1
|
Boughelout A, Khiat A, Macaluso R. Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO 3 Thin Films. MATERIALS (BASEL, SWITZERLAND) 2025; 18:887. [PMID: 40004409 PMCID: PMC11857829 DOI: 10.3390/ma18040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol-gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline rhombohedral phase structure (space group R3c) with a tolerance factor of 0.892. By using Rietveld refinement of diffractogram XRD data, crystallographic parameters, such as bond angle, bond length, atom position, unit cell parameters, and electron density measurements were computed. Scanning electron microscopy (SEM) allowed us to assess the homogeneous and smooth surface morphology of the films with a small degree of porosity, while chemical surface composition characterization by X-ray photoelectron spectroscopy (XPS) showed the presence of Bi, Fe, O and the doping element Ba. Absorption measurements allowed us to determine the energy band gap of the films, while photoluminescence measurements have shown the presence of oxygen vacancies, which are responsible for the enhanced photocatalytic activity of the material. Photocatalytic degradation experiments of Methylene Blue (MB), Methyl orange (MO), orange G (OG), Violet and Rhodamine B (RhB) performed on top of BBFO2 thin films under solar light showed the degradation of all pollutants in varying discoloration efficiencies, ranging from 81% (RhB) to 54% (OG), 53% (Violet), 47% (MO) and 43% (MB).
Collapse
Affiliation(s)
- Abderrahmane Boughelout
- Laboratory of Material Physics, Faculty of Physics, University of Sciences and Technology-Houari Bouediene (U.S.T.H.B.), El-Alia, Bab Ezzouar, P.O. Box 32, Algiers DZ-16111, Algeria
- Research Center in Industrial Technologies (CRTI), Cheraga, P.O. Box 64, Algiers DZ-16014, Algeria;
- National Research Centre for Biotechnology, P.O. Box E73, Constantine DZ-25000, Algeria
| | - Abdelmadjid Khiat
- Research Center in Industrial Technologies (CRTI), Cheraga, P.O. Box 64, Algiers DZ-16014, Algeria;
| | - Roberto Macaluso
- Thin Films Laboratory (TFL), Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze (Ed. 9), 90128 Palermo, Italy
| |
Collapse
|
2
|
Hao J, Tan Y, Yuan J, Shang R, Xiang D, Cai K. Structural engineering of Pt-on-Rh hollow nanorods with high-performance peroxidase-like specific activity for colorimetric detection. Dalton Trans 2024; 53:11578-11584. [PMID: 38922335 DOI: 10.1039/d4dt01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The preparation of nanozymes with high specific activity is highly important for various applications. However, only a few nanozymes have specific activities comparable to natural enzymes. Herein, novel Pt-on-Rh hollow nanorods (PtRh HNRs) were developed, in which surface Pt exhibited adjustable dispersity and interior Rh served as the support. The optimized PtRh HNRs demonstrated high-performance peroxidase (POD)-like activity, with a specific activity as high as 1352 U mg-1, which was 3.86 times that of their monometallic Pt counterparts. Density functional theory (DFT) calculations illustrated that the presence of Rh decreased the energy barrier of the rate-determining step. When PtRh HNRs were used as nanozymes in the colorimetric detection of hydrogen peroxide (H2O2) and ascorbic acid (AA), the limits of detection (LODs) were as low as 9.97 μM and 0.039 μM, respectively. The current work highlights a facile and powerful strategy for manufacturing nanozymes with high specific activity and demonstrates that the prepared PtRh HNRs have the potential for analysis and determination.
Collapse
Affiliation(s)
- Jian Hao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Yi Tan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Jincheng Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Rui Shang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Dong Xiang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Kai Cai
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| |
Collapse
|
3
|
Kaur M, Yempally V, Kaur H. Sustainable magnetically recoverable Iridium-coated Fe 3O 4 nanoparticles for enhanced catalytic reduction of organic pollutants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56464-56483. [PMID: 36920618 DOI: 10.1007/s11356-023-26267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The reduction of nitroarenes to aromatic amines is one of the potential pathways to remediate the hazardous impact of toxic nitroarenes on the aquatic environment. Aromatic amines obtained from the reduction of nitroaromatics are not only less toxic than nitroaromatics but also act as important intermediates in the synthesis of dyes, drugs, pigments, herbicides, and polymers. There is a huge demand for the development of cost-effective, and eco-friendly catalysts for the efficient reduction of nitroarenes. In the present study, Fe3O4@trp@Ir nanoparticles were explored as efficient catalysts for the reduction of nitroarenes. Fe3O4@trp@Ir magnetic nanoparticles were fabricated by surface coating of Fe3O4 with tryptophan and iridium by co-precipitation method. As-prepared Fe3O4@trp@Ir nanoparticles are environmentally benign efficient catalysts for reducing organic pollutants such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), and 1-bromo-4-nitrobenzene (1-B-4-NB). The key parameters that affect the catalytic activity like temperature, catalyst loading, and the concentration of reducing agent NaBH4 were optimized. The obtained results proved that Fe3O4@trp@Ir is an efficient catalyst for reducing nitroaromatics at ambient temperature with a minimal catalyst loading of 0.0025%. The complete conversion of 4-nitrophenol to 4-aminophenol took only 20 s with a minimal catalyst loading of 0.0025% and a rate constant of 0.0522 s-1. The high catalytic activity factor (1.040 s-1 mg-1) and high turnover frequency (9 min-1) obtained for Fe3O4@trp@Ir nanocatalyst highlight the possible synergistic effect of the two metals (Fe and Ir). The visible-light photocatalytic degradation of 4-NP was also investigated in the presence of Fe3O4@trp@Ir. The photocatalytic degradation of 4-NP by Fe3O4@trp@Ir is completed in 20 min with 95.15% efficiency, and the rate of photodegradation of 4-NP (0.1507 min-1) is about twice the degradation rate of 4-NP in the dark (0.0755 min-1). The catalyst was recycled and reused for five cycles without significant reduction in the conversion efficiency of the catalyst.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Sector-12, Chandigarh, India
| | - Veeranna Yempally
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Sector-12, Chandigarh, India
| | - Harminder Kaur
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Sector-12, Chandigarh, India.
