1
|
Gil da Costa RM, Povey A, Medeiros-Fonseca B, Ramwell C, O'Driscoll C, Williams D, Hansen HCB, Rasmussen LH, Fletcher MT, O'Connor P, Bradshaw RHW, Robinson R, Mason J. Sixty years of research on bracken fern (Pteridium spp.) toxins: Environmental exposure, health risks and recommendations for bracken fern control. ENVIRONMENTAL RESEARCH 2024; 257:119274. [PMID: 38821456 DOI: 10.1016/j.envres.2024.119274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Bracken fern (Pteridium spp.) is a highly problematic plant worldwide due to its toxicity in combination with invasive properties on former farmland, in deforested areas and on disturbed natural habitats. The carcinogenic potential of bracken ferns has caused scientific and public concern for six decades. Its genotoxic effects are linked to illudane-type glycosides (ITGs), their aglycons and derivatives. Ptaquiloside is considered the dominating ITG, but with significant contributions from other ITGs. The present review aims to compile evidence regarding environmental pollution by bracken fern ITGs, in the context of their human and animal health implications. The ITG content in bracken fern exhibits substantial spatial, temporal, and chemotaxonomic variation. Consumption of bracken fern as food is linked to human gastric cancer but also causes urinary bladder cancers in bovines browsing on bracken. Genotoxic metabolites are found in milk and meat from bracken fed animals. ITG exposure may also take place via contaminated water with recent data pointing to concentrations at microgram/L-level following rain events. Airborne ITG-exposure from spores and dust has also been documented. ITGs may synergize with major biological and environmental carcinogens like papillomaviruses and Helicobacter pylori to induce cancer, revealing novel instances of chemical and biological co-carcinogenesis. Thus, the emerging landscape from six decades of bracken research points towards a global environmental problem with increasingly complex health implications.
Collapse
Affiliation(s)
- Rui M Gil da Costa
- Department od Morphology, Federal University of Maranhão (UFMA), São Luís, 65080-805, Brazil; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801, Vila Real, Portugal.
| | - Andrew Povey
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Beatriz Medeiros-Fonseca
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801, Vila Real, Portugal
| | - Carmel Ramwell
- Fera Science Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Connie O'Driscoll
- Ryan Hanley Consulting Engineers Ltd., 1 Galway Business Park, Dangan, Galway, H91 A3EF, Ireland
| | - David Williams
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S3 7HF, UK
| | - Hans Chr B Hansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Lars Holm Rasmussen
- Novonesis, Microbe & Culture Research, Bøge Allé 10-12, DK- 2970, Hørsholm, Denmark
| | - Mary T Fletcher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Health, and Food Science Precinct, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - Peter O'Connor
- Centre for Occupational and Environmental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Richard H W Bradshaw
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, L69 7ZT, UK
| | | | - James Mason
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| |
Collapse
|
2
|
Rodríguez-Salazar M, Muñoz-Arrieta R, Chacón-Villalobos A. Stability study of ptaquiloside biotoxin from P. esculentum var. Arachnoideum in bovine milk and artisanal dairy-food products. Food Res Int 2024; 192:114756. [PMID: 39147486 DOI: 10.1016/j.foodres.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
The potential health risk of consuming dairy products made from milk processed in an artisanal manner was investigated due to possible contamination with Ptaquiloside (PTA), a carcinogenic compound found in the food chain of the bracken fern. The study aimed to assess the occurrence and stability of PTA across various processing stages, including pasteurization, cheese production, and yogurt production. Results indicated that pasteurization effectively converted all PTA to Pterosin (PTB), with PTB levels decreasing during refrigerated storage for up to two weeks. The stability and occurrence of initial PTA contamination remained unchanged in yogurt production. Biotoxin concentrations in soft cheeses decreased over time, independent of ionic strength; cheeses with low salt concentrations showed lower retention of the biotoxin within the cheese protein network. These findings offer valuable insights into the stability and occurrence of PTA, facilitating the monitoring and identification of potential adverse health effects.
