the Induction of Viral Disease Resistance in Plants. Viruses 2024; 17:49. [PMID: 39861836 PMCID: PMC11769437 DOI: 10.3390/v17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs). Key advancements in dsRNA production, including cost-effective microbial synthesis and in vitro methods, are examined alongside delivery techniques such as spray-induced gene silencing (SIGS) and nanocarrier-based systems. Strategies for enhancing dsRNA stability, including the use of nanomaterials like layered double hydroxide nanosheets and carbon dots, are discussed to address environmental degradation challenges. Practical applications of this technology against various plant viruses and its potential to ensure food security are emphasized. The review also delves into regulatory considerations, risk assessments, and the challenges associated with off-target effects and pathogen resistance. By evaluating both opportunities and limitations, this review underscores the role of exogenous dsRNA as a sustainable solution for achieving viral disease resistance in plants.
Collapse
Affiliation(s)
- Emmadi Venu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Akurathi Ramya
- Department of Plant Pathology, Junagadh Agricultural University, Junagadh 362001, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Bhukya Srinivas
- Department of Plant Pathology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Sathiyaseelan Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Namburi Karunakar Reddy
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, India;
| | - Yeluru Mohan Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Anik Majumdar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Suryakant Manik
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| |
Collapse
|
2
|
Do DH, Ngo XT, Yeh SD. The Generation of Attenuated Mutants of East Asian Passiflora Virus via Deletion and Mutation in the N-Terminal Region of the HC-Pro Gene for Control through Cross-Protection. Viruses 2024; 16:1231. [PMID: 39205205 PMCID: PMC11359188 DOI: 10.3390/v16081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) reporter to monitor the virus in plants. Nicotiana benthamiana and yellow passionfruit plants inoculated with the construct showed typical symptoms of EAPV-TW. Based on our previous studies on pathogenicity determinants of potyviral HC-Pros, a deletion of six amino acids (d6) alone and its association with a point mutation (F8I, simplified as I8) were conducted in the N-terminal region of the HC-Pro gene of EAPV-TW to generate mutants of EAPV-d6 and EAPV-d6I8, respectively. The mutant EAPV-d6I8 caused infection without conspicuous symptoms in N. benthamiana and yellow passionfruit plants, while EAPV-d6 still induced slight leaf mottling. EAPV-d6I8 was stable after six passages under greenhouse conditions and displayed a zigzag pattern of virus accumulation, typical of a beneficial protective virus. The cross-protection effectiveness of EAPV-d6I8 was evaluated in both N. benthamiana and yellow passionfruit plants under greenhouse conditions. EAPV-d6I8 conferred complete cross-protection (100%) against the wild-type EAPV-TW-GFP in both N. benthamiana and yellow passionfruit plants, as verified by no severe symptoms, no fluorescent signals, and PCR-negative status for GFP. Furthermore, EAPV-d6I8 also provided complete protection against Vietnam's severe strain EAPV-GL1 in yellow passionfruit plants. Our results indicate that the attenuated mutant EAPV-d6I8 has great potential to control EAPV in Taiwan and Vietnam via cross-protection.
