1
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Schweiger P, Hamann L, Strobel J, Weisbach V, Wandersee A, Christ J, Kehl S, Weidenthaler F, Antoniadis S, Hackstein H, Cunningham S. Functional Heterogeneity of Umbilical Cord Blood Monocyte-Derived Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:115-124. [PMID: 38809115 PMCID: PMC11215632 DOI: 10.4049/jimmunol.2400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human umbilical cord blood (UCB) represents a unique resource for hematopoietic stem cell transplantation for children and patients lacking suitable donors. UCB harbors a diverse set of leukocytes such as professional APCs, including monocytes, that could act as a novel source for cellular therapies. However, the immunological properties of UCB monocytes and monocyte-derived dendritic cells (MoDCs) are not fully characterized. In this study, we characterized the phenotype and functions of UCB-MoDCs to gauge their potential for future applications. UCB exhibited higher frequencies of platelets and lymphocytes as well as lower frequencies of neutrophils in comparison with adult whole blood. Leukocyte subset evaluation revealed significantly lower frequencies of granulocytes, NK cells, and CD14+CD16- monocytes. Surface marker evaluation revealed significantly lower rates of costimulatory molecules CD80 and CD83 while chemokine receptors CCR7 and CXCR4, as well as markers for Ag presentation, were similarly expressed. UCB-MoDCs were sensitive to TLR1-9 stimulation and presented quantitative differences in the release of proinflammatory cytokines. UCB-MoDCs presented functional CCR7-, CXCR4-, and CCR5-associated migratory behavior as well as adequate receptor- and micropinocytosis-mediated Ag uptake. When cocultured with allogeneic T lymphocytes, UCB-MoDCs induced weak CD4+ T lymphocyte proliferation, CD71 expression, and release of IFN-γ and IL-2. Taken together, UCB-MoDCs present potentially advantageous properties for future medical applications.
Collapse
Affiliation(s)
- Petra Schweiger
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Livia Hamann
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julia Christ
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sven Kehl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Filip Weidenthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Sophia Antoniadis
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Laskowitz DT, Troy J, Poehlein E, Bennett ER, Shpall EJ, Wingard JR, Freed B, Belagaje SR, Khanna A, Jones W, Volpi JJ, Marrotte E, Kurtzberg J. A Randomized, Placebo-Controlled, Phase II Trial of Intravenous Allogeneic Non-HLA Matched, Unrelated Donor, Cord Blood Infusion for Ischemic Stroke. Stem Cells Transl Med 2024; 13:125-136. [PMID: 38071749 PMCID: PMC10872695 DOI: 10.1093/stcltm/szad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/13/2023] [Indexed: 02/18/2024] Open
Abstract
Stroke remains a leading cause of death and disability in the US, and time-limited reperfusion strategies remain the only approved treatment options. To address this unmet clinical need, we conducted a phase II randomized clinical trial to determine whether intravenous infusion of banked, non-HLA matched unrelated donor umbilical cord blood (UCB) improved functional outcome after stroke. Participants were randomized 2:1 to UCB or placebo within strata of National Institutes of Health Stroke Scale Score (NIHSS) and study center. Study product was infused 3-10 days following index stroke. The primary endpoint was change in modified Rankin Scale (mRS) from baseline to day 90. Key secondary outcomes included functional independence, NIHSS, the Barthel Index, and assessment of adverse events. The trial was terminated early due to slow accrual and logistical concerns associated with the COVID-19 pandemic, and a total of 73 of a planned 100 participants were included in primary analyses. The median (range) of the change in mRS was 1 point (-2, 3) in UCB and 1 point (-1,4) in Placebo (P = 0.72). A shift analysis comparing the mRS at day 90 utilizing proportional odds modeling showed a common odds ratio of 0.9 (95% CI: 0.4, 2.3) after adjustment for baseline NIHSS and randomization strata. The distribution of adverse events was similar between arms. Although this study did not suggest any safety concerns related to UCB in ischemic stroke, we did not show a clinical benefit in the reduced sample size evaluated.
Collapse
Affiliation(s)
- Daniel T Laskowitz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Jesse Troy
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Emily Poehlein
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Ellen R Bennett
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | | | - John R Wingard
- LifeSouth Cord Blood Bank, University of Florida, Gainesville, FL, USA
| | - Brian Freed
- ClinImmune Labs, University of Colorado Cord Blood Bank, Aurora, CO, USA
| | - Samir R Belagaje
- Departments of Neurology and Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Khanna
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - William Jones
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - John J Volpi
- Department of Neurology, Houston Methodist, Houston, TX, USA
| | - Eric Marrotte
- Department of Neurology, Wake Forest University Baptist Medical Center, Winston-Salem, NC, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Ma X, Chen Y, Liu Y, Cheng TT, Chen X, Zeng C, Hua J, Wang SY, Xu YJ. [Haploidentical donor peripheral blood stem cell transplantation using third-party cord blood compared with matched unrelated donor transplantation for patients with hematologic malignancies]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:141-147. [PMID: 38604790 PMCID: PMC11078673 DOI: 10.3760/cma.j.cn121090-20230928-00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 04/13/2024]
Abstract
Objectives: To assess the efficacy of cord blood-assisted haploid peripheral blood stem cell transplantation (haplo-cord-PBSCT) versus unrelated donor peripheral blood stem cell transplantation (UD-PBSCT) in the treatment of malignant hematological diseases. Methods: A retrospective analysis was performed on one hundred and four patients with malignant hematological diseases who underwent haplo-cord-PBSCT and fifty-two patients who underwent UD-PBSCT at Xiangya Hospital of Central South University between January 2016 and December 2021. Results: ①The median implantation time for neutrophils in the haplo-cord-PBSCT and UD-PBSCT groups was 13 (9-22) days and 13 (10-24) days, respectively (P=0.834), whereas the median implantation time for platelets was 15 (7-103) days and 14 (8-38) days, respectively (P=0.816). The cumulative implantation rate of neutrophils at 30 days after transplantation in the haplo-cord-PBSCT group and the UD-PBSCT group was 100% (P=0.314), and the cumulative platelet implantation rate at 100 days after transplantation was 95.2% (95% CI 88.3% - 98.1% ) and 100% (P=0.927), respectively. 