Collapse
Affiliation(s)
- Massiel Rodríguez-Salazar
- Costa Rican Institute of Research and Education on Nutrition and Heath (INCIENSA), National Reference Center of Bromatology, 4-2250 Tres Ríos, Cartago, Costa Rica.
| | - Rodrigo Muñoz-Arrieta
- University of Costa Rica, SEP, San José, Costa Rica; National Center for Biotechnological Innovations (CENIBiot), 1174-1200 San José, Costa Rica.
| | | |
Collapse
|
3
|
Vitasović-Kosić I, Berec D, Łuczaj Ł, Motti R, Juračak J. Ethnobotany around the Virovitica Area in NW Slavonia (Continental Croatia)-Record of Rare Edible Use of Fungus Sarccoscypha coccinea. PLANTS (BASEL, SWITZERLAND) 2024; 13:2153. [PMID: 39124271 PMCID: PMC11313955 DOI: 10.3390/plants13152153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Slavonia is the most developed agricultural region in Croatia. With rich and fertile soils that have enabled the cultivation of a wide variety of fruits, vegetables, and cereals, Slavonia has always met the food needs of its population. Today, the biocultural diversity of local varieties and semi-natural vegetation has irretrievably disappeared. Our aim was to document the remaining local knowledge of plant use in this area through in-depth semi-structured interviews, which were conducted in 2022-2023. All possible aspects of the use of plants and fungi were recorded as food, animal feed, medicine, construction, jewelry, rituals and ceremonies, dyes, etc. The names and uses of local plant varieties were also recorded. The results show 1702 entries-a total of 296 plant taxa from 76 families and 28 fungi from 16 families. The most frequently named plants were: Urtica dioica, Robinia pseudoacacia, Rosa canina, and Sambucus nigra. The plants with the greatest variety of uses were Morus alba, Rosmarinus officinalis, Triticum aestivum, and Zea mays. Interesting uses were identified. The leaves of the ornamental plant Hosta sieboldiana are still used today as food for wrapping meat with rice, the aquatic plant Trapa natans is eaten like chestnuts, and Pteridium aquilinum was once consumed as a vegetable. In addition, Ambrosia artemisiifolia and Sambucus ebulus were given to horses to prevent and avoid blood poisoning. Some forest species had a special significance and were revered or favored. The most frequently mentioned edible fungi were Boletus sp., Cantharellus cibarius, and Lactarius piperatus. Auricularia auricula-judae is the only species stated to have been used exclusively as a raw snack. Evidence of edible use of Sarccoscypha coccinea, which was reported as traditionally consumed in the past, was of particular interest. Despite the modernization and agricultural nature of the region, many interesting uses of plants and fungi were identified. Further efforts should be directed towards documenting this knowledge to facilitate its dissemination in the communities that possess it, or at least to preserve it for future generations.
Collapse
Affiliation(s)
- Ivana Vitasović-Kosić
- University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (D.B.); (J.J.)
| | - Dominik Berec
- University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (D.B.); (J.J.)
| | - Łukasz Łuczaj
- Institute of Biology, University of Rzeszów, ul. Zelwerowicza 8B, 35-601 Rzeszów, Poland;
| | - Riccardo Motti
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy;
| | - Josip Juračak
- University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (D.B.); (J.J.)
| |
Collapse
|
4
|
Dvorakova M, Soudek P, Pavicic A, Langhansova L. The traditional utilization, biological activity and chemical composition of edible fern species. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117818. [PMID: 38296173 DOI: 10.1016/j.jep.2024.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferns form an important part of the human diet. Young fern fiddleheads are mostly consumed as vegetables, while the rhizomes are often extracted for starch. These edible ferns are also often employed in traditional medicine, where all parts of the plant are used, mostly to prepare extracts. These extracts are applied either externally as lotions and baths or internally as potions, decoctions and teas. Ailments traditionally treated with ferns include coughs, colds, fevers, pain, burns and wounds, asthma, rheumatism, diarrhoea, or skin diseases (eczema, rashes, itching, leprosy). AIM OF THE REVIEW This review aims to compile the worldwide knowledge on the traditional medicinal uses of edible fern species correlating to reported biological activities and isolated bioactive compounds. MATERIALS AND METHODS The articles and books published on edible fern species were searched through the online databases Web of Science, Pubmed and Google Scholar, with critical evaluation of the hits. The time period up to the end of 2022 was