Collapse
Affiliation(s)
- Duy-Hung Do
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan;
- Plant Pathology Division, Plant Protection Research Institute, Hanoi 10000, Vietnam
| | - Xuan-Tung Ngo
- Department of Horticulture, National Chung Hsing University, Taichung 402, Taiwan;
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan;
- Advanced Plant and Food Crops Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Overseas Vietnam Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
4
|
Xu XJ, Sun XJ, Liu CJ, Chen XZ, Zhu Q, Tian YP, Li XD. Development of an attenuated potato virus Y mutant carrying multiple mutations in helper-component protease for cross-protection. Virus Res 2024; 344:199369. [PMID: 38608732 PMCID: PMC11035042 DOI: 10.1016/j.virusres.2024.199369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, Shandong 264025, China; Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xu-Jie Sun
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Ju Liu
- Weifang Tobacco Corporation, Weifang, Shandong 261031, China
| | - Xiu-Zhai Chen
- Linyi Tobacco Corporation, Linyi, Shandong 276000, China
| | - Qing Zhu
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xiang-Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
5
|
Chooi KM, Bell VA, Blouin AG, Sandanayaka M, Gough R, Chhagan A, MacDiarmid RM. The New Zealand perspective of an ecosystem biology response to grapevine leafroll disease. Adv Virus Res 2024; 118:213-272. [PMID: 38461030 DOI: 10.1016/bs.aivir.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a major pathogen of grapevines worldwide resulting in grapevine leafroll disease (GLD), reduced fruit yield, berry quality and vineyard profitability. Being graft transmissible, GLRaV-3 is also transmitted between grapevines by multiple hemipteran insects (mealybugs and soft scale insects). Over the past 20 years, New Zealand has developed and utilized integrated pest management (IPM) solutions that have slowly transitioned to an ecosystem-based biological response to GLD. These IPM solutions and combinations are based on a wealth of research within the temperate climates of New Zealand's nation-wide grape production. To provide context, the grapevine viruses present in the national vineyard estate and how these have been identified are described; the most pathogenic and destructive of these is GLRaV-3. We provide an overview of research on GLRaV-3 genotypes and biology within grapevines and describe the progressive development of GLRaV-3/GLD diagnostics based on molecular, serological, visual, and sensor-based technologies. Research on the ecology and control of the mealybugs Pseudococcus calceolariae and P. longispinus, the main insect vectors of GLRaV-3 in New Zealand, is described together with the implications of mealybug biological control agents and prospects to enhance their abundance and/or fitness in the vineyard. Virus transmission by mealybugs is described, with emphasis on understanding the interactions between GLRaV-3, vectors, and plants (grapevines, alternative hosts, or non-hosts of the virus). Disease management through grapevine removal and the economic influence of different removal strategies is detailed. Overall, the review summarizes research by an interdisciplinary team working in close association with the national industry body, New Zealand Winegrowers. Teamwork and communication across the whole industry has enabled implementation of research for the management of GLD.
Collapse
Affiliation(s)
- Kar Mun Chooi
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Vaughn A Bell
- The New Zealand Institute for Plant and Food Research Limited, Havelock North, New Zealand.
| | | | | | - Rebecca Gough
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Asha Chhagan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Liu S, Su C, Zhang D, Song Z, Wang X, Wang J, Yuan X. Construction of a Delivery Platform for Vaccine Based on Modified Nanotubes: Sustainable Prevention against Plant Viral Disease, Simplified Preparation Method, and Protection of Plasmid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44541-44553. [PMID: 37672476 DOI: 10.1021/acsami.3c09168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Control of plant viral diseases through cross-protection conferred by an attenuated vaccine is an important strategy for plant protection. However, the mutated site of an attenuated vaccine may not be stably inherited, while viruses have evolved efficient repair mechanisms for the maintenance of genomic integrity. Here, the wide host range and broad selection of mutation sites in cucumber mosaic virus (CMV) enabled construction of an attenuated vaccine through insertional mutation of the CMV 2b protein. CMV-R2E was stably inherited in tobacco for more than 10 generations and had a high relative control efficacy of CMV. Then, the use of polyetherimide (PEI)-modified functionalized carboxylated single-walled carbon nanotubes (PSWNTs) was investigated for vaccine delivery to address the problems of poor stability, complex procedure on field application, and exacting storage conditions with Agrobacterium inoculation. After co-incubating at a 1:300 ratio for 30 min, the vaccine and PSWNTs combined to form pCMV-R2E@PSWNTs, which resulted in a significant increase in the average height of the nanoparticles from 6.56 to 72.34 nm. The relative control efficacy of pCMV-R2E@PSWNTs to CMV was found to be 90.37%. Furthermore, the protective effect of PSWNTs on plasmids was investigated under various environmental conditions and the potential plant toxicity of pCMV-R2E@PSWNTs was assessed, providing a theoretical basis for field application of the vaccine nano-delivery system. A highly effective, stable viral vaccine for plants was thus developed and combined with nanocarriers to address the problems of field application. This approach has the potential to enable wider use of attenuated vaccines for sustainable prevention against plant viral disease in the field.