30 days after transplantation, both groups of patients achieved complete donor chimerism, and no umbilical cord blood stem cells were implanted. ②The cumulative incidence rates of grade Ⅱ-Ⅳ acute GVHD within 100 days after transplantation in the haplo-cord-PBSCT group and the UD-PBSCT group were 29.1% (95% CI 20.1% -38.1% ) and 28.8% (95% CI 17.2% -41.6% (P=0.965), respectively. The cumulative incidence rates of grade Ⅲ/Ⅳ acute GVHD were 7.8% (95% CI 3.6% -14.0% ) and 9.6% (95% CI 3.5% -19.5% ) (P=0.725). The cumulative incidence rates of 2-year chronic GVHD in the haplo-cord-PBSCT group and the UD-PBSCT group were 45.3% (95% CI 36.1% -56.1% ) and 35.1% (95% CI 21.6% -44.1% ), respectively (P=0.237). The cumulative incidence rates of severe chronic GVHD at 2 years after transplantation were 13.6% (95% CI 7.6% -21.3% ) and 12.9% (95% CI 5.1% -24.3% ), respectively (P=0.840). ③The 2-year CIR after transplantation in the haplo-cord-PBSCT group and UD-PBSCT group were 12.8% (95% CI 7.0% -20.5% ) and 10.0% (95% CI 3.6% -20.2% ), respectively (P=0.341), and the NRM were 14.7% (95% CI 8.4% -22.6% ) and 16.2% (95% CI 7.4% -28.0% ), respectively (P=0.681). ④The 2-year OS rates in the haplo-cord-PBSCT and UD-PBSCT groups after transplantation were 82.2% (95% CI 74.8% -90.3% ) and 75.5% (95% CI 64.2% -88.7% ), respectively (P=0.276). The 2-year DFS rates were 69.9% (95% CI 61.2% -79.8% ) and 73.8% (95% CI 62.4% -87.3% ), respectively (P=0.551). The 2-year rates of GVHD-free/recurrence-free survival (GRFS) were 55.3% (95% CI 44.8% -64.8% ) and 64.7% (95% CI 52.8% -79.3% ), respectively (P=0.284) . Conclusion: The findings of this study indicate that haplo-cord-PBSCT and UD-PBSCT have comparable efficacy and safety in the treatment of malignant hematological diseases and can be used as an alternative treatment options.
Collapse
Affiliation(s)
- X Ma
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - Y Chen
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - Y Liu
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - T T Cheng
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - X Chen
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - C Zeng
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - J Hua
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - S Y Wang
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| | - Y J Xu
- Department of Hematology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital) ; Hunan Clinical Medical Research Center of Hematologic Neoplasms, Changsha 410008, China
| |
Collapse
|
5
|
Szydlak R. Mesenchymal stem cells in ischemic tissue regeneration. World J Stem Cells 2023; 15:16-30. [PMID: 36909782 PMCID: PMC9993139 DOI: 10.4252/wjsc.v15.i2.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/21/2023] Open
Abstract
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells (MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and promote the regeneration of damaged tissues. This review presents the current knowledge of the mechanisms of action of MSCs and their therapeutic effects in the treatment of ischemic diseases, described on the basis of data from in vitro experiments and preclinical animal studies, and also summarize the effects of using these cells in clinical trial settings. Since the obtained therapeutic benefits are not always satisfactory, approaches aimed at enhancing the effect of MSCs in regenerative therapies are presented at the end.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
6
|
Gudauskaitė G, Kairienė I, Ivaškienė T, Rascon J, Mobasheri A. Therapeutic Perspectives for the Clinical Application of Umbilical Cord Hematopoietic and Mesenchymal Stem Cells: Overcoming Complications Arising After Allogeneic Hematopoietic Stem Cell Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:111-126. [PMID: 35995905 DOI: 10.1007/5584_2022_726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.
Collapse
Affiliation(s)
- Greta Gudauskaitė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ignė Kairienė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tatjana Ivaškienė
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ali Mobasheri
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
7
|
Rodríguez-Eguren A, Gómez-Álvarez M, Francés-Herrero E, Romeu M, Ferrero H, Seli E, Cervelló I. Human Umbilical Cord-Based Therapeutics: Stem Cells and Blood Derivatives for Female Reproductive Medicine. Int J Mol Sci 2022; 23:ijms232415942. [PMID: 36555583 PMCID: PMC9785531 DOI: 10.3390/ijms232415942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
There are several conditions that lead to female infertility, where traditional or conventional treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells (hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential to promote anti-inflammatory and regenerative processes more efficiently than other autologous treatments. Similarly, hUC blood derivatives, such as platelet-rich plasma (PRP), or isolated plasma elements, such as growth factors, have also demonstrated potential. This literature review aims to summarize the recent therapeutic advances based on hUC-MSCs, hUC blood, and/or other plasma derivatives (e.g., extracellular vesicles, hUC-PRP, and growth factors) in the context of female reproductive medicine. We present an in-depth analysis of the principal molecules mediating tissue regeneration, compiling the application of these therapies in preclinical and clinical studies, within the context of the human reproductive tract. Despite the recent advances in bioengineering strategies that sustain delivery and amplify the scope of the therapeutic benefits, further clinical trials are required prior to the wide implementation of these alternative therapies in reproductive medicine.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
| | | | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mónica Romeu
- Gynecological Service, Consortium General University Hospital of Valencia, 46014 Valencia, Spain
| | - Hortensia Ferrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence: or
| |
Collapse
|
8
|
Zeng C, Chen Y, Hua J, Liu Y, Cheng TT, Ma X, Chen X, Wang SY, Xu YJ. Haploidentical peripheral blood stem cell transplantation combined with unrelated cord blood in hematologic malignancy patients: A report of 80 cases. Front Immunol 2022; 13:980464. [PMID: 36119075 PMCID: PMC9478412 DOI: 10.3389/fimmu.2022.980464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The outcomes of 80 patients with hematologic malignancies who received haploidentical peripheral blood stem cell transplantation (haplo-PBSCT) combined with unrelated cord blood (UCB) from March 2017 to June 2020 were analyzed in this retrospective study. Anti-thymocyte globulin(ATG) was administered at a dose of 7.5 mg/kg. The median time for neutrophil and platelet engraftment was 13(range: 8-22) days and 14(range: 8-103) days, respectively. The 30-day cumulative incidence of neutrophil engraftment was 100%, and the 100-day cumulative incidence of platelet engraftment was 95%. All patients achieved complete haploidentical peripheral blood stem cell engraftment, and no cord blood chimerism was observed. The cumulative incidence of grades II-IV and grades III-IV acute graft-versus-host disease (aGVHD) on 100-day was 26.3%(95%CI: 17.2%–36.3%) and 5.0%(95%CI: 1.6%–11.4%), respectively. The estimated cumulative incidence of chronic GVHD (cGVHD) and moderate-severe cGVHD at 3-year was 43.3%(95%CI: 31.6%–54.4%) and 16.0%(95%CI: 8.7%–25.2%), respectively. The estimated 3-year cumulative incidence of relapse and non-relapse mortality was 18.8%(95%CI: 10.0%–29.7%) and 17.8%(95%CI: 9.9%–27.5%), respectively. The estimated 3-year probabilities of overall survival, disease-free survival, GVHD/relapse-free survival were 77.6%(95%CI: 68.3%–88.1%), 63.4%(95%CI: 52.6%–76.5%), and 55.5%(95%CI: 44.8%–68.7%), respectively. These satisfying results suggested that haplo-PBSCT combined with UCB is an alternative transplantation protocol for hematologic malignancies.
