1
|
Geetha Sadasivan Nair R, Narayanan Nair AK, Sun S. Density functional theory study of doped coronene and circumcoronene as anode materials in lithium-ion batteries. Sci Rep 2024; 14:15220. [PMID: 38956188 PMCID: PMC11219892 DOI: 10.1038/s41598-024-66099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Density functional theory calculations are carried out to investigate the adsorption properties of Li+ and Li on twenty-four adsorbents obtained by replacement of C atoms of coronene (C24H12) and circumcoronene (C54H18) by Si/N/BN/AlN units. The molecular electrostatic potential (MESP) analysis show that such replacements lead to an increase of the electron-rich environments in the molecules. Li+ is relatively strongly adsorbed on all adsorbents. The adsorption energy of Li+ (Eads-1) on all adsorbents is in the range of - 42.47 (B12H12N12) to - 66.26 kcal/mol (m-C22H12BN). Our results indicate a stronger interaction between Li+ and the nanoflakes as the deepest MESP minimum of the nanoflakes becomes more negative. A stronger interaction between Li+ and the nanoflakes pushes more electron density toward Li+. Li is weakly adsorbed on all adsorbents when compared to Li+. The adsorption energy of Li (Eads-2) on all adsorbents is in the range of - 3.07 (B27H18N27) to - 47.79 kcal/mol (C53H18Si). Assuming the nanoflakes to be an anode for the lithium-ion batteries, the cell voltage (Vcell) is predicted to be relatively high (> 1.54 V) for C24H12, C12H12Si12, B12H12N12, C27H18Si27, and B27H18N27. The Eads-1 data show only a small variation compared to Eads-2, and therefore, Eads-2 has a strong effect on the changes in Vcell.
Collapse
Affiliation(s)
- Remya Geetha Sadasivan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Gong F, Chen Z, Zhao Y, Zhang H, Zeng G, Yao C, Gong L, Zhang Y, Liu J, Wei S. Trifunctional L-Cysteine Assisted Construction of MoO 2/MoS 2/C Nanoarchitecture Toward High-Rate Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307986. [PMID: 38189535 DOI: 10.1002/smll.202307986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Indexed: 01/09/2024]
Abstract
The volume collapse and slow kinetics reaction of anode materials are two key issues for sodium ion batteries (SIBs). Herein, an "embryo" strategy is proposed for synthesis of nanorod-embedded MoO2/MoS2/C network nanoarchitecture as anode for SIBs with high-rate performance. Interestingly, L-cysteine which plays triple roles including sulfur source, reductant, and carbon source can be utilized to produce the sulfur vacancy-enriched heterostructure. Specifically, L-cysteine can combine with metastable monoclinic MoO3 nanorods at room temperature to encapsulate the "nutrient" of MoOx analogues (MoO2.5(OH)0.5 and MoO3·0.5H2O) and hydrogen-deficient L-cysteine in the "embryo" precursor affording for subsequent in situ multistep heating treatment. The resultant MoO2/MoS2/C presents a high-rate capability of 875 and 420 mAh g-1 at 0.5 and 10 A g-1, respectively, which are much better than the MoS2-based anode materials reported by far. Finite element simulation and analysis results verify that the volume expansion can be reduced to 42.8% from 88.8% when building nanorod-embedded porous network structure. Theoretical calculations reveal that the sulfur vacancies and heterointerface engineering can promote the adsorption and migration of Na+ leading to highly enhanced thermodynamic and kinetic reaction. The work provides an efficient approach to develop advanced electrode materials for energy storage.