Collapse
Affiliation(s)
- Shanshan Liu
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Chenyu Su
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Deping Zhang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning 530000, P. R. China
| | - Zhanfeng Song
- China Tobacco Guangxi Industrial Co., Ltd., Nanning 530000, P. R. China
| | - Xinwei Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an 271000, P. R. China
| |
Collapse
|
7
|
Do DH, Nguyen TBN, Ha VC, Raja JAJ, Yeh SD. Generation of Attenuated Passiflora Mottle Virus Through Modification of the Helper Component Protease for Cross Protection. PHYTOPATHOLOGY 2023; 113:1605-1614. [PMID: 37019906 DOI: 10.1094/phyto-01-23-0007-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Passiflora mottle virus (PaMoV), an aphid-borne potyvirus, is the primary causal virus of devastating passionfruit woodiness disease in Vietnam. Here we generated a nonpathogenic, attenuated PaMoV strain for disease control by cross protection. A full-length genomic cDNA of PaMoV strain DN4 from Vietnam was constructed to generate an infectious clone. The green fluorescent protein was tagged at the N-terminal region of the coat protein gene to monitor in planta the severe PaMoV-DN4. Two amino acids within the conserved motifs of helper component protease (HC-Pro) of PaMoV-DN4 were mutated individually or in combination as K53E or/and R181I. Mutants PaMoV-E53 and PaMoV-I181 induced local lesions in Chenopodium quinoa plants, while PaMoV-E53I181 caused infection without apparent symptoms. In passionfruit (Passiflora edulis) plants, PaMoV-E53 elicited severe leaf mosaic and PaMoV-I181 induced leaf mottling, while PaMoV-E53I181 caused transient mottling followed by symptomless recovery. PaMoV-E53I181 was stable after six serial passages in yellow passionfruit (Passiflora edulis f. flavicarpa) plants. Its temporal accumulation levels were lower than those of the wild type, with a zigzag accumulation pattern, typical of a beneficial protective virus. An RNA silencing suppression (RSS) assay revealed that all three mutated HC-Pros are defective in RSS. Triplicated cross-protection experiments with a total of 45 plants showed that the attenuated mutant PaMoV-E53I181 provided a high protection rate (91%) against the homologous wild-type virus in passionfruit plants. This work revealed that PaMoV-E53I181 can be used as a protective virus to control PaMoV by cross protection.
Collapse
Affiliation(s)
- Duy-Hung Do
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Plant Pathology Division, Plant Protection Research Institute, Hanoi, Vietnam
| | | | | | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Overseas Vietnam Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
8
|
Kubina J, Hily JM, Mustin P, Komar V, Garcia S, Martin IR, Poulicard N, Velt A, Bonnet V, Mercier L, Lemaire O, Vigne E. Characterization of Grapevine Fanleaf Virus Isolates in ‘Chardonnay’ Vines Exhibiting Severe and Mild Symptoms in Two Vineyards. Viruses 2022; 14:v14102303. [PMID: 36298857 PMCID: PMC9609649 DOI: 10.3390/v14102303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Fanleaf degeneration is a complex viral disease of Vitis spp. that detrimentally impacts fruit yield and reduces the productive lifespan of most vineyards worldwide. In France, its main causal agent is grapevine fanleaf virus (GFLV). In the past, field experiments were conducted to explore cross-protection as a management strategy of fanleaf degeneration, but results were unsatisfactory because the mild virus strain negatively impacted fruit yield. In order to select new mild GFLV isolates, we examined two old ‘Chardonnay’ parcels harbouring vines with distinct phenotypes. Symptoms and agronomic performances were monitored over the four-year study on 21 individual vines that were classified into three categories: asymptomatic GFLV-free vines, GFLV-infected vines severely diseased and GFLV-infected vines displaying mild symptoms. The complete coding genomic sequences of GFLV isolates in infected vines was determined by high-throughput sequencing. Most grapevines were infected with multiple genetically divergent variants. While no specific molecular features were apparent for GFLV isolates from vines displaying mild symptoms, a genetic differentiation of GFLV populations depending on the vineyard parcel was observed. The mild symptomatic grapevines identified during this study were established in a greenhouse to recover GFLV variants of potential interest for cross-protection studies.