Collapse
Affiliation(s)
- Cong Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Juan Hua
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Ting-ting Cheng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Xia Ma
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Shi-yu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
| | - Ya-jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematologic Neoplasms Clinical Medical Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Changsha, China
- *Correspondence: Ya-jing Xu,
| |
Collapse
|
9
|
Damianakis EI, Benetos IS, Evangelopoulos DS, Kotroni A, Vlamis J, Pneumaticos SG. Stem Cell Therapy for Spinal Cord Injury: A Review of Recent Clinical Trials. Cureus 2022; 14:e24575. [PMID: 35664388 PMCID: PMC9148387 DOI: 10.7759/cureus.24575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
|
10
|
Smirnov VA, Radaev SM, Morozova YV, Ryabov SI, Yadgarov MY, Bazanovich SA, Lvov IS, Talypov AE, Grin' AA. Systemic Administration of Allogeneic Cord Blood Mononuclear Cells in Adults with Severe Acute Contusion Spinal Cord Injury: Phase I/IIa Pilot Clinical Study - Safety and Primary Efficacy Evaluation. World Neurosurg 2022; 161:e319-e338. [PMID: 35134580 DOI: 10.1016/j.wneu.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Current Phase I part of SUBSCI I/IIa study was focused on safety and primary efficacy of multiple systemic infusions of allogeneic unrelated human umbilical cord blood mononuclear cells in patients with severe acute spinal cord contusion having severe neurological deficit. The primary endpoint was safety. The secondary endpoint was the fact of restoration of motor and sensory function in lower limbs within 1-year period. METHODS Ten subjects with acute contusion SCI and ASIA A/B deficit were enrolled into Phase I part. Subjects were treated with 4 infusions of group- and rhesus-matched cord blood samples following primary surgery within 3 days post-SCI. All patients were followed-up for 12 months post-SCI. Safety was assessed using adverse events classification depending on severity and relation to cell therapy. Primary efficacy was assessed using dynamics of deficit (ASIA scale). RESULTS The overall number of AEs reached 419 in 10 subjects. Only 2 of them were estimated as possibly related to cell therapy, other 417 were definitely unrelated. Both AEs were mild and clinically insignificant. No signs of immunization were found in participants. Analysis of clinical outcomes also demonstrated that cell therapy promotes significant functional restoration of motor function. CONCLUSIONS Obtained data suggest that systemic administration of allogenic, non-HLA matched HUCB cells is safe and demonstrates primary efficacy in adults with severe acute contusion SCI and ASIA A/B deficit.
Collapse
Affiliation(s)
- Vladimir A Smirnov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation.
| | - Sergey M Radaev
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Yana V Morozova
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation; Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Sergey I Ryabov
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Mikhail Ya Yadgarov
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Sergey A Bazanovich
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Ivan S Lvov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Alexander E Talypov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Andrew A Grin'
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| |
Collapse
|
11
|
Uslu M, Kocabaş F. Development of a novel and synthetic HematoMiR technology that broadly modulates quiescence of stem cells and enhances HSC expansion. Cell Mol Life Sci 2021; 79:68. [PMID: 34971431 PMCID: PMC11072120 DOI: 10.1007/s00018-021-04031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem cell (HSCs) transplantation is the primary therapeutic modality used to treat hematopoietic disorders. It centers on the capability of a small quantity of HSCs to repopulate whole blood lineages. Along with limited availability of suitable donors, the need for sufficient number of donor HSCs is still challenging in clinical relevance. This has been addressed by ex vivo HSC expansion albeit with partial success, and thus development of an alternative strategy that could improve HSC expansion is required. To that end, we aimed to build HematoMiR, an oligo-based technology that broadly targets HSC quiescence factors. Here, we show that HematoMiRs and their combinations targeting over 50 factors involved in HSC quiescence could induce robust ex vivo murine and human HSC expansion. In particular, HematoMiR-5 treatment enhanced cell cycle through down-regulation of negative cell cycle regulators in HSCs. HematoMiR-5 treated HSPCs had reduced DNA damage during the course of ex vivo expansion. Moreover, HematoMiR-5 treatment led to sustained HSC self-renewal ability and a low apoptosis rate. In addition, HematoMiR-5 expanded HSCs demonstrated successful engraftment and repopulation capacity in the recipient animals. Furthermore, combinatorial treatments of HematoMiR-2 and 5 allowed vigorous ex vivo HSC expansion. These findings demonstrate that novel and synthetic HematoMiR technology is feasible for HSC ex vivo expansion through the sequence-dependent modulation of numerous HSC quiescence modulators.