included. RESULTS First, the edible fern species were identified based on the literature data. A total of 90 fern species were identified that are eaten around the world and are also used in traditional medicine. Ailments treated are often associated with inflammation or bacterial infection. However, only the most common and well-known fern species, were investigated for their biological activity. The most studied species are Blechnum orientale L., Cibotium barometz (L.) J. Sm., Diplazium esculentum (Retz.) Sw., Marsilea minuta L., Osmunda japonica Thunb., Polypodium vulgare L., and Stenochlaena palustris (Burm.) Bedd. Most of the fern extracts have been studied for their antioxidant, anti-inflammatory and antimicrobial activities. Not surprisingly, antioxidant capacity has been the most studied, with results reported for 28 edible fern species. Ferns have been found to be very rich sources of flavonoids, polyphenols, polyunsaturated fatty acids, carotenoids, terpenoids and steroids and most of these compounds are remarkable free radical scavengers responsible for the outstanding antioxidant capacity of fern extracts. As far as clinical trials are concerned, extracts from only three edible fern species have been evaluated. CONCLUSIONS The extracts of edible fern species exert antioxidant anti-inflammatory and related biological activities, which is consistent with their traditional medicinal use in the treatment of wounds, burns, colds, coughs, skin diseases and intestinal diseases. However, studies to prove pharmacological activities are scarce, and require chemical-biological standardization. Furthermore, correct botanical classification needs to be included in publications to simplify data acquisition. Finally, more in-depth phytochemical studies, allowing the linking of traditional use to pharmacological relevance are needed to be done in a standardized way.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Petr Soudek
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| | - Antonio Pavicic
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic; Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-50005, Hradec Králové, Czech Republic.
| | - Lenka Langhansova
- Czech Academy of Sciences, Institute of Experimental Botany, Rozvojova 263, CZ-16200, Prague 6, Czech Republic.
| |
Collapse
|
5
|
Malík M, Mika OJ, Navrátilová Z, Killi UK, Tlustoš P, Patočka J. Health and Environmental Hazards of the Toxic Pteridium aquilinum (L.) Kuhn (Bracken Fern). PLANTS (BASEL, SWITZERLAND) 2023; 13:18. [PMID: 38202326 PMCID: PMC10780724 DOI: 10.3390/plants13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Bracken fern (Pteridium aquilinum (L.) Kuhn) is ubiquitous and acts as a cosmopolitan weed in pastures and similar environments. Despite its historical uses, it presents risks due to toxicity. This study, conducted in the second half of 2023, aimed to assess the environmental and health hazards of P. aquilinum, primarily focusing on its carcinogenic compound, ptaquiloside. The literature was comprehensively reviewed using diverse databases, including PubMed, Web of Science, Scopus, and Google Scholar. Information was synthesized from original research articles, meta-analyses, systematic reviews, and relevant animal studies. Animals grazing on bracken fern face annual production losses due to toxin exposure. The substantial impact on biodiversity, animal health, and human well-being arises from the presence of ptaquiloside and related compounds in milk, meat, and water, along with the increasing global prevalence of P. aquilinum and its swift colonization in acidic soil and fire-damaged areas. The objectives were to identify major bioactive compounds and explore their effects at molecular, cellular, pathological, and population levels. Various cooking techniques were considered to mitigate toxin exposure, although complete elimination remains unattainable. Therefore, the findings emphasize the need for cautious consumption. In conclusion, continued research is necessary to better understand and manage its environmental and health implications.
Collapse
Affiliation(s)
- Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.M.); (P.T.)
| | - Otakar Jiří Mika
- Department of Crisis Management, Faculty of Security Management, Police Academy of the Czech Republic, Lhotecká 559/7, 143 01 Praha 4, Czech Republic
- Department of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 1167/27, 370 11 České Budějovice, Czech Republic; (U.K.K.); (J.P.)
| | - Zdeňka Navrátilová
- Department of Botany, Faculty of Science, Charles University, Benátská 433/2, 128 00 Praha 2, Czech Republic;
| | - Uday Kumar Killi
- Department of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 1167/27, 370 11 České Budějovice, Czech Republic; (U.K.K.); (J.P.)