Collapse
Affiliation(s)
- Julie Kubina
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Jean-Michel Hily
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
- IFV, 30240 Le Grau-Du-Roi, France
| | - Pierre Mustin
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Véronique Komar
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Shahinez Garcia
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | | | - Nils Poulicard
- PHIM, Université Montpellier, IRD, INRAE, Cirad, SupAgro, 34000 Montpellier, France
| | - Amandine Velt
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Véronique Bonnet
- Maison Moët & Chandon, 20 Avenue de Champagne, 51200 Épernay, France
| | - Laurence Mercier
- Maison Moët & Chandon, 20 Avenue de Champagne, 51200 Épernay, France
| | - Olivier Lemaire
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Emmanuelle Vigne
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
- Correspondence:
| |
Collapse
|
9
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
10
|
Zhang S, Griffiths JS, Marchand G, Bernards MA, Wang A. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. MOLECULAR PLANT PATHOLOGY 2022; 23:1262-1277. [PMID: 35598295 PMCID: PMC9366064 DOI: 10.1111/mpp.13229] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.
Collapse
Affiliation(s)
- Shaokang Zhang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Jonathan S. Griffiths
- London Research and Development CentreAgriculture and Agri‐Food CanadaVinelandOntarioCanada
| | - Geneviève Marchand
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
11
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
12
|
To Be Seen or Not to Be Seen: Latent Infection by Tobamoviruses. PLANTS 2022; 11:plants11162166. [PMID: 36015469 PMCID: PMC9415976 DOI: 10.3390/plants11162166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV), on the other side, there are members which cause latent infection in host plants. New technologies, such as high-throughput sequencing (HTS), have enabled us to discover viruses from asymptomatic plants, viruses in mixed infections where the disease etiology cannot be attributed to a single entity and more and more researchers a looking at non-crop plants to identify alternative virus reservoirs, leading to new virus discoveries. However, the diversity of these interactions in the virosphere and the involvement of multiple viruses in a single host is still relatively unclear. For such host–virus interactions in wild plants, symptoms are not always linked with the virus titer. In this review, we refer to latent infection as asymptomatic infection where plants do not suffer despite systemic infection. Molecular mechanisms related to latent behavior of tobamoviruses are unknown. We will review different studies which support different theories behind latency.
Collapse
|
13
|
Multiple Levels of Triggered Factors and the Obligated Requirement of Cell-to-Cell Movement in the Mutation Repair of Cucumber Mosaic Virus with Defects in the tRNA-like Structure. BIOLOGY 2022; 11:biology11071051. [PMID: 36101429 PMCID: PMC9312275 DOI: 10.3390/biology11071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Based on analysis of the tRNA-like structure (TLS) mutation in cucumber mosaic virus (CMV), mutation repair is correlated with several levels of triggered factors, including the dose of inoculation of virus mutants, the quantity effect on corresponding viral RNA, and the quality effect on corresponding viral RNA. All types of TLS mutation in different RNAs of CMV can be repaired at a low dose around the dilution end-point. At a high dose of inoculation, TLS mutations in RNA2 and RNA3, but not RNA1, can be repaired, which correlates with the relative quantity defect of RNA2 or the genome size defect of RNA3. In addition, all the above types of mutation repair necessarily require cell-to-cell movement, which presents the obligated effect of cell-to-cell movement on mutation repair. Abstract Some debilitating mutations in RNA viruses are repairable; however, the triggering factors of mutation repair remain largely unknown. In this study, multiple triggering factors of mutation repair are identified based on genetic damage to the TLS in CMV. TLS mutations in different RNAs distinctively impact viral pathogenicity and present different types of mutation repair. RNA2 relative reduction level or RNA3 sequence change resulting from TLS mutation is correlated with a high rate of mutation repair, and the TLS mutation of RNA1 fails to be repaired at the high inoculum dose. However, the TLS mutation of RNA1 can be repaired at a low dose of inoculation, particularly around the dilution end-point or in the mixed inoculation with RNA2 having a pre-termination mutation of the 2b gene, an RNAi suppressor. Taken together, TLS mutations resulting in quality or quantity defects of the viral genome or TLS mutations at low doses around the dilution end-point are likely to be repaired. Different levels of TLS mutation repair necessarily require cell-to-cell movement, therefore implying its obligated effect on the evolution of low-fitness viruses and providing a new insight into Muller’s ratchet. This study provides important information on virus evolution and the application of mild viral vaccines.
