1
|
Zhang F, Wang Y, Luo X, Zhang Y, Li M, Yang X, Zhao H, Tang W, Huang J, Li Z. Iron-ferrocenedicarboxylic nanozyme based colorimetric and photothermal dual-modal signal catalytic inhibition for detection of glyphosate. Mikrochim Acta 2025; 192:343. [PMID: 40338350 DOI: 10.1007/s00604-025-07191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
A novel dual-mode colorimetric and photothermal sensing platform for glyphosate (GLP) based on iron-ferrocenedicarboxylic metal-organic framework (Fe-FcMOF) nanozyme-mediated catalysis is presented. Specifically, the synthesized Fe-FcMOF nanozyme exhibits superior peroxidase (POD)-like activity, which can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (ox TMB) in the presence of H2O2. Due to the photothermal effect of oxTMB, the catalytic system composed of Fe-FcMOF, H2O2 and TMB exhibits remarkable temperature changes (ΔT) before and after being irradiated by near-infrared light at 808 nm. Subsequently, Fe-FcMOF reacts with GLP through electrostatic attraction, hydrogen bonding and specific chemical coordination between the -FeO of Fe-FcMOF and -PO3H2 of GLP, resulting in the formation of stable Fe-O-P coordination bonds. This specific interaction leads to the decrease of the POD-like activity of Fe-FcMOF and the ultraviolet absorbance and ΔT of the system. Building upon these findings, we develop a colorimetric and photothermal dual-modal sensor, with detection limits of 0.0676 µg mL-1 and 0.0856 µg mL-1 respectively. Notably, the proposed dual-mode sensing platform enhances the reliability of the assay, which offers a potential approach for the on-site visual detection of pesticide residues to guarantee food safety.
Collapse
Affiliation(s)
- Fuyu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yingying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xueli Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, Ningxia, PR China
| | - Yifan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Mengyang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xuewei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haojie Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Henan, 461000, People's Republic of China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Li W, Wu H, Wu C, Jiao P, Xu L, Song H. Immobilization of 4-MBA & Cu 2+ on Au nanoparticles modified screen-printed electrode for glyphosate detection. Talanta 2025; 286:127530. [PMID: 39798418 DOI: 10.1016/j.talanta.2025.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu2+), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu2+ via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu2+/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization. Through parameter optimization, critical metrics for the biosensor preparation process have been determined. Using square wave voltammetry (SWV), a linear relationship between the glyphosate concentration and the peak current inhibition ratio at the electrode surface is established. Additionally, the repeatability and anti-interference capabilities of the fabricated biosensors are evaluated. The experimental outcomes affirm the biosensor's capability for quantitative glyphosate detection across a 5-100 nM range, boasting a 1.65 nM limit of detection (LOD). Testing on tap water samples verifies a robust recovery rate for glyphosate residues, spanning 89.84 %-107.48 %. The proposed biosensor holds significant promise for glyphosate detection, offering substantial applicability and this study provides a valuable reference for the advancement of biosensors geared toward the quantitative assessment of organophosphate pesticides (OPs).
Collapse
Affiliation(s)
- Wei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
| | - Hongqi Wu
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Cong Wu
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peidong Jiao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Ling Xu
- Shanxi Hongrunqing Environmental Protection Technology Co., Ltd, Taiyuan, 030000, China
| | - Haiyan Song
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China
| |
Collapse
|
3
|
Li S, Ge K, Huo X, Yang K, Wang X, Yang Y. 2D Fe/Co-MOF/SOX cascade reactors for fast noninvasive detection of sarcosine level in prostate cancer urine. J Colloid Interface Sci 2025; 679:401-411. [PMID: 39461129 DOI: 10.1016/j.jcis.2024.10.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Sarcosine plays a key role in screening for early prostate cancer. However, the several already reported peroxidase mimics immobilized with sarcosine oxidase (SOX) utilized to detect uriary sarcosine still have some limitations such as complex synthesis process, using of expensive heavy metals to mimic enzyme activity and long color development time. Herein, an inexpensive peroxidase-like 2D Fe/Co-MOF nanosheet was prepared by a simple solvent modulation method. The resultant 2D Fe/Co-MOF nanosheets have strong peroxidase activity, with its Vmax value for H2O2 of 15.3 × 10-8 M/s, being 1.76 times that of HRP. Then, using the 2D Fe/Co-MOF as a peroxidase model for anchoring natural SOX to construct 2D Fe/Co-MOF/SOX , which can act as a cascade reactor for detection of sarcosine. Considering the above properties, a platform for the detection of sarcosine was built based on a colorimetric method. Because of presence of the high ratio of Fe2+ caused by the electron transfer from Co2+ to Fe3+, large specific surface area and plentiful active sites, 2D Fe/Co-MOF/SOX with TMB (3,3',5,5'-tetramethylbenzidine) colorimetric reagent could have fast color development and can be applied conveniently and fastly in an early screening tool for prostate cancer patients. The sarcosine could be quantified by peroxidase activity with a detection range of 1-400 μM and a limit of detection (LOD) of 0.324 μM. More importantly, the average sarcosine concentration of 21.367 μM and 1.871 μM was detected in patient's and normal urine (n = 5), respectively, which showed an excellent screening effect and a great potential in early prostate cancer.