| |
Collapse
|
4
|
Mergola L, Carbone L, Stomeo T, Del Sole R. Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2060. [PMID: 36903175 PMCID: PMC10004582 DOI: 10.3390/ma16052060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
An environmentally friendly procedure was adopted for the first time to prepare green iridium nanoparticles starting from grape marc extracts. Grape marcs, waste of Negramaro winery production, were subjected to aqueous thermal extraction at different temperatures (45, 65, 80, and 100 °C) and characterized in terms of total phenolic contents, reducing sugars, and antioxidant activity. The results obtained showed an important effect of temperature with higher amounts of polyphenols and reducing sugars and antioxidant activity in the extracts with the increase of temperature. All four extracts were used as starting materials to synthesize different iridium nanoparticles (Ir-NP1, Ir-NP2, Ir-NP3, and Ir-NP4) that were characterized by Uv-Vis spectroscopy, transmission electron microscopy, and dynamic light scattering. TEM analysis revealed the presence of very small particles in all samples with sizes in the range of 3.0-4.5 nm with the presence of a second fraction of larger nanoparticles (7.5-17.0 nm) for Ir-NPs prepared with extracts obtained at higher temperatures (Ir-NP3 and Ir-NP4). Since the wastewater remediation of toxic organic contaminants on catalytic reduction has gained much attention, the application of the prepared Ir-NPs as catalysts towards the reduction of methylene blue (MB), chosen as the organic dye model, was evaluated. The efficient catalytic activity of Ir-NPs in the reduction of MB by NaBH4 was demonstrated and Ir-NP2 was prepared using the extract obtained at 65 °C, showing the best catalytic performance, with a rate constant of 0.527 ± 0.012 min-1 and MB reduction of 96.1% in just six min, with stability for over 10 months.
Collapse
Affiliation(s)
- Lucia Mergola
- Department of Engineering for Innovation, University of Salento, Via per Monteroni Km 1, 73100 Lecce, Italy
| | - Luigi Carbone
- National Nanotechnology Laboratory (NNL), Institute of Nanoscience CNR c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Tiziana Stomeo
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Bersanti 14, Arnesano, 73010 Lecce, Italy
| | - Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, Via per Monteroni Km 1, 73100 Lecce, Italy
| |
Collapse
|
5
|
Yang H, Cao P, Zhang Y, Zhou M, Wang Q, Wang R, Song P, He Y. Construction of WO 3 nanocubes@Loess for rapid photocatalytic degradation of organics in wastewater under sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82297-82308. [PMID: 35752672 DOI: 10.1007/s11356-022-21633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
In nowadays, environmental pollution has been greatly improved, but the development of low-cost and environmentally friendly materials are still challenge in the field of water treatment. Herein, a cheap and eco-friendly natural loess particle (LoP) was used for in situ growth of tungsten trioxide nanocubes (WO3NCs) on its surface via a simple one-pot hydrothermal method, which afforded a stable loess-based photocatalyst (WO3NCs@LoP). It was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) analysis, UV-Vis diffuse reflectance spectra (UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic performances of WO3NCs@LoP were applied to photodegradation of organics under visible-light illumination. It was found that the removal rate of methylene blue (MB) got to 99% within 20 min, which was higher than that of materials, such as pure LoP and WO3NCs. Moreover, the photocatalytic activity of WO3NCs@LoP remained 85% after 9 cycling times, indicating its high stability and reusability. It was suggested that the synergy of the well narrowed band gap and effectual control of e--h+ recombination in WO3NCs@LoP improve its photodegradation efficiency. In summary, using natural minerals (LoP) as carrier, a novel eco-friendly photocatalyst could be explored for photodegradation of organic pollutions in wastewater treatment.