Collapse
Affiliation(s)
- Feilong Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Zhilin Chen
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Hongge Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Cuijie Yao
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Lihua Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yonghui Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute of University of Surrey, Guildford, Surrey, GU2 7XH, UK
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Shizhong Wei
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
3
|
Esrafili MD, Kadri M. Efficient delivery of anticancer 5-fluorouracil drug by alkaline earth metal functionalized porphyrin-like porous fullerenes: A DFT study. J Mol Graph Model 2023; 120:108403. [PMID: 36669273 DOI: 10.1016/j.jmgm.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Finding and developing effective targeted drug delivery systems has emerged as an attractive approach for treating a wide range of diseases. In the present study, the potential of alkaline earth metal functionalized porphyrin-like porous C24N24 fullerenes for delivering 5-fluorouracil (5FU) anticancer drug is assessed using density functional theory calculations. The goal is to evaluate how the addition of alkaline earth metals to C24N24 enhances the adsorption capabilities of this system towards 5FU drug. The adsorption energies and charge transfers are determined in order to evaluate the strength of the interaction between the 5FU and fullerene surfaces. According to the results, adding alkaline earth metals increases the drug's adsorption energy on the C24N24 fullerene. In all cases, the drug molecule interacts with the metal atom through its CO group. Furthermore, the adsorption strength of the 5FU increases with metal atom size (Ca > Mg > Be), which is connected to the polarizability of these atoms. The adsorption energies of 5FU are shown to be highly sensitive on solvent effects and the acidity of the environment. The adsorption strength of 5FU decreases within the solvent (water), allowing it to be released more easily. The moderate adsorption energies and short desorption times of 5FU imply that it is reversibly adsorbed on the functionalized fullerenes.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| | - Mahtab Kadri
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran
| |
Collapse
|
4
|
3D all boron based porous topological metal for Mg- and Al-ion batteries anode material: A first principle study. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Yang F, Feng X, Zhuo Z, Vallez L, Liu YS, McClary SA, Hahn NT, Glans PA, Zavadil KR, Guo J. Ca2+ Solvation and Electrochemical Solid/Electrolyte Interphase Formation Toward the Multivalent-Ion Batteries. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Kose A, Yuksel N, Ferdi Fellah M. A Density Functional Theory Study on Rechargeable Mg‐ion Batteries: C
20
Fullerene as a Promising Anode Material. ChemistrySelect 2022. [DOI: 10.1002/slct.202202921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmet Kose
- Department of Chemical Engineering Bursa Technical University Mimar Sinan Campus 16310 Bursa Turkey
| | - Numan Yuksel
- Department of Chemical Engineering Bursa Technical University Mimar Sinan Campus 16310 Bursa Turkey
| | - Mehmet Ferdi Fellah
- Department of Chemical Engineering Bursa Technical University Mimar Sinan Campus 16310 Bursa Turkey
| |
Collapse
|
7
|
Esrafili MD, Khan AA. Alkali metal decorated C 60 fullerenes as promising materials for delivery of the 5-fluorouracil anticancer drug: a DFT approach. RSC Adv 2022; 12:3948-3956. [PMID: 35425459 PMCID: PMC8981040 DOI: 10.1039/d1ra09153k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of effective drug delivery vehicles is essential for the targeted administration and/or controlled release of drugs. Using first-principles calculations, the potential of alkali metal (AM = Li, Na, and K) decorated C60 fullerenes for delivery of 5-fluorouracil (5FU) is explored. The adsorption energies of the 5FU on a single AM atom decorated C60 are -19.33, -16.58, and -14.07 kcal mol-1 for AM = Li, Na, and K, respectively. The results, on the other hand, show that up to 12 Li and 6 Na or K atoms can be anchored on the exterior surface of the C60 fullerene simultaneously, each of which can interact with a 5FU molecule. Because of the moderate adsorption energies and charge-transfer values, the 5FU can be simply separated from the fullerene at ambient temperature. Furthermore, the results show that the 5FU may be easily protonated in the target cancerous tissues, which facilitates the release of the drug from the fullerene. The inclusion of solvent effects tends to decrease the 5FU adsorption energies in all 5FU-fullerene complexes. This is the first report on the high capability of AM decorated fullerenes for delivery of multiple 5FU molecules utilizing a C60 host molecule.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh P. O. Box 55136-553 Maragheh Iran