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.M.); (P.T.)
| | - Jiří Patočka
- Department of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia, J. Boreckého 1167/27, 370 11 České Budějovice, Czech Republic; (U.K.K.); (J.P.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Wong K, Abascal F, Ludwig L, Aupperle-Lellbach H, Grassinger J, Wright CW, Allison SJ, Pinder E, Phillips RM, Romero LP, Gal A, Roady PJ, Pires I, Guscetti F, Munday JS, Peleteiro MC, Pinto CA, Carvalho T, Cota J, Du Plessis EC, Constantino-Casas F, Plog S, Moe L, de Brot S, Bemelmans I, Amorim RL, Georgy SR, Prada J, Del Pozo J, Heimann M, de Carvalho Nunes L, Simola O, Pazzi P, Steyl J, Ubukata R, Vajdovich P, Priestnall SL, Suárez-Bonnet A, Roperto F, Millanta F, Palmieri C, Ortiz AL, Barros CSL, Gava A, Söderström ME, O'Donnell M, Klopfleisch R, Manrique-Rincón A, Martincorena I, Ferreira I, Arends MJ, Wood GA, Adams DJ, van der Weyden L. Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. Genome Biol 2023; 24:191. [PMID: 37635261 PMCID: PMC10464500 DOI: 10.1186/s13059-023-03026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND In humans, muscle-invasive bladder cancer (MIBC) is highly aggressive and associated with a poor prognosis. With a high mutation load and large number of altered genes, strategies to delineate key driver events are necessary. Dogs and cats develop urothelial carcinoma (UC) with histological and clinical similarities to human MIBC. Cattle that graze on bracken fern also develop UC, associated with exposure to the carcinogen ptaquiloside. These species may represent relevant animal models of spontaneous and carcinogen-induced UC that can provide insight into human MIBC. RESULTS Whole-exome sequencing of domestic canine (n = 87) and feline (n = 23) UC, and comparative analysis with human MIBC reveals a lower mutation rate in animal cases and the absence of APOBEC mutational signatures. A convergence of driver genes (ARID1A, KDM6A, TP53, FAT1, and NRAS) is discovered, along with common focally amplified and deleted genes involved in regulation of the cell cycle and chromatin remodelling. We identify mismatch repair deficiency in a subset of canine and feline UCs with biallelic inactivation of MSH2. Bovine UC (n = 8) is distinctly different; we identify novel mutational signatures which are recapitulated in vitro in human urinary bladder UC cells treated with bracken fern extracts or purified ptaquiloside. CONCLUSION Canine and feline urinary bladder UC represent relevant models of MIBC in humans, and cross-species analysis can identify evolutionarily conserved driver genes. We characterize mutational signatures in bovine UC associated with bracken fern and ptaquiloside exposure, a human-linked cancer exposure. Our work demonstrates the relevance of cross-species comparative analysis in understanding both human and animal UC.
Collapse
Affiliation(s)
- Kim Wong
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Federico Abascal
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Latasha Ludwig
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany and Institute of Pathology, Department Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Grassinger
- Laboklin GmbH & Co. KG, Bad Kissingen, Germany and Institute of Pathology, Department Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, West Yorkshire, UK
| | - Simon J Allison
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Emma Pinder
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Laura P Romero
- Departmento de Patología, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico City, México
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patrick J Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel Pires
- Department of Veterinary Science, CECAV-Veterinary and Animal Research Center, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - John S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Maria C Peleteiro
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | - Carlos A Pinto
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | | | - João Cota
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health (CIISA), University of Lisbon, Lisbon, Portugal
| | | | | | | | - Lars Moe
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, Bern, Switzerland
| | | | - Renée Laufer Amorim
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | - Smitha R Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Justina Prada
- Department of Veterinary Science, CECAV-Veterinary and Animal Research Center, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| | - Jorge Del Pozo
- Royal Dick School of Veterinary Sciences, University of Edinburgh, Roslin, Scotland, UK
| | | | | | | | - Paolo Pazzi
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Johan Steyl
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Rodrigo Ubukata
- E+ Especialidades Veterinárias - Veterinary Oncology, São Paulo, Brazil
| | - Peter Vajdovich
- Department of Clinical Pathology and Oncology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Franco Roperto
- Dipartimento Di Biologia, Università Degli Studi Di Napoli Federico II, Napoli, Italy
| | | | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Ana L Ortiz
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Claudio S L Barros
- Faculdade de Medicina Veterinária E Zootecnia, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Aldo Gava