Collapse
Affiliation(s)
- Hua Yang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Peiyu Cao
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yaping Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Meiling Zhou
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Qianqian Wang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Rongmin Wang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Pengfei Song
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yufeng He
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Methylene Blue Dye Photodegradation during Synthesis and Characterization of WO3 Nanoparticles. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/2882048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Semiconductor-based photocatalytic systems have found widespread use in environmental pollution cleanup and renewable energy production. In this study, we synthesized WO3 as a catalyst for the degradation of methylene blue, a thiazine dye, which was used in the previous work. The hydrothermal process is used to create WO3 nanoparticles, which are made from sodium tungstate. When it comes to confirming the nanoparticles, many characterization techniques are employed, including X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-Vis diffuse reflectance spectrometer (DRS), X-ray photoelectron spectroscopy (XPS), and field emission–scanning electron microscope (FE-SEM). The existence of monoclinic crystalline structure is shown by XRD, with the average crystalline size being around 34 nm. FTIR confirms the presence of metal oxides. The pellucid absorption extremity in the UV-Vis region corresponds to the rudimentary absorption of the WO3 semiconductor. FE-SEM confirms square-shaped nanoplates with EDX address the occurrence of elemental tungsten. The photocatalytic activity of WO3 nanoparticles against methylene blue is taken for at different intervals of time that confirms MB’s degradation. Our present work suggests that prepared nanoparticles should be potential for photocatalysts using various industrial dyes.
Collapse
|
7
|
Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Quinson J. Iridium and IrO x nanoparticles: an overview and review of syntheses and applications. Adv Colloid Interface Sci 2022; 303:102643. [PMID: 35334351 DOI: 10.1016/j.cis.2022.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Precious metals are key in various fields of research and precious metal nanomaterials are directly relevant for optics, catalysis, pollution management, sensing, medicine, and many other applications. Iridium based nanomaterials are less studied than metals like gold, silver or platinum. A specific feature of iridium nanomaterials is the relatively small size nanoparticles and clusters easily obtained, e.g. by colloidal syntheses. Progress over the years overcomes the related challenging characterization and it is expected that the knowledge on iridium chemistry and nanomaterials will be growing. Although Ir nanoparticles have been preferred systems for the development of kinetic-based models of nanomaterial formation, there is surprisingly little knowledge on the actual formation mechanism(s) of iridium nanoparticles. Following the impulse from the high expectations on Ir nanoparticles as catalysts for the oxygen evolution reaction in electrolyzers, new areas of applications of iridium materials have been reported while more established applications are being revisited. This review covers different synthetic strategies of iridium nanoparticles and provides an in breadth overview of applications reported. Comprehensive Tables and more detailed topic-oriented overviews are proposed in Supplementary Material, covering synthesis protocols, the historical role or iridium nanoparticles in the development of nanoscience and applications in catalysis.
Collapse
|
9
|
Abdoli M, Manesh AT, Ghaedi M, Aghaie M. Synthesis and Characterization of Photo‐catalyst Ag
2
S/WO
3
and its Application for Crystal Violet Degradation in the Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marzieh Abdoli
- Department of Chemistry Faculty of Science Central Tehran Branch Islamic Azad University Tehran Iran
| | - Afshin Taghva Manesh
- Department of Chemistry Faculty of Science Central Tehran Branch Islamic Azad University Tehran Iran
| | | | - Mehran Aghaie
- Faculty of Chemistry North-Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
10
|
Tao F, Li F, Huang J, Xue Z, Yu C, Cai Z, Pei L. A General Hydrothermal Growth and Photocatalytic Performance of Barium Tin Hydroxide/Tin Dioxide Nanorods. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Feihu Tao
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Feiyang Li
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Jianfeng Huang
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Zeyang Xue
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Chunhu Yu
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Zhengyu Cai
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Lizhai Pei
- School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
- School of Materials Science and Engineering, Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| |
Collapse
|
11
|
Pooja, Goel A. A Highly Ultrafine Core–Shell Ir–Cu Bimetallic Nanoparticles and Their Application in Catalytic Oxidation of Textile Dye, Congo Red, by Hexacyanoferrate(III) Ions: A Kinetic Approach. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421050050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. METALS 2021. [DOI: 10.3390/met11010080] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Along with industrialization and rapid urbanization, environmental remediation is globally a perpetual concept to deliver a sustainable environment. Various organic and inorganic wastes from industries and domestic homes are released into water systems. These wastes carry contaminants with detrimental effects on the environment. Consequently, there is an urgent need for an appropriate wastewater treatment technology for the effective decontamination of our water systems. One promising approach is employing nanoparticles of metal oxides as photocatalysts for the degradation of these water pollutants. Transition metal oxides and their composites exhibit excellent photocatalytic activities and along show favorable characteristics like non-toxicity and stability that also make them useful in a wide range of applications. This study discusses some characteristics of metal oxides and briefly outlined their various applications. It focuses on the metal oxides TiO2, ZnO, WO3, CuO, and Cu2O, which are the most common and recognized to be cost-effective, stable, efficient, and most of all, environmentally friendly for a sustainable approach for environmental remediation. Meanwhile, this study highlights the photocatalytic activities of these metal oxides, recent developments, challenges, and modifications made on these metal oxides to overcome their limitations and maximize their performance in the photodegradation of pollutants.
Collapse
|