1
|
Vaez Allaei SM, Amininasab M, Ishkhanyan H, Poghosyan AH. Potential functional changes in native lysozyme induced by carbon nanotubes studied by molecular dynamics simulations. Sci Rep 2025; 15:11593. [PMID: 40185851 PMCID: PMC11971380 DOI: 10.1038/s41598-025-96435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
A carbon nanotube (CNT) can affect biological systems, ranging from toxicity to changes in functionality. Here, a series of long-scale (1-2 µs) molecular dynamics simulations were conducted to investigate the adsorption and interaction of lysozyme with the CNT, a possible mechanism for altering protein flexibility and function. Four systems were examined: native lysozyme/CNT, denatured lysozyme/CNT, and both systems post-docking. Our results indicate that native lysozyme does not undergo conformational changes when initially captured by a CNT. However, after docking, the native lysozyme/CNT complex exhibits conformational changes. In contrast, the denatured lysozyme binds more effectively to the CNT in both pre- and post-docking scenarios. Key amino acid residues, arginine and tryptophan, have been identified as crucial for lysozyme/CNT interactions. The surface of the CNT adsorbs lysozyme through π-π stacking and van der Waals interactions, with these multimodal interactions serving as the main driving force for protein anchoring to the nanotube. These results also underscore the significance of docking in the simulation of protein/nanoparticle interactions, which can lead to entirely different conclusions regarding, for example, the toxicity or functionality of a given nanoparticle life.
Collapse
Affiliation(s)
- S Mehdi Vaez Allaei
- Department of Physics, University of Tehran, Tehran, 14395-547, Iran.
- New Uzbekistan University, Movarounnahr Street 1, 100000, Tashkent, Uzbekistan.
- School of Quantum Physics and Matter, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran.
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hrachya Ishkhanyan
- Institute of Informatics and Automation Problems, 1 Paruyr Sevak Str, 0014, Yerevan, Armenia
| | - Armen H Poghosyan
- Institute of Informatics and Automation Problems, 1 Paruyr Sevak Str, 0014, Yerevan, Armenia.
| |
Collapse
|
2
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2316028. [PMID: 39677986 PMCID: PMC11636629 DOI: 10.1002/adfm.202316028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 12/17/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H2O2) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H2O2, confirm the nanosensor can image H2O2 in real-time, and assess the nanosensor's selectivity for H2O2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
Affiliation(s)
- Francis Ledesma
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Joshua D Hubbard
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Dabin Yim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Alison Lui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Aishwarya Murali
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Nishitani S, Tran T, Puglise A, Yang S, Landry MP. Engineered Glucose Oxidase-Carbon Nanotube Conjugates for Tissue-Translatable Glucose Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202311476. [PMID: 37990059 PMCID: PMC11003487 DOI: 10.1002/anie.202311476] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Continuous and non-invasive glucose monitoring and imaging is important for disease diagnosis, treatment, and management. However, glucose monitoring remains a technical challenge owing to the dearth of tissue-transparent glucose sensors. In this study, we present the development of near-infrared fluorescent single-walled carbon nanotube (SWCNT) based nanosensors directly functionalized with glucose oxidase (GOx) capable of immediate and reversible glucose imaging in biological fluids and tissues. We prepared GOx-SWCNT nanosensors by facile sonication of SWCNT with GOx in a manner that-surprisingly-does not compromise the ability of GOx to detect glucose. Importantly, we find by using denatured GOx that the fluorescence modulation of GOx-SWCNT is not associated with the catalytic oxidation of glucose but rather triggered by glucose-GOx binding. Leveraging the unique response mechanism of GOx-SWCNT nanosensors, we developed catalytically inactive apo-GOx-SWCNT that enables both sensitive and reversible glucose imaging, exhibiting a ΔF/F0 of up to 40 % within 1 s of exposure to glucose without consuming the glucose analyte. We finally demonstrate the potential applicability of apo-GOx-SWCNT in biomedical applications by glucose quantification in human plasma and glucose imaging in mouse brain slices.
Collapse
Affiliation(s)
- Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Tiffany Tran
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Andrew Puglise
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Sounghyun Yang
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), 94720, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, 94720, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, 94158, San Francisco, CA, USA
| |
Collapse
|
4
|
Ledesma F, Nishitani S, Cunningham FJ, Hubbard JD, Yim D, Lui A, Chio L, Murali A, Landry MP. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571773. [PMID: 38168430 PMCID: PMC10760104 DOI: 10.1101/2023.12.14.571773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) are desirable nanoparticles for sensing biological analytes due to their photostability and intrinsic near-infrared fluorescence. Previous strategies for generating SWCNT nanosensors have leveraged nonspecific adsorption of sensing modalities to the hydrophobic SWCNT surface that often require engineering new molecular recognition elements. An attractive alternate strategy is to leverage pre-existing molecular recognition of proteins for analyte specificity, yet attaching proteins to SWCNT for nanosensor generation remains challenging. Towards this end, we introduce a generalizable platform to generate protein-SWCNT-based optical sensors and use this strategy to synthesize a hydrogen peroxide (H 2 O 2 ) nanosensor by covalently attaching horseradish peroxidase (HRP) to the SWCNT surface. We demonstrate a concentration-dependent response to H 2 O 2 , confirm the nanosensor can image H 2 O 2 in real-time, and assess the nanosensor's selectivity for H 2 O 2 against a panel of biologically relevant analytes. Taken together, these results demonstrate successful covalent attachment of enzymes to SWCNTs while preserving both intrinsic SWCNT fluorescence and enzyme function. We anticipate this platform can be adapted to covalently attach other proteins of interest including other enzymes for sensing or antibodies for targeted imaging and cargo delivery.
Collapse
|
5
|
Paradisi A, Berto M, Di Giosia M, Mazzali S, Borsari M, Marforio TD, Zerbetto F, Calvaresi M, Orieshyna A, Amdursky N, Bortolotti CA, Biscarini F. Robust Biosensor Based on Carbon Nanotubes/Protein Hybrid Electrolyte Gated Transistors. Chemistry 2023; 29:e202301704. [PMID: 37432093 DOI: 10.1002/chem.202301704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Marcello Berto
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Matteo Di Giosia
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Sara Mazzali
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Tainah Dorina Marforio
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Francesco Zerbetto
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Chemistry Department "Giacomo Ciamician", Alma Mater Studiorum University of Bologna, Via Francesco Selmi 2, 40126, Bologna, Italy
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Fabio Biscarini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| |
Collapse
|
6
|
Fan X, Qian S, Bao Y, Sha H, Liu Y, Cao B. Desorption behavior of antibiotics by microplastics (tire wear particles) in simulated gastrointestinal fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121252. [PMID: 36764374 DOI: 10.1016/j.envpol.2023.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are widely distributed throughout the environment. Upon ingesting MPs, the pollutants that they carry are then desorbed into organisms. This results in the accumulation of various chemicals within the organism. This study systematically examined the mechanism of antibiotic desorption using tire wear particles (TWP) as a carrier of antibiotics in simulated human gastrointestinal fluid and fish intestinal fluid. The findings of this study revealed the formation of cracks, pores, and depressions on the surface of photoaged TWP in an aquatic environment, as well as additional adsorption sites that are more favorable for the attachment of pollutants. Furthermore, the simulated human gastric fluid had a higher desorption rate than that of the fish intestinal fluid. The competition for TWP adsorption sites in the gastrointestinal fluid and the potential dissolution of antibiotics were the primary drivers of the increase in the desorption rate. The desorption rate in the simulated human gastrointestinal fluid was greater than that in the simulated fish intestinal fluid due to the composition of the gastrointestinal fluid. However, the carrying of pollutants by MPs poses a potential threat to human health. This study improves our understanding of TWP toxicity and has significant implications for the development of risk assessments.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China; College of Environment, Hohai University, Nanjing, 210098, China; Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou, 215000, China.
