1
|
Flór M, Wilkins DM, de la Puente M, Laage D, Cassone G, Hassanali A, Roke S. Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science 2024; 386:eads4369. [PMID: 39446897 DOI: 10.1126/science.ads4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that hydroxide (OH-) donated ~8% more negative charge to the H bond network of water, and hydronium (H3O+) accepted ~4% less negative charge from the H bond network of water. Deuterium oxide (D2O) had ~9% more H bonds compared with water (H2O), and acidic solutions displayed more dominant NQEs than basic ones.
Collapse
Affiliation(s)
- Mischa Flór
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David M Wilkins
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Miguel de la Puente
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2
|
Kurnikov IV, Pereyaslavets L, Kamath G, Sakipov SN, Voronina E, Butin O, Illarionov A, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Ivahnenko I, Chen Y, Lock CB, Levitt M, Kornberg RD, Fain B. Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties. J Chem Theory Comput 2024; 20:1347-1357. [PMID: 38240485 PMCID: PMC11042917 DOI: 10.1021/acs.jctc.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.
Collapse
Affiliation(s)
- Igor V Kurnikov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Leonid Pereyaslavets
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ganesh Kamath
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Serzhan N Sakipov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ekaterina Voronina
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Oleg Butin
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Alexey Illarionov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor Leontyev
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Grzegorz Nawrocki
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Mikhail Darkhovskiy
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Michael Olevanov
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ilya Ivahnenko
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - YuChun Chen
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Christopher B Lock
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Michael Levitt
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Boris Fain
- InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| |
Collapse
|
3
|
Shaik S, Danovich D, Zare RN. Valence Bond Theory Allows a Generalized Description of Hydrogen Bonding. J Am Chem Soc 2023; 145:20132-20140. [PMID: 37664980 PMCID: PMC10510329 DOI: 10.1021/jacs.3c08196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 09/05/2023]
Abstract
This paper describes the nature of the hydrogen bond (HB), B:---H-A, using valence bond theory (VBT). Our analysis shows that the most important HB interactions are polarization and charge transfer, and their corresponding sum displays a pattern that is identical for a variety of energy decomposition analysis (EDA) methods. Furthermore, the sum terms obtained with the different EDA methods correlate linearly with the corresponding VB quantities. The VBT analysis demonstrates that the total covalent-ionic resonance energy (RECS) of the HB portion (B---H in B:---H-A) correlates linearly with the dissociation energy of the HB, ΔEdiss. In principle, therefore, RECS(HB) can be determined by experiment. The VBT wavefunction reveals that the contributions of ionic structures to the HB increase the positive charge on the hydrogen of the corresponding external/free O-H bonds in, for example, the water dimer compared with a free water molecule. This increases the electric field of the external O-H bonds of water clusters and contributes to bringing about catalysis of reactions by water droplets and in water-hydrophobic interfaces.
Collapse
Affiliation(s)
- Sason Shaik
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Danovich
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Richard N. Zare
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Han B, Isborn CM, Shi L. Incorporating Polarization and Charge Transfer into a Point-Charge Model for Water Using Machine Learning. J Phys Chem Lett 2023; 14:3869-3877. [PMID: 37067482 DOI: 10.1021/acs.jpclett.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rigid nonpolarizable water models with fixed point charges have been widely employed in molecular dynamics simulations due to their efficiency and reasonable accuracy for the potential energy surface. However, the dipole moment surface of water is not necessarily well-described by the same fixed charges, leading to failure in reproducing dipole-related properties. Here, we developed a machine-learning model trained against electronic structure data to assign point charges for water, and the resulting dipole moment surface significantly improved the predictions of the dielectric constant and the low-frequency IR spectrum of liquid water. Our analysis reveals that within our atom-centered point-charge description of the dipole moment surface, the intermolecular charge transfer is the major source of the peak intensity at 200 cm-1, whereas the intramolecular polarization controls the enhancement of the dielectric constant. The effects of exact Hartree-Fock exchange in the hybrid density functional on these properties are also discussed.