Collapse
|
14
|
Raja JAJ, Huang C, Chen C, Hu W, Cheng H, Goh R, Chao C, Tan Y, Yeh S. Modification of the N-terminal FWKG-αH1 element of potyviral HC-Pro affects its multiple functions and generates effective attenuated mutants for cross-protection. MOLECULAR PLANT PATHOLOGY 2022; 23:947-965. [PMID: 35285990 PMCID: PMC9190983 DOI: 10.1111/mpp.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/01/2023]
Abstract
Control of plant viruses by cross-protection is limited by the availability of effective protective strains. Incorporation of an NIa-protease processing site in the extreme N-terminal region of the helper component protease (HC-Pro) of turnip mosaic virus (TuMV) resulted in a mutant virus TuHND I that induced highly attenuated symptoms. Recombination analysis verified that two variations, F7I mutation and amino acid 7-upstream-deletion, in HC-Pro co-determined TuHND I attenuation. TuHND I provided complete protection to Nicotiana benthamiana and Brassica campestris subsp. chinensis plants against infection by the severe parental strain. Aphid transmission tests revealed that TuHND I was not aphid-transmissible. An RNA silencing suppression (RSS) assay by agroinfiltration suggested the RSS-defective nature of the mutant HC-Pro. In the context (amino acids 3-17) encompassing the two variations of HC-Pro, we uncovered an FWKG-α-helix 1 (αH1) element that influenced the functions of aphid transmission and RSS, whose motifs were located far downstream. We further demonstrated that HC-Pro F7 was a critical residue on αH1 for HC-Pro functions and that reinstating αH1 in the RSS-defective HC-Pro of TuHND I restored the protein's RSS function. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated the FWKG-αH1 element as an integral part of the HC-Pro self-interaction domain. The possibility of regulation of the mechanistically independent functions of RSS and aphid transmission by the FWKG-αH1 element is discussed. Extension of TuMV HC-Pro FWKG-αH1 variations to another potyvirus, zucchini yellow mosaic virus, also generated nonaphid-transmissible cross-protective mutant viruses. Hence, the modification of the FWKG-αH1 element can generate effective attenuated viruses for the control of potyviruses by cross-protection.
Collapse
Affiliation(s)
- Joseph A. J. Raja
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| | - Chung‐Hao Huang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| | - Chin‐Chih Chen
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
- Division of Plant PathologyTaiwan Agricultural Research InstituteWu‐FengTaichungTaiwan, R.O.C.
| | - Wen‐Chi Hu
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| | - Hao‐Wen Cheng
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| | - Reun‐Ping Goh
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| | - Chia‐Hung Chao
- Taichung District Agricultural Research and Extension StationDacunChanghua CountyTaiwan, R.O.C.
| | - Yue‐Rong Tan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| | - Shyi‐Dong Yeh
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, R.O.C.