| | - Shenwen Qian
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiquan Bao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Haidi Sha
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
7
|
Aggarwal S, Ikram S. A comprehensive review on bio-mimicked multimolecular frameworks and supramolecules as scaffolds for enzyme immobilization. Biotechnol Bioeng 2023; 120:352-398. [PMID: 36349456 DOI: 10.1002/bit.28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Zhou S, Zhang J, Wang C, Wu C, Zhang X, Yang Z, Zhang X. Extremely black carbon nanotube materials with three-dimensional networks for highly efficient solar-driven vapor generation. NANOSCALE 2022; 14:17438-17446. [PMID: 36385561 DOI: 10.1039/d2nr04857d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Porous CNT sponge (CNTS) and aligned CNT array (CNTA) were used as light absorbers to generate water vapor by harvesting solar energy. To improve the wettability of water on superhydrophobic CNTs and enhance water transport in porous CNT materials, CNTs were decorated with a hydrophilic silk fibroin (SF) protein coating. Water rapidly infiltrates the porous SF-modified CNT materials. Importantly, strong water-SF interactions via the hydrogen bonding between SF protein molecules and CNT sidewalls resulted in a reduction in the vaporization enthalpy of water in the SF-modified CNT materials, which facilitated vapor generation. Additionally, the SF-modified CNT light absorbers exhibit excellent vapor generation performance over a wide pH range of 2 to 12 and good stability. The SF-modified CNT materials thus have the advantage of being potentially applicable to the purification of wastewater and desalination of brackish water with high or low pH values. SF-CNTA light absorbers with vertically aligned CNTs, which are of great benefit in water transport and vapor escape, achieved a water evaporation rate of 3.2 kg m-2 h-1 under one sun irradiation with an energy transfer efficiency of 94%. After a desalination treatment, the concentrations of primary ions in seawater are greatly decreased and meet the requirements for drinking water.
Collapse
Affiliation(s)
- Shenglin Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiapeng Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Chuang Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Chen Wu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Xiangcheng Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| |
Collapse
|
9
|
Liu P, Dai J, Bie C, Li H, Zhang Z, Guo X, Zhu L. Bioaccessibility of Microplastic-Associated Antibiotics in Freshwater Organisms: Highlighting the Impacts of Biofilm Colonization via an In Vitro Protocol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12267-12277. [PMID: 35952376 DOI: 10.1021/acs.est.2c02782] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microplastics in the environment can be colonized by microbes capable of forming biofilms, which may act as reactive coatings to affect the bioaccessibility of pollutants in organisms. This study investigated the dynamic evolution of biofilm colonization on microplastics and its impacts and mechanisms on the bioaccessibility of microplastic-associated sulfamethazine (SMT) via microcosm incubation in surface water and sediment. After 60 days of incubation, the microbial communities formed in microplastics were distinct and more diverse than those untethered in surroundings, and photoaging treatment decreased the affinity of biofilms on microplastics due to decreased hydrophobicity. Biofilm formation further enhanced the desorption and bioaccessibility of microplastic-sorbed SMT in organisms. In vitro experiments indicated that the critical effects were mainly related to the stronger interaction of gastrointestinal components (i.e., pepsin, bovine serum albumin (BSA), and NaT) with biofilm components (e.g., extracellular polymer substances) than with the pure surface of microplastics, which competed for binding sites in microplastics for SMT more significantly. Photoaging decreased the enhancing effects of biofilms due to their lower accumulation in aged microplastics. This study is the first attempt to reveal the role of biofilms in the bioaccessibility of microplastics with associated antibiotics and provide insights into the combined risk of microplastics in the environment.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jiamin Dai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chunyao Bie
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huang Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zixuan Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
10
|
Lin NS, Kitamura M, Saito M, Hirayama K, Ide Y, Umemura K. Distinguishing Antioxidant Molecules with Near-Infrared Photoluminescence of DNA-Wrapped Single-Walled Carbon Nanotubes. ACS OMEGA 2022; 7:28896-28903. [PMID: 36033714 PMCID: PMC9404167 DOI: 10.1021/acsomega.2c02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, two biomolecule solutions were distinguished using the capacity difference in the near-infrared photoluminescence (PL) of single-walled carbon nanotubes (SWNTs). Biosensing techniques using sensitive responses of SWNTs have been intensively studied. When a small amount of an oxidant or reductant solution was injected into the SWNT suspensions, the PL intensity of the SWNTs is significantly changed. However, distinguishing between different molecules remains challenging. In this study, we comparably injected saponin and banana solutions, which are known antioxidant chemicals, into an SWNT suspension. The SWNTs were solubilized by wrapping them with DNA molecules. The results show that 69.1 and 155.2% increases of PL intensities of SWNTs were observed after injection of 20 and 59 μg/mL saponin solutions, respectively. Subsequently, the increase in PL was saturated. With the banana solution, 18.1 and 175.4% increases in PL intensities were observed with 20 and 59 μg/mL banana solutions, respectively. Based on these results, the two antioxidant molecules could be distinguished based on the different PL responses of the SWNTs. In addition, the much higher saturated PL intensities observed with the banana solution suggests that the banana solution increased the capacity of the PL increase for the same SWNT suspension. These results provide helpful information for establishing biosensing applications of SWNTs, particularly for distinguishing chemicals.
Collapse
|
11
|
Wu G, Sun J, Zhang Z, Guo D, Liu J, Liu L. Recent advances in biological applications of nanomaterials through defect engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151647. [PMID: 34785228 DOI: 10.1016/j.scitotenv.2021.151647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
In recent years, defect engineering sprung up in the artificial nanomaterials (NMs) has attracted significant attention, since the physical and chemical properties of NMs could be largely optimized based on the rational control of different defect types and densities. Defective NMs equipped with the improved electric and catalytic ability, would be widely utilized as the photoelectric device and catalysts to alleviate the growing demands of industrial production and environmental treatments. In particular, considering that the features of targeting, adsorptive, loading and optical could be adjusted by the introduction of defects, numerous defective NMs are encouraged to be applied in the biological fields including bacterial inactivation, cancer therapy and so on. And this review is devoted to summarize the recent biological applications of NMs with abundant defects. Moreover, the opportunity of these defective NMs released into the surrounding environment continue to increase, the direct and indirect contact with biological molecules and organisms would be inevitable. Due to its high reactivity and adsorption triggered by defects, NMs tend to exhibit overestimate biological behaviors and effects on organisms. Thus, the sections regarding toxicological effects of NMs with abundant defects are also carried out to supplement the safety assessments of NMs and guide further applications in the industrial production and living.
Collapse
Affiliation(s)
- Guizhu Wu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Jingyu Sun
- College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Ze Zhang
- College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 30006, PR China.