Collapse
Affiliation(s)
- Bowen Han
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Liang Shi
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
5
|
DFT and TD-DFT study of hydrogen bonded complexes of aspartic acid and n water (n = 1 and 2). J Mol Model 2023; 29:94. [PMID: 36905452 DOI: 10.1007/s00894-023-05500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
CONTEXT Hydrogen bonds (HB) influence the conformational preferences of biomolecules and their optical and electronic properties. The directional interaction of molecules of water can be a prototype to understand the effects of HBs on biomolecules. Among the neurotransmitters (NT), L-aspartic acid (ASP) stands out due to its importance in health and as a precursor of several biomolecules. As it presents different functional groups and readily forms inter- and intramolecular HBs, ASP can be considered a prototype for understanding the behavior of NTs when interacting by HB with other substances. Although several theoretical studies have been performed in the past on isolated ASP and its formed complexes with water, both in gas and liquid phases, using DFT and TD-DFT formalisms, these works did not perform large basis set calculations or study electronic transitions of ASP-water complexes. We investigated the HB interactions in complexes of ASP and water molecules. The results show that the interactions between the carboxylic groups of ASP with water molecules, forming cyclic structures with two HBs, lead to more stable and less polar complexes than other conformers formed between water and the NH2 group. It was observed that there is a relationship between the deviation in the UV-Vis absorption band of the ASP and the interactions of water with the HOMO and LUMO orbitals with the stabilization/destabilization of the S1 state to the S0 of the complexes. However, in some cases, such as 1:1 complex ASP-W2, this analysis may be inaccurate due to small changes in ΔE. METHODS We studied the landscapes of the ground state surface of different conformers of isolated L-ASP and the L-ASP-(H2O)n complexes (n = 1 and 2) using the DFT formalism, with the B3LYP functional, and six different basis sets: 6-31 + + G(d,p), 6-311 + + G(d,p), D95 + + (d,p), D95V + + (d,p), cc-pVDZ, and, cc-pVTZ basis sets. The cc-pVTZ basis set provides the minimum energy of all conformers, and therefore, we performed the analysis with this basis set. We evaluated the stabilization of the ASP and complexes using the minimum ground state energy, corrected by the zero point energy and the interaction energy between the ASP and the water molecules. We also calculated the vertical electronic transitions S1 ← S0, and their properties using the TD-DFT formalism at B3LYP/cc-pVTZ level with the optimized geometries for S0 state with the same basis set. For the analysis of the vertical transitions of isolated ASP and the ASP-(H2O)n complexes, we calculated the electrostatic energy in the S0 and S1 states. We performed the calculations with the Gaussian 09 software package. We used the VMD software package to visualize the geometries and shapes of the molecule and complexes.
Collapse
|
6
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
7
|
Tu Y, Chu W, Shi Y, Zhu W, Zheng Q, Zhao J. High Photoreactivity on a Reconstructed Anatase TiO 2(001) Surface Predicted by Ab Initio Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2022; 13:5766-5775. [PMID: 35723976 DOI: 10.1021/acs.jpclett.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anatase TiO2(001) surface with (4 × 1) reconstruction is proposed to be a highly active catalytic surface. In this work, using time-domain ab initio nonadiabatic molecular dynamics, we reveal that the ridge structure formed by anatase(001) surface reconstruction is the photoreactive site for hole migration and trapping. Moreover, the ridge structure is destroyed by low-coverage CH3OH adsorption, leading to the suppression of its high photoreactivity. However, when the CH3OH coverage is increased and intermolecular hydrogen bonds (H-bonds) form, the ridge structure and its high photoreactivity are restored. Furthermore, the hole trapping dynamics is strongly coherent with intermolecular proton transfer in structures with intermolecular H-bonds. Our study proves that anatase TiO2(001)-(4 × 1) is a highly photoreactive surface where the ridge is the photoreactive site for hole trapping, which is coherent with the proton transfer process.
Collapse
Affiliation(s)
- Youyou Tu
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongliang Shi
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Wenguang Zhu
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qijing Zheng
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and ICQD/Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Abstract
Hydrogen bond charge transfer in water may have far-reaching chemical implications.
Collapse
Affiliation(s)
- Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Kathmann SM. Electric fields and potentials in condensed phases. Phys Chem Chem Phys 2021; 23:23836-23849. [PMID: 34647950 DOI: 10.1039/d1cp03571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electric fields and potentials inside and at the interface of matter are relevant to many branches of physics, chemistry, and biology. Accurate quantification of these fields and/or potentials is essential to control and exploit chemical and physical transformations. Before we understand the response of matter to external fields, it is first important to understand the intrinsic interior and interfacial fields and potentials, both classically and quantum mechanically, as well as how they are probed experimentally. Here we compare and contrast, beginning with the hydrogen atom in vacuum and ending with concentrated aqueous NaCl electrolyte, both classical and quantum mechanical electric potentials and fields. We make contact with experimental vibrational Stark, electrochemical, X-ray, and electron spectroscopic probes of these potentials and fields, outline relevant conceptual difficulties, and underscore the advantage of electron holography as a basis to better understand electrostatics in matter.