Collapse
Affiliation(s)
- Merve Uslu
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
- Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
12
|
Bolli R, Solankhi M, Tang XL, Kahlon A. Cell Therapy in Patients with Heart Failure: A Comprehensive Review and Emerging Concepts. Cardiovasc Res 2021; 118:951-976. [PMID: 33871588 PMCID: PMC8930075 DOI: 10.1093/cvr/cvab135] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the results of clinical trials of cell therapy in patients with heart failure (HF). In contrast to acute myocardial infarction (where results have been consistently negative for more than a decade), in the setting of HF the results of Phase I–II trials are encouraging, both in ischaemic and non-ischaemic cardiomyopathy. Several well-designed Phase II studies have met their primary endpoint and demonstrated an efficacy signal, which is remarkable considering that only one dose of cells was used. That an efficacy signal was seen 6–12 months after a single treatment provides a rationale for larger, rigorous trials. Importantly, no safety concerns have emerged. Amongst the various cell types tested, mesenchymal stromal cells derived from bone marrow (BM), umbilical cord, or adipose tissue show the greatest promise. In contrast, embryonic stem cells are not likely to become a clinical therapy. Unfractionated BM cells and cardiosphere-derived cells have been abandoned. The cell products used for HF will most likely be allogeneic. New approaches, such as repeated cell treatment and intravenous delivery, may revolutionize the field. As is the case for most new therapies, the development of cell therapies for HF has been slow, plagued by multifarious problems, and punctuated by many setbacks; at present, the utility of cell therapy in HF remains to be determined. What the field needs is rigorous, well-designed Phase III trials. The most important things to move forward are to keep an open mind, avoid preconceived notions, and let ourselves be guided by the evidence.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Mitesh Solankhi
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Xiang-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| | - Arunpreet Kahlon
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292
| |
Collapse
|
13
|
Akil AAS, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med 2021; 19:137. [PMID: 33794915 PMCID: PMC8017850 DOI: 10.1186/s12967-021-02778-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes affects millions of people globally and requires careful management to avoid serious long-term complications, including heart and kidney disease, stroke, and loss of sight. The type 1 diabetes patient cohort is highly heterogeneous, with individuals presenting with disease at different stages and severities, arising from distinct etiologies, and overlaying varied genetic backgrounds. At present, the “one-size-fits-all” treatment for type 1 diabetes is exogenic insulin substitution therapy, but this approach fails to achieve optimal blood glucose control in many individuals. With advances in our understanding of early-stage diabetes development, diabetes stratification, and the role of genetics, type 1 diabetes is a promising candidate for a personalized medicine approach, which aims to apply “the right therapy at the right time, to the right patient”. In the case of type 1 diabetes, great efforts are now being focused on risk stratification for diabetes development to enable pre-clinical detection, and the application of treatments such as gene therapy, to prevent pancreatic destruction in a sub-set of patients. Alongside this, breakthroughs in stem cell therapies hold great promise for the regeneration of pancreatic tissues in some individuals. Here we review the recent initiatives in the field of personalized medicine for type 1 diabetes, including the latest discoveries in stem cell and gene therapy for the disease, and current obstacles that must be overcome before the dream of personalized medicine for all type 1 diabetes patients can be realized.
Collapse
Affiliation(s)
- Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| | - Esraa Yassin
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aljazi Al-Maraghi
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khulod Al-Malki
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
14
|
de O Farias MC, Cavalcante TDLT, Assunção ML, Bueno NB. Association between maternal or cord blood concentrations of 25-hydroxycholecalciferol or vitamin D supplementation during pregnancy and the cytokines profile in the umbilical cord blood: Systematic literature review. J Steroid Biochem Mol Biol 2020; 203:105739. [PMID: 32846186 DOI: 10.1016/j.jsbmb.2020.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Evidence suggests that vitamin D suppresses the production of pro-inflammatory cytokines and induces the production of anti-inflammatory cytokines during pregnancy. OBJECTIVES To assess, through a systematic literature review, the relationship between maternal or cord blood concentrations of 25-hydroxycholecalciferol (25-OH-D) or vitamin D supplementation during pregnancy and the cytokines profile in the umbilical cord. METHODS The following databases were searched: PUBMED, CENTRAL, Web of Science, LILACS, and gray literature, up to July 2020. The search strategy included terms related to the exposure (25-OH-D) and the primary outcome (cytokines). Observational studies and randomized clinical trials were included, measuring cytokines in the umbilical cord blood, or in ex vivo bioassays, and blood concentrations of 25-OH-D, either throughout pregnancy or in the umbilical cord blood. Studies with twin pregnancies, with placental or autoimmune diseases, were excluded. The protocol is registered in PROSPERO (number CRD42019136643). RESULTS From 14,605 unique articles identified in the databases, 28 were read in full, and of these, eight met the eligibility criteria, being three randomized clinical trials, and five observational studies. The eight studies showed adequate methodological quality. IL-10 was the most studied cytokine, being reported in seven studies. There were higher concentrations of IL-10 in the umbilical cord of women with 25-OH-D sufficiency in the observational studies. Clinical trials showed mixed results with the use of ex vivo bioassays with several stimulants. Associations with other cytokines were less consistent or absent. CONCLUSION 25-OH-D status is positively associated with the IL-10 levels of the umbilical cord, in observational studies.
Collapse
Affiliation(s)
- Myrla C de O Farias
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil
| | - Thayse de L T Cavalcante
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil
| | - Monica L Assunção
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil
| | - Nassib B Bueno
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| |
Collapse
|
15
|
Fujiwara Y, Matsuoka KI, Iwamoto M, Sumii Y, Abe M, Mizuhara K, Urata T, Saeki K, Meguri Y, Asada N, Ennishi D, Nishimori H, Fujii K, Fujii N, Sugita J, Kobayashi H, Oto T, Maeda Y. Allogeneic hematopoietic stem cell transplantation in a prior lung transplant recipient. Int J Hematol 2020; 112:871-877. [PMID: 32803699 DOI: 10.1007/s12185-020-02967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Hematological diseases after solid organ transplant (SOT) are an emerging issue as the number of long-term SOT survivors increases. Expertise in managing patients requiring allogeneic hematopoietic stem cell transplantation (HSCT) after SOT from independent donors is needed; however, clinical reports of HSCT after SOT are limited, and the feasibility and risk are not well understood. In particular, HSCT in prior lung transplant recipients is thought to be complicated as the lung is immunologically distinct and is constantly exposed to the surrounding environment. Herein, we describe a case of successful HSCT in a patient with myelodysplastic syndromes who had previously received a lung transplant from a deceased donor for bronchiolitis obliterans syndrome. Reports about cases of HSCT after lung transplant are quite rare; thus, we discuss the mechanisms of immune tolerance through the clinical course of our case. This case suggests that HSCT after SOT can be considered a therapeutic option in cases where the transplanted organ is functionally retained and the hematological disease is in remission.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan.
| | - Miki Iwamoto
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Yuichi Sumii
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Masaya Abe
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Kentaro Mizuhara
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Tomohiro Urata
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Kyosuke Saeki
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Yusuke Meguri
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Keiko Fujii
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Junichi Sugita
- Department of Hematology, Hokkaido University Hospital, Hokkaido, Japan
| | - Hajime Kobayashi
- Department of Hematology, Obihiro Kosei Hospital, Hokkaido, Japan
| | - Takahiro Oto
- Department of Organ Transplant Center, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| |
Collapse
|
16
|
Abstract
The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.