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science & Technology of China, Hefei, Anhui 230026, PR China.
| | - Lu Liu
- College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China.
| |
Collapse
|
12
|
Lin SY, Lin CY. Electrochemically-functionalized CNT/ABTS nanozyme enabling sensitive and selective voltammetric detection of microalbuminuria. Anal Chim Acta 2022; 1197:339517. [PMID: 35168734 DOI: 10.1016/j.aca.2022.339517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/01/2022]
|
13
|
Ouassil N, Pinals RL, Del Bonis-O’Donnell JT, Wang JW, Landry MP. Supervised learning model predicts protein adsorption to carbon nanotubes. SCIENCE ADVANCES 2022; 8:eabm0898. [PMID: 34995109 PMCID: PMC8741178 DOI: 10.1126/sciadv.abm0898] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Engineered nanoparticles are advantageous for biotechnology applications including biomolecular sensing and delivery. However, testing compatibility and function of nanotechnologies in biological systems requires a heuristic approach, where unpredictable protein corona formation prevents their effective implementation. We develop a random forest classifier trained with mass spectrometry data to identify proteins that adsorb to nanoparticles based solely on the protein sequence (78% accuracy, 70% precision). We model proteins that populate the corona of a single-walled carbon nanotube (SWCNT)–based nanosensor and study the relationship between the protein’s amino acid–based properties and binding capacity. Protein features associated with increased likelihood of SWCNT binding include high content of solvent-exposed glycines and nonsecondary structure–associated amino acids. To evaluate its predictive power, we apply the classifier to identify proteins with high binding affinity to SWCNTs, with experimental validation. The developed classifier provides a step toward undertaking the otherwise intractable problem of predicting protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Nicholas Ouassil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L. Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey W. Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
14
|
Cui R, Jong MC, You L, Mao F, Yao D, Gin KYH, He Y. Size-dependent adsorption of waterborne Benzophenone-3 on microplastics and its desorption under simulated gastrointestinal conditions. CHEMOSPHERE 2022; 286:131735. [PMID: 34385031 DOI: 10.1016/j.chemosphere.2021.131735] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are global pollutants with heightened environmental and health concerns in recent years because of their worldwide distribution across aquatic environments, ability to load chemical contaminants and the potential for ingestion by animals, including human. In this study, three commonly used and environmentally detected plastics, i.e. polystyrene, polyethylene, polypropylene with sizes of 550, 250 and 75 μm, plus two submicron-sized polystyrene microplastics (5 and 0.5 μm) were assessed as solid adsorbents for a prevalent UV filter, benzophenone-3 (BP-3). The affinity and process of adsorption exhibited differentials among different sizes and types of MPs. Apparent desorption of BP-3 from MPs under simulated gastrointestinal conditions was not significantly enhanced, which might be due to the presence of the enzyme proteins, indicating potential risk of the contaminants carried by MPs. The desorption of BP-3 from MPs was affected by the size, type of MPs and the components of the gastrointestinal fluid.
Collapse
Affiliation(s)
- Ruofan Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Mui-Choo Jong
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Luhua You
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Feijian Mao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Dingding Yao
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore; National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Karina Yew-Hoong Gin
- National University of Singapore Environment Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore.
| |
Collapse
|
15
|
Recent advances in carbon nanotubes-based biocatalysts and their applications. Adv Colloid Interface Sci 2021; 297:102542. [PMID: 34655931 DOI: 10.1016/j.cis.2021.102542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Enzymes have been incorporated into a wide variety of fields and industries as they catalyze many biochemical and chemical reactions. The immobilization of enzymes on carbon nanotubes (CNTs) for generating nano biocatalysts with high stability and reusability is gaining great attention among researchers. Functionalized CNTs act as excellent support for effective enzyme immobilization. Depending on the application, the enzymes can be tailored using the various surface functionalization techniques on the CNTs to extricate the desirable characteristics. Aiming at the preparation of efficient, stable, and recyclable nanobiocatalysts, this review provides an overview of the methods developed to immobilize the various enzymes. Various applications of carbon nanotube-based biocatalysts in water purification, bioremediation, biosensors, and biofuel cells have been comprehensively reviewed.
Collapse
|
16
|
Singh A, Rai SK, Manisha M, Yadav SK. Immobilized L-ribose isomerase for the sustained synthesis of a rare sugar D-talose. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Nagai Y, Nakamura K, Ohno J, Kawaguchi M, Fujigaya T. Antibody-Conjugated Gel-Coated Single-Walled Carbon Nanotubes as Photothermal Agents. ACS APPLIED BIO MATERIALS 2021; 4:5049-5056. [PMID: 35007053 DOI: 10.1021/acsabm.1c00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photothermal therapy (PTT) using near-infrared (NIR) light is an attractive treatment modality for cancer, in which photothermal agents absorb energy from photons and convert it into thermal energy to lead to cancer cell death. Among the various organic and inorganic materials, single-walled carbon nanotubes (SWCNTs) are promising candidates for NIR photothermal agents due to their strong absorption in this region as well as their high photothermal conversion efficiency. In the development of the SWCNT-based PTT materials, modifications of SWCNTs to offer a stable dispersion for biocompatibility as well as to target the tumor of choice while maintaining their NIR absorption have been required. While modification of SWCNTs through noncovalent methods can be achieved, these modifications can be easily reversed in the body. Contrarily, modifications through covalent attachments, while more desirable, may compromise the NIR absorption characteristics of the SWCNTs. Previously, we reported the development of a synthetic strategy to coat SWCNTs with a cross-linked polymer (i.e., a gel) through a process called CNT Micelle Polymerization and successfully introduced maleimide groups that allowed for postmodification through the ene-thiol reaction without deteriorating the NIR absorption. In this report, we postmodify thiol-containing antibodies (anti-TRP-1, a melanoma specific protein) using maleimide chemistry and find that the SWCNTs conjugated with anti-TRP-1 maintain the characteristic NIR absorption as SWCNTs with dispersion stability. It is estimated that 50 maleimide groups are incorporated in one SWCNT (ca. 280 nm long) and they are modified with 32 TRP-1 fragments. Finally, we successfully use these targeted SWCNTs for the PTT of the melanoma cell line using NIR light (1064 nm; 2 W, 5 min). Our method can be extended to a vast array of specific antibodies as well as other targeting agents.
Collapse
Affiliation(s)
- Yukiko Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun Ohno
- Center for Regenerative Medicine, Fukuoka Dental College, 2 Chome-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Minoru Kawaguchi
- Center for Regenerative Medicine, Fukuoka Dental College, 2 Chome-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|
19
|
Bilal M, Anh Nguyen T, Iqbal HM. Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization – A paradigm shift in biocatalyst design. Coord Chem Rev 2020; 422:213475. [DOI: 10.1016/j.ccr.2020.213475] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Tan H, Sun J, Jin D, Song J, Lei M, Antoshin A, Chen X, Yin M, Qu X, Liu C. Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching. Biomater Sci 2020; 8:3334-3347. [PMID: 32432582 DOI: 10.1039/d0bm00429d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poor mechanical performances severely limit the application of hydrogels in vivo; for example, it is difficult to perform a very common suturing operation on hydrogels during surgery. There is a growing demand to improve the mechanical properties of hydrogels for broadening their clinical applications. Natural polyphenols can match the potential toughening sites in our previously reported PEG-lysozyme (LZM) hydrogel because polyphenols have unique structural units including a hydroxyl group and an aromatic ring that can interact with PEG via hydrogen bonding and form hydrophobic interactions with LZM. By utilizing polyphenols as noncovalent crosslinkers, the resultant PEG-LZM-polyphenol hydrogel presents super toughness and high elasticity in comparison to pristine PEG-LZM with no obvious changes in the initial shape, and it can even withstand the high pressure from sutures. At the same time, the mechanical properties could be widely adjusted by varying the polyphenol concentration. Interestingly, the PEG-LZM-polyphenol hydrogel has a higher water content than other polyphenol-toughened hydrogels, which may better meet the clinical needs for hydrogel materials. Besides, the introduction of polyphenols endows the hydrogel with improved antibacterial and anti-inflammatory abilities. Finally, the PEG-LZM-polyphenol (tannic acid) hydrogel was demonstrated to successfully patch a rabbit myocardial defect by suturing for 4 weeks and improve the wound healing and heart function recovery compared to autologous muscle patches.