Collapse
Affiliation(s)
- Shunli Li
- Institute of Polymer Science and Engineering, Hebei University of Technology, 5340 Siping Road, Tianjin 300401, China
| | - Kai Ge
- Institute of Polymer Science and Engineering, Hebei University of Technology, 5340 Siping Road, Tianjin 300401, China
| | - Xiaodong Huo
- The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin 300211, China.
| | - Kuo Yang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin 300211, China.
| | - Xiaojuan Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin 300211, China.
| | - Yongfang Yang
- Institute of Polymer Science and Engineering, Hebei University of Technology, 5340 Siping Road, Tianjin 300401, China.
| |
Collapse
|
4
|
Taha M, Kamal W, Essam D, Kotp AA, Salah AM, El-Fatah GA, GadelHak Y, Shehata N, Zaher A, Zayed AM, Mahmoud R. Co/Ni/Cu-NH 2BDC MOF@natural Egyptian zeolite ore nanocomposite for calcium ion removal in water softening applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67577-67593. [PMID: 38980482 DOI: 10.1007/s11356-024-34069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Water softening is a treatment process required to remove calcium (Ca(II)) and magnesium (Mg(II)) cations from water streams. Nanocomposites can provide solutions for such multiple challenges and have high performance and low application costs. In this work, a multimetallic cobalt, nickel, and copper 2-aminoterephthalic acid metal-organic framework ((Co/Ni/Cu-NH2BDC) MOF) was synthesized by a simple solvothermal technique. This MOF was supported on an Egyptian natural zeolite ore and was used for the adsorption of Ca(II) ions for water-softening applications. The adsorbent was characterized using Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherms, and zeta potential measurements. The adsorption isotherm data for the prepared adsorbent toward Ca(II) were best fit using the Redlich-Peterson model and showed a maximum adsorption capacity of 88.1 mg/g. The adsorption kinetics revealed an equilibrium time of 10 min, which was best fit using the Avrami model. The intermolecular interactions of Ca(II) ions with zeolite and MOF were investigated by Monte Carlo simulations, molecular dynamics simulations, and FTIR and XRD analyses. The adsorption sites in the zeolite structure were oxygen atoms, while those in the MOF structure were amine nitrogen atoms. The Ca(II) ions are coordinated with the solvent molecules in both structures. Finally, the in vitro cytotoxicity of this nanocomposite was assessed, revealing viability levels of 74.57 ± 2.1% and 21 ± 2.79% for Vero and African green monkey kidney and human liver (HepG2) cells, respectively. Cytotoxicity assays help assess the environmental impact of these materials, ensuring that they do not harm aquatic organisms or disrupt ecosystems. Thus, this study demonstrated the valorization of MOF/zeolite as a valuable and industry-ready adsorbent that can appropriate Ca(II) contaminants from aqueous streams.
Collapse
Affiliation(s)
- Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - W Kamal
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa M Salah
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gehad Abd El-Fatah
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Yasser GadelHak
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Zayed
- Applied Mineralogy and Water Research Lab (AMWRL), Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
5
|
Pang X, Chen Y, Gao R, Sun Y, Qiao X, Xu Z. Single-atom Zr-doped CoOOH with enhanced electrical conductivity as a signal amplifier and detection probe for the indirect non-enzymatic electrochemical determination of malathion in foods. Food Chem 2024; 460:140563. [PMID: 39053269 DOI: 10.1016/j.foodchem.2024.140563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Herein, a novel electrochemical sensor based on zirconium-doped cobalt oxyhydroxide (ZrCoOOH) was proposed for highly sensitive non-enzymatic determination of malathion (MAL). The doping of Zr can improve the electrical conductivity of CoOOH, of which the transfer resistance was reduced from 241.1 Ω to 140.2 Ω. Furthermore, the X-ray photoelectron spectroscopy confirmed that part of Co2+ was converted to Co3+ due to the introduction of Zr. The Co3+ in ZrCoOOH could react with MAL to form Co2+, which enhanced the electrooxidation current of Co2+. Therefore, the peak current of Co2+ was served as detection probe for MAL. Under optimal conditions, the developed sensor established the linear relationship for MAL in the concentration range of 0.001-10.0 μM with a low limit of detection (0.64 nM). The constructed sensor was employed to detect MAL in food samples (peach, kiwi fruit, spinach and tomato), verifying the accuracy and practicability of the sensor.