Collapse
|
17
|
Enrich E, Vidal F, Corrales I, Campos E, Borràs N, Martorell L, Sánchez M, Querol S, Rudilla F. Improving cord blood typing with next-generation sequencing: impact of allele-level HLA and NIMA determination on their selection for transplantation. Bone Marrow Transplant 2020; 55:1623-1631. [DOI: 10.1038/s41409-020-0890-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
|
18
|
Chrostek MR, Fellows EG, Crane AT, Grande AW, Low WC. Efficacy of stem cell-based therapies for stroke. Brain Res 2019; 1722:146362. [PMID: 31381876 PMCID: PMC6815222 DOI: 10.1016/j.brainres.2019.146362] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Stroke remains a prevalent disease with limited treatment options. Available treatments offer little in the way of enhancing neurogenesis and recovery. Because of the limitations of available treatments, new therapies for stroke are needed. Stem cell-based therapies for stroke offer promise because of their potential to provide neurorestorative benefits. Stem cell-based therapies aim to promote neurogenesis and replacement of lost neurons or protect surviving neurons in order to improve neurological recovery. The mechanism through which stem cell treatments mediate their therapeutic effect is largely dependent on the type of stem cell and route of administration. Neural stem cells have been shown in pre-clinical and clinical trials to promote functional recovery when used in intracerebral transplantations. The therapeutic effects of neural stem cells have been attributed to their formation of new neurons and promotion of neuroregeneration. Bone marrow stem cells (BMSC) and mesenchymal stem cells (MSC) have been shown to enhance neurogenesis in pre-clinical models in intracerebral transplantations, but lack clinical evidence to support this therapeutic approach in patients and appear to be less effective than neural stem cells. Intravenous and intra-arterial administration of BMSC and MSC have shown more promise, where their effects are largely mediated through neuroprotective mechanisms. The immune system has been implicated in exacerbating initial damage caused by stroke, and BMSC and MSC have demonstrated immunomodulatory properties capable of dampening post-stroke inflammation and potentially improving recovery. While still in development, stem cell therapies may yield new treatments for stroke which can improve neurological recovery.
Collapse
Affiliation(s)
- Matthew R Chrostek
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Emily G Fellows
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Andrew T Crane
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Colicchia M, Jones DA, Beirne AM, Hussain M, Weeraman D, Rathod K, Veerapen J, Lowdell M, Mathur A. Umbilical cord-derived mesenchymal stromal cells in cardiovascular disease: review of preclinical and clinical data. Cytotherapy 2019; 21:1007-1018. [PMID: 31540804 DOI: 10.1016/j.jcyt.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The human umbilical cord has recently emerged as an attractive potential source of mesenchymal stromal cells (MSCs) to be adopted for use in regenerative medicine. Umbilical cord MSCs (UC-MSCs) not only share the same features of all MSCs such as multi-lineage differentiation, paracrine functions and immunomodulatory properties, they also have additional advantages, such as no need for bone marrow aspiration and higher self-renewal capacities. They can be isolated from various compartments of the umbilical cord (UC) and can be used for autologous or allogeneic purposes. In the past decade, they have been adopted in cardiovascular disease and have shown promising results mainly due to their pro-angiogenic and anti-inflammatory properties. This review offers an overview of the biological properties of UC-MSCs describing available pre-clinical and clinical data with respect to their potential therapeutic use in cardiovascular regeneration, with current challenges and future directions discussed.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Anne-Marie Beirne
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mohsin Hussain
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Deshan Weeraman
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Krishnaraj Rathod
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Jessry Veerapen
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mark Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
20
|
Zhao L, Cheng G, Choksi K, Samanta A, Girgis M, Soder R, Vincent RJ, Wulser M, De Ruyter M, McEnulty P, Hauptman J, Yang Y, Weiner CP, Dawn B. Transplantation of Human Umbilical Cord Blood-Derived Cellular Fraction Improves Left Ventricular Function and Remodeling After Myocardial Ischemia/Reperfusion. Circ Res 2019; 125:759-772. [PMID: 31462157 DOI: 10.1161/circresaha.119.315216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rationale: Human umbilical cord blood (hUCB) contains diverse populations of stem/progenitor cells. Whether hUCB-derived nonhematopoietic cells would induce cardiac repair remains unknown. Objective: To examine whether intramyocardial transplantation of hUCB-derived CD45-Lin- nonhematopoietic cellular fraction after a reperfused myocardial infarction in nonimmunosuppressed rats would improve cardiac function and ameliorate ventricular remodeling. Methods and Results: Nonhematopoietic CD45-Lin- cells were isolated from hUCB. Flow cytometry and quantitative polymerase chain reaction were used to characterize this subpopulation. Age-matched male Fischer 344 rats underwent a 30-minute coronary occlusion followed by reperfusion and 48 hours later received intramyocardial injection of vehicle or hUCB CD45-Lin- cells. After 35 days, compared with vehicle-treated rats, CD45-Lin- cell-treated rats exhibited improved left ventricular function, blunted left ventricular hypertrophy, greater preservation of viable myocardium in the infarct zone, and superior left ventricular remodeling. Mechanistically, hUCB CD45-Lin- cell injection favorably modulated molecular pathways regulating myocardial fibrosis, cardiomyocyte apoptosis, angiogenesis, and inflammation in postinfarct ventricular myocardium. Rare persistent transplanted human cells could be detected at both 4 and 35 days after myocardial infarction. Conclusions: Transplantation of hUCB-derived CD45-Lin- nonhematopoietic cellular subfraction after a reperfused myocardial infarction in nonimmunosuppressed rats ameliorates left ventricular dysfunction and improves remodeling via favorable paracrine modulation of molecular pathways. These findings with human cells in a clinically relevant model of myocardial ischemia/reperfusion in immunocompetent animals may have significant translational implications.Visual Overview: An online visual overview is available for this article.