Collapse
Affiliation(s)
- Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
This paper summarizes several examples of enzyme immobilization and bioelectrocatalysis at carbon nanotubes (CNTs). CNTs offer substantial improvements on the overall performance of amperometric enzyme electrodes mainly due to their unique structural, mechanical and electronic properties such as metallic, semi-conducting and superconducting electron transport. Unfortunately, their water insolubility restrains the kick-off in some particular fields. However, the chemical functionalization of CNTs, non-covalent and covalent, attracted a remarkable interest over the past several decades boosting the development of electrochemical biosensors and enzymatic fuel cells (EFCs) based on two different types of communications: mediated electron transfer (MET)-type, where the use of redox mediators, small electroactive molecules (freely diffusing or bound to side chains of flexible redox polymers), which are able to shuttle the electrons between the enzyme active site and the electrode (second electron transfer generation system); direct electron transfer (DET)-type between the redox group of the enzyme and the electrode surface (third electron transfer generation system).
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
22
|
Chaudhary H, Fernandes RMF, Gowda V, Claessens MMAE, Furó I, Lendel C. Intrinsically disordered protein as carbon nanotube dispersant: How dynamic interactions lead to excellent colloidal stability. J Colloid Interface Sci 2019; 556:172-179. [PMID: 31445446 DOI: 10.1016/j.jcis.2019.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022]
Abstract
The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15-20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Ricardo M F Fernandes
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, P-4169-007 Porto, Portugal.
| | - Vasantha Gowda
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Mireille M A E Claessens
- MESA + Institute for Nanotechnology and Mira Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, the Netherlands
| | - István Furó
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Christofer Lendel
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
23
|
Shan B, Ji Y, Zhong Y, Chen L, Li S, Zhang J, Chen L, Liu X, Chen Y, Yan N, Song Y. Nitrogen-containing three-dimensional biomass porous carbon materials as an efficient enzymatic biosensing platform for glucose sensing. RSC Adv 2019; 9:25647-25654. [PMID: 35530096 PMCID: PMC9070086 DOI: 10.1039/c9ra04008k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous cane vine (wisteria) stem-derived carbon (3D-CVS), which was firstly proposed as novel support material for electrochemical biosensors using loaded biomolecules. Here, an integrated 3D-CVS electrode was fabricated by loading GOD molecule onto a whole piece of 3D-CVS electrode for a glucose biosensor. The morphologies of integrated 3D-CVS and 3D-CVS/GOD electrode were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM results show the 3D macroporous structure of the integrated 3D-CVS electrode. TEM results show that there are some micro-holes and defects in the 3D-CVS electrode. Electrochemical behaviors and electrocatalytic performance of integrated 3D-CVS/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scanning rate on the electrochemical response of biosensors have been studied in detail. The glucose biosensor showed a wide linear range from 0.58 μM to 16 mM, with a high sensitivity of 86.17 μA mM-1 and a low detection limit of 0.19 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and nice stability.
Collapse
Affiliation(s)
- Baixi Shan
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Yanhua Ji
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Youbao Zhong
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Lai Chen
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Shanshan Li
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Liling Chen
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Xuan Liu
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Yuan Chen
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 PR China
| | - Yonggui Song
- Laboratory Animal Science and Technology Center, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine 1688 Meiling Road Nanchang 330006 PR China +86 791 87802135 +86 791 87802135
| |
Collapse
|
24
|
Li LJ, Xia WJ, Ma GP, Chen YL, Ma YY. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express 2019; 9:112. [PMID: 31332555 PMCID: PMC6646445 DOI: 10.1186/s13568-019-0835-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/06/2019] [Indexed: 01/25/2023] Open
Abstract
Cellulase has many potential applications in ethanol production, extraction of medicinal ingredients, food, brewing, oil exploration, environmental protection. However, the widespread use of cellulase is limited by its relatively high production costs and low biological activity. Therefore, we studied the enzymatic properties and reusability of cellulase immobilized on multiwalled carbon nanotubes and sodium alginate for the first time. The results showed that the optimum temperature and pH of immobilized cellulase was 40 °C and 3.0, respectively. After 1 month of storage at 4 °C, the enzyme activity of immobilized cellulase dropped to 71.2% of the baseline. Immobilized cellulase was proved to be reusable and maintained ~ 70% of its activity after 7 cycles of repeated use. Versus free cellulase, the immobilized cellulase showed good thermal stability, pH resistance, storage stability and reusability, which could be beneficial in large-scale industrial manufacturing processes.
Collapse
|
25
|
Van den Broeck L, Piluso S, Soultan AH, De Volder M, Patterson J. Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1133-1144. [DOI: 10.1016/j.msec.2019.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/01/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
26
|
Neupane S, Patnode K, Li H, Baryeh K, Liu G, Hu J, Chen B, Pan Y, Yang Z. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12133-12141. [PMID: 30839195 DOI: 10.1021/acsami.9b01077] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biocatalysis of large-sized substrates finds wide applications. Immobilizing the involved enzymes on solid supports improves biocatalysis yet faces challenges such as enzyme structural perturbation, leaching, and low cost-efficiencies, depending on immobilization strategies/matrices. Carbon nanotubes (CNTs) are attractive matrices but challenged by enzyme leaching (physical adsorption) or perturbation (covalent linking). Zeolitic imidazolate frameworks (ZIFs) overcome these issues. However, our recent study [ J. Am. Chem. Soc., 2018, 140, 16032-16036] showed reduced cost-efficiency as enzymes trapped below the ZIF surfaces cannot participate in biocatalysis; the enzyme-ZIF composites are also unstable under acidic conditions. In this work, we demonstrate the feasibility of using ZIFs to immobilize enzymes on CNT surfaces on two model enzymes, T4 lysozyme and amylase, both of which showed negligible leaching and retained catalytic activity under neutral and acidic conditions. To better understand the behavior of enzymes on CNTs and CNT-ZIF, we characterized enzyme orientation on both matrices using site-directed spin-labeling (SDSL)-electron paramagnetic resonance (EPR), which is immune to the complexities caused by CNT and ZIF background signals and enzyme-matrix interactions. Our structural investigations showed enhanced enzyme exposure to the solvent compared to enzymes in ZIFs alone; orientation of enzymes in matrices itself is directly related to substrate accessibility and, therefore, essential for understanding and improving catalytic efficiency. To the best of our knowledge, this is the first time ZIFs and one-pot synthesis are employed to anchor large-substrate enzymes on CNT surfaces for biocatalysis. This is also the first report of enzyme orientation on the CNT surface and upon trapping in CNT-ZIF composites. Our results are essential for guiding the rational design of CNT-ZIF combinations to improve enzyme stabilization, loading capacity, and catalytic efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinlian Hu
- Institute of Textiles and Clothing , The Hong Kong Polytechnic University , Kowloon 999077 , Hong Kong , China
| | | | | | | |
Collapse
|
27
|
Dunakey SJG, Coyle BL, Thomas A, Xu M, Swift BJF, Baneyx F. Selective Labeling and Decoration of the Ends and Sidewalls of Single-Walled Carbon Nanotubes Using Mono- and Bispecific Solid-Binding Fluorescent Proteins. Bioconjug Chem 2019; 30:959-965. [PMID: 30816696 DOI: 10.1021/acs.bioconjchem.9b00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simple and robust strategies for the noncovalent functionalization of carbon nanostructures with proteins are of considerable interest in hybrid nanomaterials synthesis, part-to-part assembly, and biosensor development. Here, we show that fusion of the Car9 and Car15 carbon-binding peptides to the C-termini of the sfGFP and mCherry fluorescent proteins enables selective labeling of the ends or the sidewalls of single walled carbon nanotubes. By installing a gold-binding peptide or a single cysteine residue in carbon-binding variants of sfGFP, we further produce heterobifunctional solid-binding proteins that support the decoration of nanotubes sidewalls or termini with gold nanoparticles. The approach described here is generic and should prove useful for the controlled assembly of other hybrid materials.