Collapse
Affiliation(s)
- Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
10
|
Zeng HJ, Johnson MA. Demystifying the Diffuse Vibrational Spectrum of Aqueous Protons Through Cold Cluster Spectroscopy. Annu Rev Phys Chem 2021; 72:667-691. [PMID: 33646816 DOI: 10.1146/annurev-physchem-061020-053456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ease with which the pH is routinely determined for aqueous solutions masks the fact that the cationic product of Arrhenius acid dissolution, the hydrated proton, or H+(aq), is a remarkably complex species. Here, we review how results obtained over the past 30 years in the study of H+⋅(H2O)n cluster ions isolated in the gas phase shed light on the chemical nature of H+(aq). This effort has also revealed molecular-level aspects of the Grotthuss relay mechanism for positive-charge translocation in water. Recently developed methods involving cryogenic cooling in radiofrequency ion traps and the application of two-color, infrared-infrared (IR-IR) double-resonance spectroscopy have established a clear picture of how local hydrogen-bond topology drives the diverse spectral signatures of the excess proton. This information now enables a new generation of cluster studies designed to unravel the microscopic mechanics underlying the ultrafast relaxation dynamics displayed by H+(aq).
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA;
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA;
| |
Collapse
|
11
|
Charge transfer as a ubiquitous mechanism in determining the negative charge at hydrophobic interfaces. Nat Commun 2020; 11:901. [PMID: 32060273 PMCID: PMC7021814 DOI: 10.1038/s41467-020-14659-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The origin of the apparent negative charge at hydrophobic–water interfaces has fueled debates in the physical chemistry community for decades. The most common interpretation given to explain this observation is that negatively charged hydroxide ions (OH–) bind strongly to the interfaces. Using first principles calculations of extended air–water and oil–water interfaces, we unravel a mechanism that does not require the presence of OH–. Small amounts of charge transfer along hydrogen bonds and asymmetries in the hydrogen bond network due to topological defects can lead to the accumulation of negative surface charge at both interfaces. For water near oil, some spillage of electron density into the oil phase is also observed. The computed surface charge densities at both interfaces is approximately \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-0.015\ {\rm{e}}/{{\rm{nm}}}^{2}$$\end{document}−0.015e∕nm2 in agreement with electrophoretic experiments. We also show, using an energy decomposition analysis, that the electronic origin of this phenomena is rooted in a collective polarization/charge transfer effect. The accumulation of negative charge at hydrophobic–water interfaces has been a source of debate for a long time. Here the authors use ab initio calculations to show that the charge accumulation at air–water and oil–water interfaces is caused by subtle charge transfer processes.
Collapse
|
12
|
Vondracek H, Imoto S, Knake L, Schwaab G, Marx D, Havenith M. Hydrogen-Bonding in Liquid Water at Multikilobar Pressures. J Phys Chem B 2019; 123:7748-7753. [PMID: 31419128 DOI: 10.1021/acs.jpcb.9b06821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-precision THz (30 to 360 cm-1) spectra of bulk liquid water are presented from ambient conditions up to hydrostatic pressures of 10 kbar. In concert with ab initio simulations, this allows us to characterize the molecular-level changes of the H-bond network under solvent stress conditions. Both the experimental and theoretical THz spectra reveal a blue shift in the intermolecular translational mode at 180 cm-1 by 40 cm-1 at 10 kbar and a blue shift together with an intensity increase in the relaxation mode. These changes can be traced back to a pressure-induced increase of the population of so-called short H-bond double donor configurations at the expense of those with longer such intermolecular bonds. Distinct electronic polarization effects are critical to capture the characteristic intensity changes of the THz line shape function. These advances in high-pressure THz spectroscopy open the door to investigate the pressure response of solvation shells and solute-solvent couplings.
