1
|
Demchenko AP. Excitonic Properties of Organic Dye Aggregates: Contribution of Ukrainian Science. CHEM REC 2024; 24:e202300290. [PMID: 37873897 DOI: 10.1002/tcr.202300290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/08/2023] [Indexed: 10/25/2023]
Abstract
Unexpected discovery that molecules of organic dyes when they form regular structures can change dramatically their light absorption and fluorescence properties were attracting the minds of researchers for more than eight decades. The progress in investigation of this unique phenomenon described in terms of H- and J-aggregation has led to many practical applications. Here the author expresses his personal view on the dramatic story of switching this research area from empirical knowledge to that standing on strong background of molecular exciton theory. The author was a witness of some of these events and acquainted with several great personalities involved. The major trends of future developments are highlighted.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv, 01030, Ukraine
- Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
2
|
Kazantsev RV, Dannenhoffer A, Aytun T, Harutyunyan B, Fairfield DJ, Bedzyk MJ, Stupp SI. Molecular Control of Internal Crystallization and Photocatalytic Function in Supramolecular Nanostructures. Chem 2018; 4:1596-1608. [PMID: 30740552 DOI: 10.1016/j.chempr.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Supramolecular light-absorbing nanostructures are useful building blocks for the design of next-generation artificial photosynthetic systems. Development of such systems requires a detailed understanding of how molecular packing influences the material's optoelectronic properties. We describe a series of crystalline supramolecular nanostructures in which the substituents on their monomeric units strongly affects morphology, ordering kinetics, and exciton behavior. By designing constitutionally-isomeric perylene monoimide (PMI) amphiphiles, the effect of side chain sterics on nanostructure crystallization was studied. Molecules with short amine linked alkyl-tails rapidly crystallize upon dissolution in water, while bulkier tails require the addition of salt to screen electrostatic repulsion and annealing to drive crystallization. A PMI monomer bearing a 3-pentylamine tail was found to possess a unique structure that results in strongly red-shifted absorbance, indicative of charge-transfer exciton formation. This particular supramolecular structure was found to have an enhanced ability to photosensitize a thiomolybdate, [(NH4)2Mo3S13], catalyst to generate hydrogen gas.
Collapse
Affiliation(s)
- Roman V Kazantsev
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA
| | - Adam Dannenhoffer
- Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Taner Aytun
- Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Boris Harutyunyan
- Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Daniel J Fairfield
- Department of Materials Science and Engineering, Evanston, IL 60208, USA
| | - Michael J Bedzyk
- Department of Materials Science and Engineering, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Argonne Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Evanston, IL 60208, USA.,Department of Medicine, Northwestern University, Chicago, IL 60611, USA.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Lead Contact
| |
Collapse
|
3
|
Bricks JL, Slominskii YL, Panas ID, Demchenko AP. Fluorescent J-aggregates of cyanine dyes: basic research and applications review. Methods Appl Fluoresc 2017; 6:012001. [DOI: 10.1088/2050-6120/aa8d0d] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|