Collapse
Affiliation(s)
- Sonja J G Dunakey
- Department of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98195 , United States
| | - Brandon L Coyle
- Department of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98195 , United States
| | - Alexander Thomas
- Department of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98195 , United States
| | - Meng Xu
- Department of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98195 , United States
| | - Brian J F Swift
- Department of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98195 , United States
| | - François Baneyx
- Department of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98195 , United States
| |
Collapse
|
28
|
Ebrahim-Habibi MB, Ghobeh M, Mahyari FA, Rafii-Tabar H, Sasanpour P. An investigation into non-covalent functionalization of a single-walled carbon nanotube and a graphene sheet with protein G:A combined experimental and molecular dynamics study. Sci Rep 2019; 9:1273. [PMID: 30718580 PMCID: PMC6362288 DOI: 10.1038/s41598-018-37311-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Investigation of non-covalent interaction of hydrophobic surfaces with the protein G (PrG) is necessary due to their frequent utilization in immunosensors and ELISA. It has been confirmed that surfaces, including carbonous-nanostructures (CNS) could orient proteins for a better activation. Herein, PrG interaction with single-walled carbon nanotube (SWCNT) and graphene (Gra) nanostructures was studied by employing experimental and MD simulation techniques. It is confirmed that the PrG could adequately interact with both SWCNT and Gra and therefore fine dispersion for them was achieved in the media. Results indicated that even though SWCNT was loaded with more content of PrG in comparison with the Gra, the adsorption of the PrG on Gra did not induce significant changes in the IgG tendency. Several orientations of the PrG were adopted in the presence of SWCNT or Gra; however, SWCNT could block the PrG-FcR. Moreover, it was confirmed that SWCNT reduced the α-helical structure content in the PrG. Reduction of α-helical structure of the PrG and improper orientation of the PrG-SWCNT could remarkably decrease the PrG tendency to the Fc of the IgG. Importantly, the Gra could appropriately orient the PrG by both exposing the PrG-FcR and also by blocking the fragment of the PrG that had tendency to interact with Fab in IgG.
Collapse
Affiliation(s)
- Mohammad-Bagher Ebrahim-Habibi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Ebrahim-Habibi MB, Ghobeh M, Aghakhani Mahyari F, Rafii-Tabar H, Sasanpour P. Protein G selects two binding sites for carbon nanotube with dissimilar behavior; a molecular dynamics study. J Mol Graph Model 2018; 87:257-267. [PMID: 30594774 DOI: 10.1016/j.jmgm.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Study of nanostructure-protein interaction for development of various types of nano-devices is very essential. Among carbon nanostructures, carbon nanotube (CNT) provides a suitable platform for functionalization by proteins. Previous studies have confirmed that the CNT induces changes in the protein structure. METHODS Molecular dynamics (MD) simulation study was employed to illustrate the changes occurring in the protein G (PGB) in the presence of a CNT. In order to predict the PGB surface patches for the CNT, Autodock tools were utilized. RESULTS Docking results indicate the presence of two different surface patches with diverse amino acids: the dominant polar residues in the first (PGB-CNT1) and the aromatic residues in the second (PGB-CNT2) surface patch. Displacement of amino acids in the PGB-CNT2 complex occurred during the simulation and it caused an increase in its stability at the end of simulation. The amino acids' displacements diminished the PGB α-helix structure by breakage of hydrogen bonds and generated more transient structures. Principal component analysis determined that the interaction of the CNT with the second surface patch of the PGB raised the extent and modes of the PGB motions. In contrast, insignificant structural changes induced in the PGB while the CNT bonded through the first surface patch. CONCLUSION Even though neither of the PGB-CNT complexes could prevent structural changes in the PGB, development of the PGB-CNT1 complex induce slight structural changes in its fragment of crystallizable receptor (FCR). Dissimilar structural changes induced in the PGB-CNT complexes are possibly related to various characteristics of the PGB binding sites.
Collapse
Affiliation(s)
- Mohammad-Bagher Ebrahim-Habibi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
30
|
Chittepu VCSR, Kalhotra P, Gallardo-Velázquez T, Robles-de la Torre RR, Osorio-Revilla G. Designed Functional Dispersion for Insulin Protection from Pepsin Degradation and Skeletal Muscle Cell Proliferation: In Silico and In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E852. [PMID: 30347680 PMCID: PMC6215209 DOI: 10.3390/nano8100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
Abstract
Functionalized single-walled carbon nanotubes with polyethylene glycol (PEGylated SWCNTs) are a promising nanomaterial that recently has emerged as the most attractive "cargo" to deliver chemicals, peptides, DNA and RNAs into cells. Insulin therapy is a recommended therapy to treat diabetes mellitus despite its side effects. Recently, functional dispersion made up of bioactive peptides, bioactive compounds and functionalized carbon nanomaterials such as PEGylated SWCNTs have proved to possess promising applications in nanomedicine. In the present study, molecular modeling simulations are utilized to assist in designing insulin hormone-PEGylated SWCNT composites, also called functional dispersion; to achieve this experimentally, an ultrasonication tool was utilized. Enzymatic degradation assay revealed that the designed functional dispersion protects about 70% of free insulin from pepsin. In addition, sulforhodamine B (SRB) assay, the quantification of insulin and glucose levels in differentiated skeletal muscle cell supernatants, reveals that functional dispersion regulates glucose and insulin levels to promote skeletal muscle cell proliferation. These findings offer new perspectives for designed functional dispersion, as potential pharmaceutical preparations to improve insulin therapy and promote skeletal muscle cell health.