| |
Collapse
|
15
|
Xu XJ, Zhu Q, Jiang SY, Yan ZY, Geng C, Tian YP, Li XD. Development and Evaluation of Stable Sugarcane Mosaic Virus Mild Mutants for Cross-Protection Against Infection by Severe Strain. FRONTIERS IN PLANT SCIENCE 2021; 12:788963. [PMID: 34975975 PMCID: PMC8718998 DOI: 10.3389/fpls.2021.788963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Sugarcane mosaic virus (SCMV; genus Potyvirus) induces maize dwarf mosaic disease that has caused serious yield losses of maize in China. Cross-protection is one of the efficient strategies to fight against severe virus strains. Although many mild strains have been identified, the spontaneous mutation is one of the challenging problems affecting their application in cross-protection. In this study, we found that the substitution of cysteine (C) at positions 57 or 60 in the zinc finger-like motif of HC-Pro with alanine (A; C57A or C60A) significantly reduced its RNA silencing suppression activity and SCMV virulence. To reduce the risk of mild strains mutating to virulent ones by reverse or complementary mutations, we obtained attenuated SCMV mutants with double-mutations in the zinc finger-like and FRNK motifs of HC-Pro and evaluated their potential application in cross-protection. The results showed that the maize plants infected with FKNK/C60A double-mutant showed symptomless until 95 days post-inoculation and FKNK/C60A cross-protected plants displayed high resistance to severe SCMV strain. This study provides theoretical and material bases for the control of SCMV through cross-protection.
Collapse
|
16
|
Wang Y, Shen W, Dai Z, Gou B, Liu H, Hu W, Qin L, Li Z, Tuo D, Cui H. Biological and Molecular Characterization of Two Closely Related Arepaviruses and Their Antagonistic Interaction in Nicotiana benthamiana. Front Microbiol 2021; 12:755156. [PMID: 34733264 PMCID: PMC8558625 DOI: 10.3389/fmicb.2021.755156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Previously, our group characterized two closely related viruses from Areca catechu, areca palm necrotic ringspot virus (ANRSV) and areca palm necrotic spindle-spot virus (ANSSV). These two viruses share a distinct genomic organization of leader proteases and represent the only two species of the newly established genus Arepavirus of the family Potyviridae. The biological features of the two viruses are largely unknown. In this study, we investigated the pathological properties, functional compatibility of viral elements, and interspecies interactions in the model plant, Nicotiana benthamiana. Using a newly obtained infectious clone of ANRSV, we showed that this virus induces more severe symptoms compared with ANSSV and that this is related to a rapid virus multiplication in planta. A series of hybrid viruses were constructed via the substitution of multiple elements in the ANRSV infectious clone with the counterparts of ANSSV. The replacement of either 5′-UTR-HCPro1–HCPro2 or CI effectively supported replication and systemic infection of ANRSV, whereas individual substitution of P3-7K, 9K-NIa, and NIb-CP-3′-UTR abolished viral infectivity. Finally, we demonstrated that ANRSV confers effective exclusion of ANSSV both in coinfection and super-infection assays. These results advance our understanding of fundamental aspects of these two distinct but closely related arepaviruses.