Collapse
Affiliation(s)
- Xiaomin Pang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yongfeng Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Rui Gao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yufeng Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
6
|
Liao Y, Xiao Y, Li Z, Zhou X, Liu J, Guo F, Li J, Li Y. Structural Engineering of Co-Metal-Organic Frameworks via Ce Incorporation for Improved Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307685. [PMID: 37946630 DOI: 10.1002/smll.202307685] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/11/2023] [Indexed: 11/12/2023]
Abstract
The rational design of metal-organic framework (MOF)-based electrocatalysts plays a key role in achieving high-efficiency oxygen evolution reaction (OER). Herein, a synergetic morphology and electronic structure engineering strategy are proposed to design a Co-MOF nanoflower grown on carbon paper via rare-earth cerium doping (CoCe-MOF/CP). Compared with Co-MOF/CP, the developed CoCe-MOF/CP exhibited superior OER performance with a low overpotential of 267 mV at 10 mA cm-2 and outstanding long-term stability over 100 h. Theoretical calculations show that the unique 4f valence electron structure of Ce induced charge redistribution of the Co-MOF surface through the strong Co 3d-O 2p-Ce 4f orbital electronic coupling below the Fermi level. Ce-doped plays a key role in the engineering of the electronic states of the Co sites to endow them with the optimal free energy landscape for enhanced OER catalytic activity. This work provides new insights into comprehending the RE-enhanced mechanism of electrocatalysis and provides an effective strategy for the design of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Yuanyuan Liao
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yue Xiao
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Zhiquan Li
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Xiaoqing Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jiahao Liu
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Feng Guo
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| | - Yongxiu Li
- School of Chemistry and Chemical Engineering, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
- Institute of Rare Earths, Nanchang University, No 999, Xuefu Road, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
7
|
Rawat D, Bains A, Chawla P, Kaushik R, Yadav R, Kumar A, Sridhar K, Sharma M. Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food. CHEMOSPHERE 2023; 329:138676. [PMID: 37054847 DOI: 10.1016/j.chemosphere.2023.138676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
With the ever-increasing human population, farming lands are decreasing every year, therefore, for effective crop management; agricultural scientists are continually developing new strategies. However, small plants and herbs always impart a much loss in the yields of the crop and farmers are using tons of herbicides to eradicate that problem. Across the world, several herbicides are available in the market for effective crop management, however, scientists observed various environmental and health effects of the herbicides. Over the past 40 years, the herbicide glyphosate has been used extensively with the assumption of negligible effects on the environment and human health. However, in recent years, concerns have increased globally about the potential direct and indirect effects on human health due to the excessive use of glyphosate. As well, the toxicity on ecosystems and the possible effects on all living creatures have long been at the center of a complex discrepancy about the authorization for its use. The World Health Organization also further classified glyphosate as a carcinogenic toxic component and it was banned in 2017 due to numerous life-threatening side effects on human health. In the present era, the residues of banned glyphosate are more prevalent in agricultural and environmental samples which are directly affecting human health. Various reports revealed the detailed extraction process of glyphosate from different categories of the food matrix. Therefore, in the present review, to reveal the importance of glyphosate monitoring in the food matrix, we discussed the environmental and health effects of glyphosate with acute toxicity levels. Also, the effect of glyphosate on aquatic life is discussed in detail and various detection methods such as fluorescence, chromatography, and colorimetric techniques from different food samples with a limit of detection values are revealed. Overall, this review will give an in-depth insight into the various toxicological aspects and detection of glyphosate from food matrix using various advanced analytical techniques.
Collapse
Affiliation(s)
- Deeksha Rawat
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Anil Kumar
- Department of Food Science Technology and Processing, Amity University, Mohali, Punjab-140306, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
8
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
9
|
Pamei M, Kumar S, Achumi AG, Puzari A. Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Inverse conductance signal outputs of solid-state AgCl electrochemistry dependent on counteranions of Ag-MOFs. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|