Collapse
Affiliation(s)
- Veera C S R Chittepu
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico.
| | - Poonam Kalhotra
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico.
| | - Tzayhri Gallardo-Velázquez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, CP. Ciudad de Mexico 11340, Mexico.
| | - Raúl René Robles-de la Torre
- Centro de Investigación en Biotecnología Aplicada CIBA, Instituto Politécnico Nacional, Carretera Estatal, Tecuexcomac-Tepetitla, Km 1.5, CP. Tlaxcala 90700, Mexico.
| | - Guillermo Osorio-Revilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, CP. Ciudad de Mexico 07738, Mexico.
| |
Collapse
|
31
|
Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Int J Biol Macromol 2018; 118:1833-1847. [DOI: 10.1016/j.ijbiomac.2018.07.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
|
32
|
Javed I, Yu T, Peng G, Sánchez-Ferrer A, Faridi A, Kakinen A, Zhao M, Mezzenga R, Davis TP, Lin S, Ke PC. In Vivo Mitigation of Amyloidogenesis through Functional-Pathogenic Double-Protein Coronae. NANO LETTERS 2018; 18:5797-5804. [PMID: 30088935 DOI: 10.1021/acs.nanolett.8b02446] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloid diseases are global epidemics with no cure available. Herein, we report a first demonstration of in vivo mitigation of amyloidogenesis using biomimetic nanotechnology. Specifically, the amyloid fragments (ba) of β-lactoglobulin, a whey protein, were deposited onto the surfaces of carbon nanotubes (baCNT), which subsequently sequestered human islet amyloid polypeptide (IAPP) through functional-pathogenic double-protein coronae. Conformational changes at the ba-IAPP interface were studied by Fourier transform infrared, circular dichroism, and X-ray scattering spectroscopies. baCNT eliminated the toxic IAPP species from zebrafish embryos, as evidenced by the assays of embryonic development, cell morphology, hatching, and survival as well as suppression of oxidative stress. In addition to IAPP, baCNT also displayed high potency against the toxicity of amyloid-β, thereby demonstrating the broad applicability of this biomimetic nanotechnology and the use of an embryonic zebrafish model for the high-throughput screening of a range of amyloidogenesis and their inhibitors in vivo.
Collapse
Affiliation(s)
- Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Tianyu Yu
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Guotao Peng
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Antoni Sánchez-Ferrer
- Department of Health Sciences & Technology , ETH Zurich , Schmelzbergstrasse 9 , LFO, E23, 8092 Zurich , Switzerland
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Mei Zhao
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology , ETH Zurich , Schmelzbergstrasse 9 , LFO, E23, 8092 Zurich , Switzerland
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Sijie Lin
- Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
33
|
Tan S, Wang J, Han Q, Liang Q, Ding M. A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Mikrochim Acta 2018; 185:316. [PMID: 29876662 DOI: 10.1007/s00604-018-2846-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
Abstract
A novel polydopamine coated three-dimensional porous graphene aerogel sorbent carrying immobilized titanium(IV) ions (denoted as Ti4+@PDA@GA) was fabricated without using an organic solvent. The material is shown to be a viable carbon foam type of monolithic sorbent for selective lab-in-syringe enrichment of phosphoproteins and phosphopeptides. The phosphoproteins can be separated from a sample by aspiration and then bind to the sorbent. The analytes then can be dispensed within 5 min. The weight percent of titanium in the monolith typically is 14%, and the absorption capacities for the model proteins β-casein and κ-casein are 1300 and 1345 mg g-1, respectively. The absorption capacities for nonphosphoproteins are much smaller, typically 160 mg g-1 for β-lactoglobulin, 125 mg g-1 for bovine serum, and 4.8 mg g-1 for lysozyme. The results demonstrate that the selectivity for phosphoproteins was excellent on multiple biological samples including standard protein mixtures, spiked human blood serum, and drinking milk. The selective enrichment of phosphopeptides also makes the method a promising tool in phosphoproteomics. Graphical abstract Schematic of a polydopamine coated three-dimensional porous graphene aerogel for immobilization of titanium(IV) ions. The material served as a monolithic sorbent for selective enrichment of phosphopeptides and phosphoproteins from biological samples. The enrichment process can be carried out conveniently using a lab-in-syringe way.
Collapse
Affiliation(s)
- Siyuan Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jundong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Wang D, Meng L, Fei Z, Hou C, Long J, Zeng L, Dyson PJ, Huang P. Multi-layered tumor-targeting photothermal-doxorubicin releasing nanotubes eradicate tumors in vivo with negligible systemic toxicity. NANOSCALE 2018; 10:8536-8546. [PMID: 29694478 DOI: 10.1039/c8nr00663f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Multi-layered single-walled carbon nanotubes, termed SWNT@BSA@Au-S-PEG-FA@DOX, which integrate photothermal therapy with small molecule drug delivery, were prepared using a facile layer-by-layer assembly process. Oxidized and cut single-walled carbon nanotubes (SWNTs) were coated with bovine serum albumin (BSA) to provide abundant active sites for the nucleation of Au seeds, which are subsequently converted into gold nanoparticles (Au NPs) by in situ reduction. The resulting SWNT@BSA@Au material exhibits ideal photothermal properties. Further modification of the nanomaterial with folic acid terminated-polyglycol (FA-PEG-SH) and subsequent loading with doxorubicin (DOX) afford the SWNT@BSA@Au-S-PEG-FA@DOX. The FA terminated PEG endows the material with high water-dispersibility, biocompatibility and cancer cell selectivity. A high drug loading ratio for DOX of up to 590% was achieved, with the drug release being pH and temperature dependent, adding to the selectivity of the system. High efficacy of the SWNT@BSA@Au-S-PEG-FA@DOX material, when combined with photothermal therapy (irradiation of the tumor with an 808 nm laser, 1 W cm-2 for 5 min, 24 h after systemic injection of the nanomedicine), was demonstrated in vivo, resulting in complete tumor eradication. Remarkably, the side effects are negligible with only minor damage to normal tissues including the liver and kidneys being observed.
Collapse
Affiliation(s)
- Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Di Giosia M, Valle F, Cantelli A, Bottoni A, Zerbetto F, Calvaresi M. C 60 Bioconjugation with Proteins: Towards a Palette of Carriers for All pH Ranges. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E691. [PMID: 29702620 PMCID: PMC5978068 DOI: 10.3390/ma11050691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
The high hydrophobicity of fullerenes and the resulting formation of aggregates in aqueous solutions hamper the possibility of their exploitation in many technological applications. Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the physicochemical properties of the carbon nanostructure. The unique photophysical and photochemical properties of fullerenes are then fully accessible for applications in nanomedicine, sensoristic, biocatalysis and materials science fields. However, proteins are not universal carriers. Their stability depends on the biological conditions for which they have evolved. Here we present two model systems based on pepsin and trypsin. These proteins have opposite net charge at physiological pH. They recognize and disperse C60 in water. UV-Vis spectroscopy, zeta-potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed and stable in a wide range of pH’s and ionic strengths. A previously validated modelling approach identifies the protein-binding pocket involved in the interaction with C60. Computational predictions, combined with experimental investigations, provide powerful tools to design tailor-made C60@proteins bioconjugates for specific applications.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Consiglio Nazionale delle Ricerche, via P. Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Andrea Bottoni
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
36
|
Davis TA, Holland LA. Peptide Probe for Multiwalled Carbon Nanotubes: Electrophoretic Assessment of the Binding Interface and Evaluation of Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11311-11318. [PMID: 29468871 DOI: 10.1021/acsami.8b00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Noncovalent interactions of peptides and proteins with carbon nanotubes play a key role in sensing, dispersion, and biocompatibility. Advances in these areas require that the forces which contribute to physical adsorption are understood in order that the carbon nanotubes present a degree of functionalization appropriate to the desired application. Affinity analyses of peptides are employed to evaluate the role of tryptophan and arginine residues in physical adsorption to carboxylated multiwalled carbon nanotubes. Peptides containing arginine and tryptophan, WR(W) n, are used with affinity capillary electrophoresis to identify factors that lead to the formation of peptide-carbon nanotube complexes. The effects of changing the amino acid composition and residue length are evaluated by measuring dissociation constants. Electrostatic interactions contribute significantly to complexation, with the strongest interaction observed using the peptide WRWWWW and carboxylated carbon nanotube. Stronger interaction is observed when the tryptophan content is successively increased as follows: WR(W)4 > WR(W)3 > WR(W)2 > WRW > WR. However, as observed with polytryptophan (W5, W4, W3, and W2), removing the arginine residue significantly reduces the interaction with carbon nanotubes. Increasing the arginine content to WRWWRW does not improve binding, whereas replacing the arginine residue in WRWWWW with lysine (WKWWWW) reveals that lysine also contributes to surface adsorption, but not as effectively as arginine. These observations are used to guide a search of the primary sequence of lysozyme to identify short regions in the peptide that contain a single cationic residue and two aromatic residues. One candidate peptide sequence (WMCLAKW) from this search is analyzed by capillary electrophoresis. The dissociation constant of carboxylated multiwalled carbon nanotubes is measured for the peptide, WMCLAKW, to demonstrate the utility of affinity capillary electrophoresis analysis.
