1
|
Esler M, Belica C, Rollie J, Brown W, Moghadasi SA, Shi K, Harki D, Harris R, Aihara H. A compact stem-loop DNA aptamer targets a uracil-binding pocket in the SARS-CoV-2 nucleocapsid RNA-binding domain. Nucleic Acids Res 2024; 52:13138-13151. [PMID: 39380503 PMCID: PMC11602162 DOI: 10.1093/nar/gkae874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein is a structural component of the virus with essential roles in the replication and packaging of the viral RNA genome. The N protein is also an important target of COVID-19 antigen tests and a promising vaccine candidate along with the spike protein. Here, we report a compact stem-loop DNA aptamer that binds tightly to the N-terminal RNA-binding domain of SARS-CoV-2 N protein. Crystallographic analysis shows that a hexanucleotide DNA motif (5'-TCGGAT-3') of the aptamer fits into a positively charged concave surface of N-NTD and engages essential RNA-binding residues including Tyr109, which mediates a sequence-specific interaction in a uracil-binding pocket. Avid binding of the DNA aptamer allows isolation and sensitive detection of full-length N protein from crude cell lysates, demonstrating its selectivity and utility in biochemical applications. We further designed a chemically modified DNA aptamer and used it as a probe to examine the interaction of N-NTD with various RNA motifs, which revealed a strong preference for uridine-rich sequences. Our studies provide a high-affinity chemical probe for the SARS-CoV-2 N protein RNA-binding domain, which may be useful for diagnostic applications and investigating novel antiviral agents.
Collapse
Affiliation(s)
- Morgan A Esler
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher A Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph A Rollie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Tekin YS, Kul SM, Sagdic O, Rodthongkum N, Geiss B, Ozer T. Optical biosensors for diagnosis of COVID-19: nanomaterial-enabled particle strategies for post pandemic era. Mikrochim Acta 2024; 191:320. [PMID: 38727849 PMCID: PMC11087243 DOI: 10.1007/s00604-024-06373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
The COVID-19 pandemic underlines the need for effective strategies for controlling virus spread and ensuring sensitive detection of SARS-CoV-2. This review presents the potential of nanomaterial-enabled optical biosensors for rapid and low-cost detection of SARS-CoV-2 biomarkers, demonstrating a comprehensive analysis including colorimetric, fluorescence, surface-enhanced Raman scattering, and surface plasmon resonance detection methods. Nanomaterials including metal-based nanomaterials, metal-organic frame-based nanoparticles, nanorods, nanoporous materials, nanoshell materials, and magnetic nanoparticles employed in the production of optical biosensors are presented in detail. This review also discusses the detection principles, fabrication methods, nanomaterial synthesis, and their applications for the detection of SARS-CoV-2 in four categories: antibody-based, antigen-based, nucleic acid-based, and aptamer-based biosensors. This critical review includes reports published in the literature between the years 2021 and 2024. In addition, the review offers critical insights into optical nanobiosensors for the diagnosis of COVID-19. The integration of artificial intelligence and machine learning technologies with optical nanomaterial-enabled biosensors is proposed to improve the efficiency of optical diagnostic systems for future pandemic scenarios.
Collapse
Affiliation(s)
- Yusuf Samil Tekin
- Department of Biomedical Engineering, Graduate Education Institute, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey
| | - Seyda Mihriban Kul
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Bangkok, 10330, Patumwan, Thailand
| | - Brian Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523-1019, USA.
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220, Istanbul, Turkey.
| |
Collapse
|
3
|
Yang M, Li C, Ye G, Shen C, Shi H, Zhong L, Tian Y, Zhao M, Wu P, Hussain A, Zhang T, Yang H, Yang J, Weng Y, Liu X, Wang Z, Gan L, Zhang Q, Liu Y, Yang G, Huang Y, Zhao Y. Aptamers targeting SARS-CoV-2 nucleocapsid protein exhibit potential anti pan-coronavirus activity. Signal Transduct Target Ther 2024; 9:40. [PMID: 38355661 PMCID: PMC10866937 DOI: 10.1038/s41392-024-01748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.
Collapse
Affiliation(s)
- Minghui Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Guoguo Ye
- National Clinical Research Center for infectious disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Chenguang Shen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huiping Shi
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yuxin Tian
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyuan Zhao
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Wu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinyue Liu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhimin Wang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Qianyu Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yingxia Liu
- National Clinical Research Center for infectious disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|