Collapse
Affiliation(s)
- Lin Zhao
- From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)
| | - Guangming Cheng
- From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)
| | - Kashyap Choksi
- Cardiology Consultants of South Georgia, Thomasville (K.C.)
| | - Anweshan Samanta
- Department of Internal Medicine (A.S.), University of Missouri-Kansas City
| | - Magdy Girgis
- From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)
| | - Rupal Soder
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City (R.S., R.J.V., M.W., C.P.W.)
| | - Robert J Vincent
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City (R.S., R.J.V., M.W., C.P.W.)
| | - Michael Wulser
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City (R.S., R.J.V., M.W., C.P.W.)
| | - Matt De Ruyter
- Department of Orthopedic Surgery (M.D.R.), University of Missouri-Kansas City
| | - Patrick McEnulty
- Department of Radiology, University of Kansas School of Medicine-Wichita (P.M.)
| | - Jeryl Hauptman
- From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)
| | - Yanjuan Yang
- From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)
| | - Carl P Weiner
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City (R.S., R.J.V., M.W., C.P.W.)
| | - Buddhadeb Dawn
- From the Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine (L.Z., G.C., M.G., J.H., Y.Y., B.D.)
| |
Collapse
|
21
|
Elfeky R, Lazareva A, Qasim W, Veys P. Immune reconstitution following hematopoietic stem cell transplantation using different stem cell sources. Expert Rev Clin Immunol 2019; 15:735-751. [PMID: 31070946 DOI: 10.1080/1744666x.2019.1612746] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Adequate immune reconstitution post-HSCT is crucial for the success of transplantation, and can be affected by both patient- and transplant-related factors. Areas covered: A systematic literature search in PubMed, Scopus, and abstracts of international congresses is performed to investigate immune recovery posttransplant. In this review, we discuss the pattern of immune recovery in the post-transplant period focusing on the impact of stem cell source (bone marrow, peripheral blood stem cells, and cord blood) on immune recovery and HSCT outcome. We examine the impact of serotherapy on immune reconstitution and the need to tailor dosing of serotherapy agents when using different stem cell sources. We discuss new techniques being used particularly with cord blood and haploidentical grafts to improve immune recovery in each scenario. Expert opinion: Cord blood T cells provide a unique CD4+ biased immune reconstitution. Initial studies using targeted serotherapy with cord grafts showed improved immune recovery with limited alloreactivity. Two competing haploidentical approaches have developed in recent years including TCRαβ/CD19 depleted grafts and post-cyclophosphamide haplo-HSCT. Both approaches have comparable survival rates with limited alloreactivity. However, delayed immune reconstitution is still an ongoing problem and could be improved by modified donor lymphocyte infusions from the same haploidentical donor.
Collapse
Affiliation(s)
- Reem Elfeky
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Arina Lazareva
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Waseem Qasim
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Paul Veys
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| |
Collapse
|
22
|
Mourad N, Michel RP, Marcus VA. Pathology of Gastrointestinal and Liver Complications of Hematopoietic Stem Cell Transplantation. Arch Pathol Lab Med 2019; 143:1131-1143. [PMID: 30838881 DOI: 10.5858/arpa.2018-0282-ra] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT.— Despite advances in therapeutic and preventive measures, hematopoietic stem cell transplant recipients remain at risk for a variety of gastrointestinal and liver complications. OBJECTIVE.— To detail the pathologic features of the various gastrointestinal and liver complications occurring after hematopoietic stem cell transplantation in relation to their clinical context. The specific complications covered include graft-versus-host disease, mycophenolate mofetil-induced injury, timeline of infections, neutropenic enterocolitis, gastrointestinal thrombotic microangiopathy, sinusoidal obstruction syndrome, hepatic iron overload, and the controversy around cord colitis syndrome. DATA SOURCES.— The content of this article is based on pertinent peer-reviewed articles in PubMed, relevant textbooks, and on the authors' personal experiences. CONCLUSIONS.— The final histopathologic diagnosis requires the integration of clinical and histologic findings and the exclusion of other competing causes of injury. Review of the clinical data, including the original disease pretransplant, the type of transplant, the timing of the gastrointestinal and/or liver manifestations, the timing of the biopsy after transplant, the presence of graft-versus-host disease in other organs and sites, the list of drug regimens, and the clinical and laboratory evidence of infection, is the key to reaching the proper histologic diagnosis.
Collapse
Affiliation(s)
- Nathalie Mourad
- Faculté de médecine, département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Hôpital du Saint-Sacrement - CHU de Québec, Québec, Québec, Canada (Dr Mourad); the Department of Pathology, McGill University and McGill University Health Center, Montreal, Quebec, Canada (Drs Michel and Marcus)
| | - René P Michel
- Faculté de médecine, département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Hôpital du Saint-Sacrement - CHU de Québec, Québec, Québec, Canada (Dr Mourad); the Department of Pathology, McGill University and McGill University Health Center, Montreal, Quebec, Canada (Drs Michel and Marcus)
| | - Victoria A Marcus
- Faculté de médecine, département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Hôpital du Saint-Sacrement - CHU de Québec, Québec, Québec, Canada (Dr Mourad); the Department of Pathology, McGill University and McGill University Health Center, Montreal, Quebec, Canada (Drs Michel and Marcus)
| |
Collapse
|
23
|
Atkinson SP. Stem Cells Translational Medicine. Stem Cells Transl Med 2018; 7:503-505. [PMID: 30403443 PMCID: PMC6052606 DOI: 10.1002/sctm.18-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
|
24
|
Laskowitz DT, Bennett ER, Durham RJ, Volpi JJ, Wiese JR, Frankel M, Shpall E, Wilson JM, Troy J, Kurtzberg J. Allogeneic Umbilical Cord Blood Infusion for Adults with Ischemic Stroke: Clinical Outcomes from a Phase I Safety Study. Stem Cells Transl Med 2018; 7:521-529. [PMID: 29752869 PMCID: PMC6052613 DOI: 10.1002/sctm.18-0008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
Stroke is a major cause of death and long‐term disability, affecting one in six people worldwide. The only currently available approved pharmacological treatment for ischemic stroke is tissue plasminogen activator; however, relatively few patients are eligible for this therapy. We hypothesized that intravenous (IV) infusion of banked unrelated allogeneic umbilical cord blood (UCB) would improve functional outcomes in patients with ischemic stroke. To investigate this, we conducted a phase I open‐label trial to assess the safety and feasibility of a single IV infusion of non‐human leukocyte antigen (HLA) matched, ABO matched, unrelated allogeneic UCB into adult stroke patients. Ten participants with acute middle cerebral artery ischemic stroke were enrolled. UCB units were matched for blood group antigens and race but not HLA, and infused 3–9 days post‐stroke. The adverse event (AE) profile over a 12 month postinfusion period indicated that the treatment was well‐tolerated in these stroke patients, with no serious AEs directly related to the study product. Study participants were also assessed using neurological and functional evaluations, including the modified Rankin Score (mRS) and National Institute of Health Stroke Scale (NIHSS). At 3 months post‐treatment, all participants had improved by at least one grade in mRS (mean 2.8 ± 0.9) and by at least 4 points in NIHSS (mean 5.9 ± 1.4), relative to baseline. Together, these data suggest that a single i.v. dose of allogeneic non‐HLA matched human UCB cells is safe in adults with ischemic stroke, and support the conduct of a randomized, placebo‐controlled phase 2 study. stemcellstranslationalmedicine2018;7:521–529