Collapse
Affiliation(s)
- Tyler A Davis
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| |
Collapse
|
37
|
Sloan AWN, Santana-Pereira ALR, Goswami J, Liles MR, Davis VA. Single-Walled Carbon Nanotube Dispersion in Tryptic Soy Broth. ACS Macro Lett 2017; 6:1228-1231. [PMID: 35650799 DOI: 10.1021/acsmacrolett.7b00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has been little research on the dispersion of carbon nanotubes in dispersions of standard microbiological media. We report that tryptic soy broth (TSB) containing casein digest disperses single-walled carbon nanotubes (SWNT) at concentrations similar to those achieved in lysozyme (LSZ), one of the best known biomolecular SWNT dispersants. Similar to LSZ, the proposed mechanism for SWNT dispersion in TSB is favorable π-π stacking interactions with l-tryptophan. This is supported by similar SWNT concentrations in both LSZ and TSB supernatants, and the absence of appreciable dispersion in TSB that does not contain a source of l-tryptophan. Since l-tryptophan alone is insufficient to enable dispersion, it was previously hypothesized that LSZ's macromolecular structure created steric hindrance that was critical for SWNT dispersion. These new results show that intermediately sized l-tryptophan containing species can also enable dispersion. In addition, since TSB is a commonly used growth medium for microbiological research, its dispersive ability presents new research avenues for studying the effect of SWNT on prokaryotic cells without the need to oxidize SWNT or add dispersants that may induce microbial stress.
Collapse
Affiliation(s)
- Arthur W. N. Sloan
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Alinne L. R. Santana-Pereira
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Joyanta Goswami
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Mark R. Liles
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Virginia A. Davis
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| |
Collapse
|
38
|
Catalase-modified gold nanoparticles: Determination of the degree of protein adsorption by gel electrophoresis. Colloids Surf B Biointerfaces 2017; 159:533-539. [DOI: 10.1016/j.colsurfb.2017.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/24/2017] [Accepted: 08/12/2017] [Indexed: 11/24/2022]
|
39
|
Yu Y, Sun H, Gilmore K, Hou T, Wang S, Li Y. Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32452-32462. [PMID: 28859474 DOI: 10.1021/acsami.7b05478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted considerable attention owing to their applications in various fields such as biotechnology and biomedicine. Recently, aggregated SWCNTs have shown more significant effects on the treatment of methamphetamine addiction (Nat. Nanotech. 2016, 11, 613). However, the mechanisms underlying these actions are unclear. By using all-atom molecular dynamics simulations, we investigate the effects of single and aggregated SWCNTs (single-(10,10)CNT, aggregated-7-(10,10)CNTs, and single-(35,35)CNT with the same diameter as that of the aggregated one) on the activity of dopamine-related proteins [tyrosine hydroxylase (TyrOH) and dopamine transporter (DAT), which are related to the synthesis and transport of dopamine, respectively]. We find that both TyrOH and DAT can adsorb onto these SWCNTs. For TyrOH, the aggregated-7-(10,10)CNTs mainly affect the conformation of the active site of the protein, and hence, they are more effective in inhibiting the expression of TyrOH. For DAT, our results suggest that the aggregated-7-(10,10)CNTs allow DAT to maintain an outward-facing conformation and hence are favorable to the reuptake of dopamine. The binding of a dopamine reuptake inhibitor, [3H]-WIN35,428, to DAT is significantly disrupted by aggregated-7-(10,10)CNTs and hence improve the ability to transport dopamine. Our results provide the dynamic interactions of proteins with single/aggregated SWCNTs, which illustrate the mechanism of aggregated SWCNTs for the treatment of drug addiction.
Collapse
Affiliation(s)
- Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Keith Gilmore
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Suidong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| |
Collapse
|
40
|
Nii D, Miyachi M, Shimada Y, Nozawa Y, Ito M, Homma Y, Ikehira S, Yamanoi Y, Nishihara H, Tomo T. Conjugates between photosystem I and a carbon nanotube for a photoresponse device. PHOTOSYNTHESIS RESEARCH 2017; 133:155-162. [PMID: 27864658 DOI: 10.1007/s11120-016-0324-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Photosystem I (PS I) is a large pigment-protein complex embedded in the thylakoid membranes that performs light-driven electron transfer across the thylakoid membrane. Carbon nanotubes exhibit excellent electrical conductivities and excellent strength and stiffness. In this study, we generated PSI-carbon nanotube conjugates dispersed in a solution aimed at application in artificial photosynthesis. PS I complexes in which a carbon nanotube binding peptide was introduced into the middle of the PsaE subunit were conjugated on a single-walled carbon nanotube, orienting the electron acceptor side to the nanotube. Spectral and photoluminescence analysis showed that the PS I is bound to a single-walled carbon nanotube, which was confirmed by transmission electron microscopy. Photocurrent observation proved that the photoexcited electron originated from PSI and transferred to the carbon nanotube with light irradiation, which also confirmed its orientated conjugation. The PS I-carbon nanotube conjugate will be a useful nano-optoelectronic device for the development of artificial systems.
Collapse
Affiliation(s)
- Daisuke Nii
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mariko Miyachi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichiro Shimada
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yosuke Nozawa
- Department of Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masahiro Ito
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshikazu Homma
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shu Ikehira
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
41
|
Saint-Cricq M, Carrete J, Gaboriaud C, Gravel E, Doris E, Thielens N, Mingo N, Ling WL. Human Immune Protein C1q Selectively Disaggregates Carbon Nanotubes. NANO LETTERS 2017; 17:3409-3415. [PMID: 28530824 DOI: 10.1021/acs.nanolett.7b00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We atomistically compute the change in free energy upon binding of the globular domain of the complement protein C1q to carbon nanotubes (CNTs) and graphene in solution. Our modeling results imply that C1q is able to disaggregate and disperse bundles of large diameter multiwalled CNTs but not those of thin single-walled CNTs, and we validate this prediction with experimental observations. The results support the view of a strong binding with potential implications for the understanding of the immune response and biomedical applications of graphitic nanomaterials.