Collapse
Affiliation(s)
- Hendrik Vondracek
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Sho Imoto
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Lukas Knake
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II , Ruhr-Universität Bochum , 44780 Bochum , Germany
| |
Collapse
|
13
|
Tabacchi G, Fabbiani M, Mino L, Martra G, Fois E. The Case of Formic Acid on Anatase TiO 2 (101): Where is the Acid Proton? Angew Chem Int Ed Engl 2019; 58:12431-12434. [PMID: 31310450 DOI: 10.1002/anie.201906709] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/20/2023]
Abstract
Carboxylic-acid adsorption on anatase TiO2 is a relevant process in many technological applications. Yet, despite several decades of investigations, the acid-proton localization-either on the molecule or on the surface-is still an open issue. By modeling the adsorption of formic acid on top of anatase(101) surfaces, we highlight the formation of a short strong hydrogen bond. In the 0 K limit, the acid-proton behavior is ruled by quantum delocalization effects in a single potential well, while at ambient conditions, the proton undergoes a rapid classical shuttling in a shallow two-well free-energy profile. This picture, supported by agreement with available experiments, shows that the anatase surface acts like a protecting group for the carboxylic acid functionality. Such a new conceptual insight might help rationalize chemical processes involving carboxylic acids on oxide surfaces.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100, Como, Italy
| | - Marco Fabbiani
- Department of Chemistry and Nanostructured Interfaces and Surfaces NIS interdepartmental centre, University of Torino, via P. Giuria 7, I-10125, Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry and Nanostructured Interfaces and Surfaces NIS interdepartmental centre, University of Torino, via P. Giuria 7, I-10125, Torino, Italy
| | - Gianmario Martra
- Department of Chemistry and Nanostructured Interfaces and Surfaces NIS interdepartmental centre, University of Torino, via P. Giuria 7, I-10125, Torino, Italy
| | - Ettore Fois
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100, Como, Italy
| |
Collapse
|
14
|
Tabacchi G, Fabbiani M, Mino L, Martra G, Fois E. The Case of Formic Acid on Anatase TiO
2
(101): Where is the Acid Proton? Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High TechnologyUniversity of Insubria and INSTM via Valleggio 9 I-22100 Como Italy
| | - Marco Fabbiani
- Department of Chemistry and Nanostructured Interfaces and Surfaces NIS interdepartmental centreUniversity of Torino via P. Giuria 7 I-10125 Torino Italy
| | - Lorenzo Mino
- Department of Chemistry and Nanostructured Interfaces and Surfaces NIS interdepartmental centreUniversity of Torino via P. Giuria 7 I-10125 Torino Italy
| | - Gianmario Martra
- Department of Chemistry and Nanostructured Interfaces and Surfaces NIS interdepartmental centreUniversity of Torino via P. Giuria 7 I-10125 Torino Italy
| | - Ettore Fois
- Department of Science and High TechnologyUniversity of Insubria and INSTM via Valleggio 9 I-22100 Como Italy
| |
Collapse
|
15
|
Imoto S, Marx D. Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis. J Chem Phys 2019; 150:084502. [PMID: 30823759 DOI: 10.1063/1.5080381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The radial distribution functions of liquid water are known to change significantly their shape upon hydrostatic compression from ambient conditions deep into the kbar pressure regime. It has been shown that despite their eye-catching changes, the fundamental locally tetrahedral fourfold H-bonding pattern that characterizes ambient water is preserved up to about 10 kbar (1 GPa), which is the stability limit of liquid water at 300 K. The observed increase in coordination number comes from pushing water molecules into the first coordination sphere without establishing an H-bond, resulting in roughly two such additional interstitial molecules at 10 kbar. THz spectroscopy has been firmly established as a powerful experimental technique to analyze H-bonding in aqueous solutions given that it directly probes the far-infrared lineshape and thus the prominent H-bond network mode around 180 cm-1. We, therefore, set out to assess pressure effects on the THz response of liquid water at 10 kbar in comparison to the 1 bar (0.1 MPa) reference, both at 300 K, with the aim to trace back the related lineshape changes to the structural level. To this end, we employ the instantaneous normal mode approximation to rigorously separate the H-bonding peak from the large background arising from the pronounced librational tail. By exactly decomposing the total molecular dynamics into hindered translations, hindered rotations, and intramolecular vibrations, we find that the H-bonding peak arises from translation-translation and translation-rotation correlations, which are successively decomposed down to the level of distinct local H-bond environments. Our utmost detailed analysis based on molecular pair classifications unveils that H-bonded double-donor water pairs contribute most to the THz response around 180 cm-1, whereas interstitial waters are negligible. Moreover, short double-donor H-bonds have their peak maximum significantly shifted toward higher frequencies with respect to such long H-bonds. In conjunction with an increasing relative population of these short H-bonds versus the long ones (while the population of other water pair classes is essentially pressure insensitive), this explains not only the blue-shift of the H-bonding peak by about 20-30 cm-1 in total from 1 bar to 10 kbar but also the filling of the shallow local minimum of the THz lineshape located in between the network peak and the red-wing of the librational band at 1 bar. Based on the changing populations as a function of pressure, we are also able to roughly estimate the pressure-dependence of the H-bond network mode and find that its pressure response and thus the blue-shifting are most pronounced at low kbar pressures.