Collapse
Affiliation(s)
| | | | - Rebecca J. Durham
- Robertson Clinical and Translational Cell Therapy Program, Duke Translational Research Institute/Duke UniversityDurhamNorth CarolinaUSA
| | - John J. Volpi
- Eddy Scurlock Stroke Center, Houston Methodist Neurological InstituteHoustonTexasUSA
| | - Jonathan R. Wiese
- Eddy Scurlock Stroke Center, Houston Methodist Neurological InstituteHoustonTexasUSA
| | - Michael Frankel
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Elizabeth Shpall
- MD Anderson Cancer Center, The University of TexasHoustonTexasUSA
| | - Jeffry M. Wilson
- MD Anderson Cancer Center, The University of TexasHoustonTexasUSA
| | - Jesse Troy
- Robertson Clinical and Translational Cell Therapy Program, Duke Translational Research Institute/Duke UniversityDurhamNorth CarolinaUSA
| | - Joanne Kurtzberg
- Robertson Clinical and Translational Cell Therapy Program, Duke Translational Research Institute/Duke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
25
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
26
|
Guo C, Wang Q, Cao X, Yang Y, Liu X, An L, Cai R, Du M, Wang G, Qiu Y, Peng Z, Han J, Ni S, Tan X, Jin L, Yu S, Wang H, Wang C, Wang X, Ma X. High-Throughput Sequencing Reveals Immunological Characteristics of the TRB-/IgH-CDR3 Region of Umbilical Cord Blood. J Pediatr 2016; 176:69-78.e1. [PMID: 27373756 DOI: 10.1016/j.jpeds.2016.05.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To compare the differences of immunological characteristics between newborn and adults, we performed high-throughput sequencing to reveal the diversity of umbilical cord blood and adult peripheral blood at both T-cell receptor beta chain (TRB) and immunoglobulin heavy chain (IGH) levels. STUDY DESIGN High-throughput sequencing was performed to analyze the expression of TRB-CDR3 and IGH-CDR3 in circulating T and B cells isolated from 20 healthy adults, 56 pregnant women, and 40 newborns. RESULTS Our results revealed different immunological characteristics between newborn and adults, such as distinctive complementarity determining region 3 (CDR3) lengths, usage bias of variable and joining segments, random nucleotide addition, a large number of unique CDR3 peptides, and a greater repertoire diversity. Moreover, each newborn had a distinctive TRB-/IGH-CDR3 repertoire that was independent of the maternal immune status. CONCLUSIONS This study presents comprehensive, unrestricted profiles of the TRB/IGH-CDR3 repertoire of newborns, pregnant women, and healthy adults at a sequence-level resolution. Our data may contribute to a better understanding of the immune system of newborns and benefit the efficient application of umbilical cord blood transplantation in future.
Collapse
Affiliation(s)
- Changlong Guo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Qidi Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Xiaofang Cao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.
| | - Ying Yang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Xin Liu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Laboratory of Human Genetics, Beijing Hypertension League Institute, Beijing, China
| | - Lisha An
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Ruikun Cai
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Meng Du
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Guangyu Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yue Qiu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Zuoqi Peng
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Jian Han
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | - Shuhua Ni
- First Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - Xuerui Tan
- First Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - Li Jin
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Song Yu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthy Care Hospital, Beijing, China
| | - Huiying Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunlin Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Stanford Genome Technology Center, Stanford University, Palo Alto, CA
| | - Xingyu Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Laboratory of Human Genetics, Beijing Hypertension League Institute, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Lucchini G, Perales MA, Veys P. Immune reconstitution after cord blood transplantation: peculiarities, clinical implications and management strategies. Cytotherapy 2016; 17:711-722. [PMID: 25946726 DOI: 10.1016/j.jcyt.2015.03.614] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/12/2015] [Indexed: 12/26/2022]
Abstract
Umbilical cord blood (UCB) is now widely used as an alternative hematopoietic stem cell source for patients lacking closely matched related or unrelated adult donors. UCB transplantation has traditionally been associated with delayed engraftment, poor immune reconstitution and consequent increased risk of infection. More recent clinical studies, however, suggest that conditioning regimens and in particular the omission of in vivo T-cell depletion may play a crucial role in post-transplant T-cell expansion, facilitating a uniquely rapid immune recovery after UCB transplantation. The peculiar characteristics of UCB cells, the importance of thymic function and the role of conditioning regimens and graft-versus-host disease influencing immune reconstitution are described. The last part of the review reports available data on UCB, as well as third-party peripheral blood derived anti-viral cell therapy, which provides a novel approach to rescue UCB recipients with viral complications in the post-transplant period.
Collapse
Affiliation(s)
- Giovanna Lucchini
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, United Kingdom.
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College, New York, USA
| | - Paul Veys
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
28
|
Beksac M. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants? Front Med (Lausanne) 2016; 2:95. [PMID: 26793711 PMCID: PMC4707249 DOI: 10.3389/fmed.2015.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow-mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation.
Collapse
|
29
|
Mehta RS, Shpall EJ, Rezvani K. Cord Blood as a Source of Natural Killer Cells. Front Med (Lausanne) 2016; 2:93. [PMID: 26779484 PMCID: PMC4700256 DOI: 10.3389/fmed.2015.00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Cord blood (CB) offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT). The risk of relapse and graft vs. host disease after cord blood transplantation (CBT) is lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen mismatch. Natural killer (NK) cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, and they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors ligand mismatch and outcomes after CBT. Finally, we will touch on current strategies for the use of CB NK cells in cellular immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center , Minneapolis, MN , USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
30
|
He B, Li X, Yu H, Zhou Z. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus. J Diabetes 2015; 7:762-73. [PMID: 25799887 DOI: 10.1111/1753-0407.12286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.