Collapse
Affiliation(s)
- M Saint-Cricq
- Université Grenoble Alpes, CEA LITEN , F-38000 Grenoble, France
| | - J Carrete
- Université Grenoble Alpes, CEA LITEN , F-38000 Grenoble, France
| | - C Gaboriaud
- Université Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble, France
| | - E Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - E Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay , 91191 Gif-sur-Yvette, France
| | - N Thielens
- Université Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble, France
| | - N Mingo
- Université Grenoble Alpes, CEA LITEN , F-38000 Grenoble, France
| | - W L Ling
- Université Grenoble Alpes, CEA, CNRS, IBS , F-38000 Grenoble, France
| |
Collapse
|
42
|
Liu Y, Guo F, Hu J, Liu H, Hu Y. Molecular transport through mixed matrix membranes: A time-dependent density functional approach. AIChE J 2017. [DOI: 10.1002/aic.15805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Fangyuan Guo
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jun Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Ying Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
43
|
Kubie L, Amori AR, Chakraborty S, Bren KL, Krauss TD. Photoinduced charge separation in single-walled carbon nanotube/protein integrated systems. NANOSCALE HORIZONS 2017; 2:163-166. [PMID: 32260660 DOI: 10.1039/c6nh00172f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zinc-substituted cytochrome c (Zn-cyt c) is noncovalently bound to single-walled carbon nanotubes (SWNTs), causing the Zn-cyt c fluorescence to be quenched by up to 95%, primarily due to photoinduced charge transfer. Deposition of Zn-cyt c/SWNT films onto conductive oxides allows for harvesting of photoexcited electrons with an internal quantum efficiency of over 5%.
Collapse
Affiliation(s)
- Lenore Kubie
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | |
Collapse
|
44
|
Antonucci A, Kupis-Rozmysłowicz J, Boghossian AA. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11321-11331. [PMID: 28299937 DOI: 10.1021/acsami.7b00810] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The exquisite structural and optical characteristics of single-walled carbon nanotubes (SWCNTs), combined with the tunable specificities of proteins and peptides, can be exploited to strongly benefit technologies with applications in fields ranging from biomedicine to industrial biocatalysis. The key to exploiting the synergism of these materials is designing protein/peptide-SWCNT conjugation schemes that preserve biomolecule activity while keeping the near-infrared optical and electronic properties of SWCNTs intact. Since sp2 bond-breaking disrupts the optoelectronic properties of SWCNTs, noncovalent conjugation strategies are needed to interface biomolecules to the nanotube surface for optical biosensing and delivery applications. An underlying understanding of the forces contributing to protein and peptide interaction with the nanotube is thus necessary to identify the appropriate conjugation design rules for specific applications. This article explores the molecular interactions that govern the adsorption of peptides and proteins on SWCNT surfaces, elucidating contributions from individual amino acids as well as secondary and tertiary protein structure and conformation. Various noncovalent conjugation strategies for immobilizing peptides, homopolypeptides, and soluble and membrane proteins on SWCNT surfaces are presented, highlighting studies focused on developing near-infrared optical sensors and molecular scaffolds for self-assembly and biochemical analysis. The analysis presented herein suggests that though direct adsorption of proteins and peptides onto SWCNTs can be principally applied to drug and gene delivery, in vivo imaging and targeting, or cancer therapy, nondirect conjugation strategies using artificial or natural membranes, polymers, or linker molecules are often better suited for biosensing applications that require conservation of biomolecular functionality or precise control of the biomolecule's orientation. These design rules are intended to provide the reader with a rational approach to engineering biomolecule-SWCNT platforms, broadening the breadth and accessibility of both wild-type and engineered biomolecules for SWCNT-based applications.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland
| | - Justyna Kupis-Rozmysłowicz
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015-Lausanne, Switzerland
| |
Collapse
|
45
|
Kim BC, Lee I, Kwon SJ, Wee Y, Kwon KY, Jeon C, An HJ, Jung HT, Ha S, Dordick JS, Kim J. Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci Rep 2017; 7:40202. [PMID: 28054656 PMCID: PMC5215464 DOI: 10.1038/srep40202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022] Open
Abstract
CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.
Collapse
Affiliation(s)
- Byoung Chan Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ki Young Kwon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chulmin Jeon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyo Jin An
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Su Ha
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- Green School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
46
|
Ma W, Zhang F, Li L, Chen S, Qi L, Liu H, Bai Y. Facile Synthesis of Mesocrystalline SnO 2 Nanorods on Reduced Graphene Oxide Sheets: An Appealing Multifunctional Affinity Probe for Sequential Enrichment of Endogenous Peptides and Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35099-35105. [PMID: 27983778 DOI: 10.1021/acsami.6b14597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel multifunctional composite comprising mesocrystalline SnO2 nanorods (NRs) vertically aligned on reduced graphene oxide (rGO) sheets was synthesized and developed for sequential capture of endogenous peptides and phosphopeptides. With the hydrophobicity of rGO and high affinity of SnO2 nanorods, sequential enrichment of endogenous peptides and phosphopeptides could be easily achieved through a modulation of elution buffer. With this multifunctional nanomaterial, 36 peptides were observed from diluted bovine serum albumin (BSA) tryptic digest and 4 phosphopeptides could be selectively captured from β-casein digest. The detection limit of tryptic digest of β-casein was low to 4 × 10-10 M, and the selectivity was up to 1:500 (molar ratio of β-casein and BSA digest). The effectiveness and robustness of rGO-SnO2 NRs in a complex biological system was also confirmed by using human serum as a real sample. Our work is promising for small peptide enrichment and identification especially in complicated biological sample preparation, which also opens a new perspective in the design of multifunctional affinity probes for proteome or peptidome.
Collapse
Affiliation(s)
- Wen Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing, 100871, PR China
| | - Feng Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University , Beijing 100871, PR China
| | - Liping Li
- Department of Chemistry, Capital Normal University , Beijing 100048, PR China
| | - Shuai Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University , Beijing 100871, PR China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University , Beijing 100871, PR China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing, 100871, PR China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing, 100871, PR China
| |
Collapse
|
47
|
Muzi L, Tardani F, La Mesa C, Bonincontro A, Bianco A, Risuleo G. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines. NANOTECHNOLOGY 2016; 27:155704. [PMID: 26926913 DOI: 10.1088/0957-4484/27/15/155704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs' acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.
Collapse
Affiliation(s)
- Laura Muzi
- Dipartimento di Biologia e Biotecnologie 'C Darwin', Sapienza Università di Roma, Italy. CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
48
|
Concentration of lysozyme/single-walled carbon nanotube dispersions. Colloids Surf B Biointerfaces 2016; 139:237-43. [DOI: 10.1016/j.colsurfb.2015.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
49
|
Boyer PD, Ganesh S, Qin Z, Holt BD, Buehler MJ, Islam MF, Dahl KN. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3524-34. [PMID: 26783632 DOI: 10.1021/acsami.5b12602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the modification of native cellular proteins as noncovalent dispersing agents to provide specific transport will open new possibilities to utilize both SWCNT and protein properties for multifunctional subcellular targeting applications. Specifically, nuclear targeting could allow delivery of anticancer therapies, genetic treatments, or DNA to the nucleus.
Collapse
Affiliation(s)
| | | | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
50
|
Kharazian B, Hadipour NL, Ejtehadi MR. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. Int J Biochem Cell Biol 2016; 75:162-74. [PMID: 26873405 DOI: 10.1016/j.biocel.2016.02.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions.
Collapse
Affiliation(s)
- B Kharazian
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - N L Hadipour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - M R Ejtehadi
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Center of Excellence in Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694, Iran
| |
Collapse
|