| | - Adnan Ali Khan
- Centre for Computational Materials Science, University of Malakand Chakdara Pakistan
- Department of Chemistry, University of Malakand Chakdara Pakistan
| |
Collapse
|
8
|
Esrafili MD. Ca functionalized N-doped porphyrin-like porous C 60 as an efficient material for storage of molecular hydrogen. J Mol Model 2021; 28:20. [PMID: 34964072 DOI: 10.1007/s00894-021-05015-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
It is widely known that decorating metal atoms on defective carbon nanomaterials is a useful approach to enhance the hydrogen storage capacity of these systems. Herein, density functional theory calculations are used to determine the H2 storage capacity of Ca functionalized nitrogen incorporated defective C60 fullerenes (Ca6C24N24). The strong binding, uniform distribution, and significant positive charges of the Ca atoms make this system effective material for storage of H2. Ca6C24N24 may adsorb a maximum of 6 hydrogen molecules per Ca atom, yielding a total gravimetric density of 7.7 wt %.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| |
Collapse
|
9
|
Esrafili MD, Mousavian P. Sc-functionalized porphyrin-like porous fullerene for CO 2 storage and separation: A first-principles evaluation. J Mol Graph Model 2021; 111:108112. [PMID: 34942495 DOI: 10.1016/j.jmgm.2021.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
In recent years, there has been a lot of interest in capturing and storing carbon dioxide (CO2) on porous materials as an efficient method for decreasing the adverse effects of this greenhouse gas on the environment and climate change. The current work introduces a Sc-decorated porphyrin-like porous fullerene (Sc6@C24N24) as an efficient material for CO2 capture, storage, and separation using density functional theory calculations. While CO2 is physisorbed over pristine C24N24, the addition of Sc atoms on the N4 sites of C24N24 greatly enhances CO2 adsorption energy. Each Sc atom in Sc6@C24N24 may adsorb up to three CO2 molecules, resulting in a gravimetric density of 48%. Moreover, temperature may be used to modulate CO2 adsorption/desorption over the substrate. The Sc-decorated C24N24 fullerene exhibits a lower affinity for adsorbing N2, CH4, and H2 molecules than CO2. As a consequence, this material might be considered for purifying CO2 molecules from CO2/N2, CO2/CH4, and CO2/H2 mixtures. This study also sheds light on the nature of the Sc-CO2 interaction as well as the underlying mechanism of selective CO2 adsorption on Sc decorated C24N24.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| | - Parisasadat Mousavian
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran; Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
10
|
Ullah F, Ayub K, Gilani MA, Imran M, Mahmood T. C10F as a potential anode material for alkali-ion batteries; a quantum chemical approach. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Parsa H, Shakerzadeh E, Anota EC. Ng n (Ng= Ne, Ar, Kr, Xe, and Rn; n=1, 2) encapsulated porphyrin-like porous C 24N 24 fullerene: A quantum chemical study. J Mol Graph Model 2021; 108:107986. [PMID: 34303179 DOI: 10.1016/j.jmgm.2021.107986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
This study focused on the theoretical viability of Ngn@C24N24 (Ng = Ne, Ar, Kr, Xe, and Rn; n = 1, 2) complexes using density functional theory at the computational level of ωB97X-D/def2-TZVP. Thermodynamic and kinetic stabilities of these complexes have been evaluated by calculating the interaction energy of Ng atoms encapsulated C24N24 cage (ΔEint), and the corresponding dissociation energy barrier (ΔG‡), respectively. The obtained results predict that although these complexes are thermodynamically unstable compared to their dissociation into free Ng atoms and the bare C24N24 cage, but once formed, they are protected by the activation energy barrier of the corresponding dissociation process. Furthermore, natural population analysis (NPA) and topological analysis of the electron density have been employed to investigate the nature of Ng-Ng and Ng-cage interactions. The results demonstrate that these interactions are highly significant compared to similar cases in the free state; and the amounts of energy of the interaction gradually increases as the Ng atom becomes heavier. Surprisingly in the Kr2@C24N24 complex the Kr-Kr bond is somewhat covalent in nature relative to non-bonded interaction in Kr2 free dimer.
Collapse
Affiliation(s)
- Hadi Parsa
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran.
| | - Ehsan Shakerzadeh
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ernesto Chigo Anota
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, San Manuel, Puebla, Código Postal, 72570, Mexico
| |
Collapse
|