Collapse
Affiliation(s)
- Yaodi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Bei Gou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Weiyao Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Zengping Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| | - Decai Tuo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
17
|
Xu XJ, Li HG, Cheng DJ, Liu LZ, Geng C, Tian YP, Li XD. A Spontaneous Complementary Mutation Restores the RNA Silencing Suppression Activity of HC-Pro and the Virulence of Sugarcane Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2020; 11:1279. [PMID: 32973838 PMCID: PMC7472499 DOI: 10.3389/fpls.2020.01279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/05/2020] [Indexed: 05/26/2023]
Abstract
Cross-protection is a promising measure to control plant viral diseases. Reverse genetics had been recently adopted to generate attenuated mutants that have potential in cross-protection. But studies on the variability of the progeny viruses of the attenuated mutants are scarce. Sugarcane mosaic virus (SCMV; genus Potyvirus, family Potyviridae) is the prevalent virus inducing maize dwarf mosaic disease in China. Here, we showed that the substitution of arginine with isoleucine in the FRNK motif at position 184 of helper component-proteinase (HC-Pro) abolished its RNA silencing suppression (RSS) activity, drastically reduced the virulence and accumulation level of SCMV, and impaired the synergism between SCMV and maize chlorotic mottle virus. The attenuated mutant could protect maize plants from a severe infection of SCMV. However, a spontaneous mutation of glycine at position 440 to arginine in HC-Pro rescued the virulence and synergism with maize chlorotic mottle virus of SCMV and the RSS activity of HC-Pro. Similar results were obtained with tobacco vein banding mosaic virus and watermelon mosaic virus. These results provide novel evidence for the complementary mutation of potyviruses in maintaining the HC-Pro RSS activity and potyviral virulence and remind us of evaluating the potential risk of attenuated mutants thoroughly before applying for the control of plant viral diseases via cross-protection.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Huan-Gai Li
- Protein Science Laboratory of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
| | - De-Jie Cheng
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ling-Zhi Liu
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chao Geng
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan-Ping Tian
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xiang-Dong Li
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
18
|
Tuo D, Zhou P, Zhao G, Yan P, Tan D, Li X, Shen W. A Double Mutation in the Conserved Motifs of the Helper Component Protease of Papaya Leaf Distortion Mosaic Virus for the Generation of a Cross-Protective Attenuated Strain. PHYTOPATHOLOGY 2020; 110:187-193. [PMID: 31516080 DOI: 10.1094/phyto-09-19-0328-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potyviral helper component protease (HC-Pro), as a major determinant of symptom expression in susceptible plants, is a likely target candidate in the production of attenuated strains for cross-protection. In this study, single or double mutations of Lys (K) to Glu (E) in the Lys-Ile-Thr-Cys motif and Arg (R) to Ile (I) in the Phe-Arg-Asn-Lys motif of the HC-Pro from the severe papaya leaf distortion mosaic virus strain DF (PLDMV-DF) reduced symptom expression and virus accumulation in infected papaya (Carica papaya) plants. The papaya plants infected with the attenuated double mutant of PLDMV-EI presented as symptomless. PLDMV-EI provided effective protection against PLDMV-DF infection in three papaya cultivars and had no effect on plant growth and development. Our result showed that PLDMV-EI is a promising mild strain for the practical use of cross-protection in the field.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Guangyuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Dong Tan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| |
Collapse
|
19
|
The Matrix Protein of a Plant Rhabdovirus Mediates Superinfection Exclusion by Inhibiting Viral Transcription. J Virol 2019; 93:JVI.00680-19. [PMID: 31341043 DOI: 10.1128/jvi.00680-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 11/20/2022] Open
Abstract
Superinfection exclusion (SIE) or cross-protection phenomena have been documented for plant viruses for nearly a century and are widespread among taxonomically diverse viruses, but little information is available about SIE of plant negative-strand RNA viruses. Here, we demonstrate that SIE by sonchus yellow net nucleorhabdovirus virus (SYNV) is mediated by the viral matrix (M) protein, a multifunctional protein involved in transcription regulation, virion assembly, and virus budding. We show that fluorescent protein-tagged SYNV variants display mutual exclusion/cross-protection in Nicotiana benthamiana plants. Transient expression of the SYNV M protein, but not other viral proteins, interfered with SYNV local infections. In addition, SYNV M deletion mutants failed to exclude superinfection by wild-type SYNV. An SYNV minireplicon reporter gene expression assay showed that the M protein inhibited viral transcription. However, M protein mutants with weakened nuclear localization signals (NLS) and deficient nuclear interactions with the SYNV nucleocapsid protein were unable to suppress transcription. Moreover, SYNV with M NLS mutations exhibited compromised SIE against wild-type SYNV. From these data, we propose that M protein accumulating in nuclei with primary SYNV infections either coils or prevents uncoiling of nucleocapsids released by the superinfecting SYNV virions and suppresses transcription of superinfecting genomes, thereby preventing superinfection. Our model suggests that the rhabdovirus M protein regulates the transition from replication to virion assembly and renders the infected cells nonpermissive for secondary infections.IMPORTANCE Superinfection exclusion (SIE) is a widespread phenomenon in which an established virus infection prevents reinfection by closely related viruses. Understanding the mechanisms governing SIE will not only advance our basic knowledge of virus infection cycles but may also lead to improved design of antiviral measures. Despite the significance of SIE, our knowledge about viral SIE determinants and their modes of actions remain limited. In this study, we show that sonchus yellow net virus (SYNV) SIE is mediated by the viral matrix (M) protein. During primary infections, accumulation of M protein in infected nuclei results in coiling of genomic nucleocapsids and suppression of viral transcription. Consequently, nucleocapsids released by potential superinfectors are sequestered and are unable to initiate new infections. Our data suggest that SYNV SIE is caused by M protein-mediated transition from replication to virion assembly and that this process prevents secondary infections.