Collapse
Affiliation(s)
- Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
16
|
Schran C, Marx D. Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures. Phys Chem Chem Phys 2019; 21:24967-24975. [DOI: 10.1039/c9cp04795f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Quantum simulations reveal strong temperature effects for weak hydrogen bonds and differences in quantum delocalization between various hydrogen-bonded systems.
Collapse
Affiliation(s)
- Christoph Schran
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
17
|
Torii H. Dynamical behavior of molecular partial charges implied by the far-infrared spectral profile of liquid water. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Hofer TS, Hünenberger PH. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration. J Chem Phys 2018; 148:222814. [DOI: 10.1063/1.5000799] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Thomas S. Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Centre for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | | |
Collapse
|
19
|
Law YK, Hassanali AA. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores. J Chem Phys 2018; 148:102331. [PMID: 29544302 DOI: 10.1063/1.5005056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.
Collapse
Affiliation(s)
- Y K Law
- School of Natural Sciences and Mathematics, Indiana University East, Richmond, Indiana 47374, USA
| | - A A Hassanali
- Condensed Matter and Statistical Physics Section, The Abdus Salaam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
20
|
Litman Y, Donadio D, Ceriotti M, Rossi M. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature. J Chem Phys 2018; 148:102320. [PMID: 29544260 DOI: 10.1063/1.5002537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQEs) influence the structural stability and the dynamical properties of these systems. In this work, we explore the impact of NQEs on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We thus perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account the conformational entropy and anharmonicities at finite temperatures. We propose that when adsorption is weak and NQEs on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We then calculate the full contribution of NQEs to the free energies, including also anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared with the harmonic estimates. We also find that the dissociation process has a negligible contribution from tunneling but is dominated by zero point energies, which can enhance the rate of dissociation by three orders of magnitude. Finally we highlight how both temperature and NQEs indirectly impact dipoles and the redistribution of electron density, causing work function changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in the work function provides a possible approach to determine experimentally the most stable configurations of water oligomers on the stepped surfaces.
Collapse
Affiliation(s)
- Yair Litman
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Davide Donadio
- Department of Chemistry, University of California Davis, One Shields Ave., Davis, California 95616, USA
| | - Michele Ceriotti
- Laboratory of Computational Science and Modelling, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
21
|
Gaiduk AP, Gustafson J, Gygi F, Galli G. First-Principles Simulations of Liquid Water Using a Dielectric-Dependent Hybrid Functional. J Phys Chem Lett 2018; 9:3068-3073. [PMID: 29768015 DOI: 10.1021/acs.jpclett.8b01017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We carried out first-principles simulations of liquid water under ambient conditions using a dielectric-dependent hybrid functional, where the fraction of exact exchange is set equal to the inverse of the high-frequency dielectric constant of the liquid. We found excellent agreement with experiment for the oxygen-oxygen partial correlation function at the experimental equilibrium density and 311 ± 3 K. Other structural and dynamical properties, such as the diffusion coefficient, molecular dipole moments, and vibrational spectra, are also in good agreement with experiment. Our results, together with previous findings on electronic properties of the liquid with the same functional, show that the dielectric-dependent hybrid functional accurately describes both the structural and electronic properties of liquid water.
Collapse
Affiliation(s)
- Alex P Gaiduk
- Institute for Molecular Engineering , The University of Chicago , Chicago , Illinois 60637 , United States
- Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffrey Gustafson
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - François Gygi
- Department of Computer Science , University of California , Davis , California 95616 , United States
| | - Giulia Galli
- Institute for Molecular Engineering , The University of Chicago , Chicago , Illinois 60637 , United States
- Materials Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
22
|
|