- Pathology Laboratory of the Centro de Ciencias Agro-Veterinarias, Universidade Do Estado de Santa Catarina, Lages, SC, Brazil
| | - Minna E Söderström
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marie O'Donnell
- Department of Pathology, Western General Hospital, Edinburgh, Scotland, UK
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Andrea Manrique-Rincón
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Inigo Martincorena
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark J Arends
- University of Edinburgh Division of Pathology, Cancer Research UK Edinburgh Cancer Centre, Institute of Genetics & Cancer, Edinburgh, Scotland, UK
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
7
|
Park H, Cho Y, Lee J, Lee KM, Kim HJ, Lee J, Bahn YS, Son J. Evaluation and Monitoring of the Natural Toxin Ptaquiloside in Bracken Fern, Meat, and Dairy Products. Toxins (Basel) 2023; 15:toxins15030231. [PMID: 36977122 PMCID: PMC10053987 DOI: 10.3390/toxins15030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Ptaquiloside, a naturally occurring cancer-causing substance in bracken fern, has been detected in the meat and milk of cows fed a diet containing bracken fern. A rapid and sensitive method for the quantitative analysis of ptaquiloside in bracken fern, meat, and dairy products was developed using the QuEChERS method and liquid chromatography-tandem mass spectrometry. The method was validated according to the Association of Official Analytical Chemists guidelines and met the criteria. A single matrix-matched calibration method with bracken fern has been proposed, which is a novel strategy that uses one calibration for multiple matrices. The calibration curve ranged from 0.1 to 50 µg/kg and showed good linearity (r2 > 0.99). The limits of detection and quantification were 0.03 and 0.09 µg/kg, respectively. The intraday and interday accuracies were 83.5-98.5%, and the precision was <9.0%. This method was used for the monitoring and exposure assessment of ptaquiloside in all routes of exposure. A total of 0.1 µg/kg of ptaquiloside was detected in free-range beef, and the daily dietary exposure of South Koreans to ptaquiloside was estimated at up to 3.0 × 10-5 µg/kg b.w./day. The significance of this study is to evaluate commercially available products in which ptaquiloside may be present, to monitor consumer safety.
Collapse
Affiliation(s)
- Hana Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - JiEun Lee
- KnA Consulting, Yongin-si 16942, Republic of Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ho Jun Kim
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
8
|
Vetter J. The Norsesquiterpene Glycoside Ptaquiloside as a Poisonous, Carcinogenic Component of Certain Ferns. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196662. [PMID: 36235199 PMCID: PMC9570605 DOI: 10.3390/molecules27196662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Previous studies related to the ptaquiloside molecule, a carcinogenic secondary metabolite known from the world of ferns, are summarised. Ptaquiloside (PTA) belongs to the group of norsesquiterpenes of the illudane type. The name illudane refers to the fungal taxa from which the first representatives of the molecular group were identified. Ptaquiloside occurs mainly in Pteridium fern species, although it is also known in other fern taxa. The species of the genus Pteridium are common, frequent invasive species on all continents, and PTA is formed in smaller or larger amounts in all organs of the affected species. The effects of PTA and of their derivatives on animals and humans are of great toxicological significance. Its basic chemical property is that the molecule can be transformed. First, with the loss of sugar moiety, ptaquilosine is formed, and then, under certain conditions, a dienone derivative (pteridienone) may arise. The latter can alkylate (through its cyclopropane groups) certain molecules, including DNA, in animal or human organisms. In this case, DNA adducts are formed, which can later have a carcinogenic effect through point mutations. The scope of the PTA is interdisciplinary in nature since, for example, molecules from plant biomass can enter the body of animals or humans in several ways (directly and indirectly). Due to its physico-chemical properties (excellent water solubility), PTA can get from the plant into the soil and then into different water layers. PTA molecules that enter the soil, but mainly water, undergo degradation (hydrolytic) processes, so it is very important to clarify the toxicological conditions of a given ecosystem and to estimate the possible risks caused by PTA. The toxicoses and diseases of the animal world (mainly for ruminant farm animals) caused by PTA are briefly described. The intake of PTA-containing plants as a feed source causes not only various syndromes but can also enter the milk (and meat) of animals. In connection with the toxicological safety of the food chain, it is important to investigate the transport of carcinogenic PTA metabolites between organisms in a reassuring manner and in detail. This is a global, interdisciplinary task. The present review aims to contribute to this.
Collapse
Affiliation(s)
- János Vetter
- Department of Botany, University of Veterinary Medicine, Pf. 2, 1400 Budapest, Hungary
| |
Collapse
|
9
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|