Collapse
|
20
|
Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H. A New Era for Mild Strain Cross-Protection. Viruses 2019; 11:E670. [PMID: 31340444 PMCID: PMC6669575 DOI: 10.3390/v11070670] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Societal and environmental pressures demand high-quality and resilient cropping plants and plant-based foods grown with the use of low or no synthetic chemical inputs. Mild strain cross-protection (MSCP), the pre-immunization of a plant using a mild strain of a virus to protect against subsequent infection by a severe strain of the virus, fits with future-proofing of production systems. New examples of MSCP use have occurred recently. New technologies are converging to support the discovery and mechanism(s) of action of MSCP strains thereby accelerating the popularity of their use.
Collapse
Affiliation(s)
- Katrin Pechinger
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Scott J Harper
- Department of Plant Pathology, Washington, State University, Prosser, WA 99350, USA
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.
| |
Collapse
|
21
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
22
|
Turco S, Golyaev V, Seguin J, Gilli C, Farinelli L, Boller T, Schumpp O, Pooggin MM. Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:707-723. [PMID: 29424662 DOI: 10.1094/mpmi-12-17-0301-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In plants, RNA silencing-based antiviral defense generates viral small RNAs (sRNAs) faithfully representing the viral genomes. We employed sRNA sequencing and bioinformatics (sRNA-omics) to characterize antiviral defense and to reconstruct the full genomic sequences and their variants in the evolving viral quasispecies in cultivated solanaceous plants carrying mixed infections. In naturally infected Solanum tuberosum (potato), one case study revealed a virome comprising Potato virus Y (genus Potyvirus) and Potato virus X (genus Potexvirus), which was reconstructed by de novo-assembling separate genome-size sRNA contigs. Another case study revealed a virome comprising NTN and O strains of Potato virus Y, whose sRNAs assembled in chimeric contigs, which could be disentangled on the basis of reference genome sequences. Both viromes were stable in vegetative potato progeny. In a cross-protection trial of Solanum lycopersicum (tomato), the supposedly protective mild strain CH2 of Pepino mosaic virus (genus Potexvirus) was tested for protection against strain LP of the same virus. Reciprocal mechanical inoculations eventually resulted in co-infection of all individual plants with CH2 and LP strains, reconstructed as separate sRNA contigs. LP invasions into CH2-preinfected plants and vice versa were accompanied by alterations of consensus genome sequences in viral quasispecies, indicating a potential risk of cross-protection measures. Additionally, the study also revealed, by reconstruction from sRNAs, the presence of the mechanically nontransmissible Southern tomato virus (genus Amalgavirus) in some plants. Our in-depth analysis of sRNA sizes, 5'-nucleotide frequencies and hotspot maps revealed similarities in sRNA-generating mechanisms in potato and tomato, differential silencing responses to virome components and potential for sRNA-directed cross-targeting between viral strains which could not, however, prevent the formation of stable viromes.
Collapse
Affiliation(s)
- Silvia Turco
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Victor Golyaev
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Jonathan Seguin
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | | | | | - Thomas Boller
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
| | | | - Mikhail M Pooggin
- 1 Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland
- 5 INRA, UMR BGPI, 34398 Montpellier, France
| |
Collapse
|