Collapse
Affiliation(s)
- Binbin He
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Haibo Yu
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, 2nd Xiangya Hospital, Central South University, Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
31
|
Baron F, Labopin M, Ruggeri A, Mohty M, Sanz G, Milpied N, Bacigalupo A, Rambaldi A, Bonifazi F, Bosi A, Sierra J, Yakoub-Agha I, Santasusana JMR, Gluckman E, Nagler A. Unrelated cord blood transplantation for adult patients with acute myeloid leukemia: higher incidence of acute graft-versus-host disease and lower survival in male patients transplanted with female unrelated cord blood--a report from Eurocord, the Acute Leukemia Working Party, and the Cord Blood Committee of the Cellular Therapy and Immunobiology Working Party of the European Group for Blood and Marrow Transplantation. J Hematol Oncol 2015; 8:107. [PMID: 26445106 PMCID: PMC4594748 DOI: 10.1186/s13045-015-0207-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
Background In the setting of allogeneic human leukocyte antigen (HLA)-matched bone marrow transplantation, transplanting male patients with grafts from female donors has been associated with a higher incidence of graft-versus-host disease (GVHD) and of nonrelapse mortality (NRM). The aim of the current analysis was to compare transplantation outcomes in male patients given female unrelated cord blood (UCB) versus other gender combinations. Patients and methods Data from 552 consecutive patients with acute myeloid leukemia (AML) given a single UCB transplantation between 2000 and 2014 were included. Results In comparison with other gender combination, male patients given female UCB (n = 131) had a trend for a higher incidence of grades II–IV acute GVHD (33 versus 25 %, P = 0.08), a trend for a higher incidence of NRM (41 versus 33 %, P = 0.06), and a lower leukemia-free (LFS, 30 versus 41 %, P = 0.01) and overall survival (OS, 33 versus 45 %, P = 0.008). In multivariate analyses, taking into consideration all patients for which data on HLA-matching and cell dose transplanted were fully available (n = 363), male patients transplanted with a female UCB had a trend for a higher incidence of grade III–IV acute GVHD (hazard ratio (HR) = 2.0, P = 0.06), a trend for a higher NRM (HR = 1.5, P = 0.06), and a worse LFS (HR = 1.4, P = 0.04) and OS (HR = 1.3, P = 0.06). Conclusions Our data suggest that male patients transplanted with female UCB might have higher risk of acute GVHD and of NRM leading to worse LFS and OS. These results should be confirmed in other large cohorts of patients before used for determining the choice of an UCB unit. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0207-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric Baron
- Department of Hematology, University of Liège, CHU Sart-Tilman, 4000, Liège, Belgium.
| | - Myriam Labopin
- EBMT Paris Office, Hospital Saint Antoine, Paris, France.
| | - Annalisa Ruggeri
- Eurocord, Hospital Saint Louis, AP-HP, and IUH University Paris VII, Paris, France. .,AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France.
| | - Mohamad Mohty
- AP-HP, Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, Paris, France.
| | - Guillermo Sanz
- Hospital Universitario La Fe - Servicio de Hematologia, Valencia, Spain.
| | - Noel Milpied
- CHU Bordeaux - Hôpital Haut-leveque, Pessac, France.
| | | | - Alessandro Rambaldi
- Azienda Ospedaliera Papa Giovanni XXIII-Hematology and Bone Marrow Transplant Unit, Bergamo, Italy.
| | - Francesca Bonifazi
- Institute of Hematology and Medical, Oncology L and A Seràgnoli, S.Orsola-Malpighi Hospital, Bologna University, Bologna, Italy.
| | - Alberto Bosi
- BMT Unit Department of Hematology, Ospedale di Careggi, Firenze, Italy.
| | - Jorge Sierra
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | | - Eliane Gluckman
- Eurocord, Hospital Saint Louis, AP-HP, and IUH University Paris VII, France Monacord, Centre Scientifique de Monaco, Monaco, Monaco.
| | - Arnon Nagler
- EBMT Paris Office, Hospital Saint Antoine, Paris, France. .,Division of Hematology and Bone Marrow Transplantation, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| |
Collapse
|
32
|
Park YS, Shin C, Hwang HS, Zenke M, Han DW, Kang YS, Ko K, Do Y, Ko K. In vitro generation of functional dendritic cells differentiated from CD34 negative cells isolated from human umbilical cord blood. Cell Biol Int 2015; 39:1080-6. [PMID: 25976739 DOI: 10.1002/cbin.10490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells that play a crucial role in the initiation of an immune response. As DC-based therapeutic applications is increasing, large-scale DC production is required for transplantation. Human umbilical cord blood (UCB) has been shown to contain a rare and precious population of hematopoietic stem cells (HSCs), which can give rise to DCs. The CD34 antigen has been widely used as a cell surface marker to identify HSCs. In this study, we used CD34 antibody to isolate CD34(+) and CD34(-) cells and compared the ability to differentiate into DCs. We used a two-step method combined with the magnetic bead sorting system to isolate CD34(+) and CD34(-) cells from human UCB. Analysis of cellular properties and functionality using a migration assay and T cell proliferation assay revealed no significant differences between CD34(+) cells and CD34(-) cells in their ability to generate DCs.
Collapse
Affiliation(s)
- Yo Seph Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 143-701, Korea
| | - Changsik Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil, 50, Ulsan 689-798, Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul 143-729, Korea
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen University, Aachen, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Korea
| | - Young Sun Kang
- Department of Biomedical Science and Technology, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 143-701, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, 156-756, Korea
| | - Yoonkyung Do
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil, 50, Ulsan 689-798, Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, 143-701, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, 143-701, Korea
| |
Collapse
|
33
|
Saliba RM, Rezvani K, Leen A, Jorgensen J, Shah N, Hosing C, Parmar S, Oran B, Olson A, Rondon G, Chen J, Martinez C, Hamdi A, Mehta RS, Chemaly RF, Saunders IM, Bollard CM, Shpall EJ. General and Virus-Specific Immune Cell Reconstitution after Double Cord Blood Transplantation. Biol Blood Marrow Transplant 2015; 21:1284-90. [PMID: 25708219 DOI: 10.1016/j.bbmt.2015.02.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
Cord blood transplantation (CBT) is curative for many patients with hematologic malignancies but is associated with delayed immune recovery and an increased risk of viral infections compared with HLA-matched bone marrow or peripheral blood progenitor cell transplantation. In this study we evaluated the significance of lymphocyte recovery in 125 consecutive patients with hematologic malignancies who underwent double-unit CBT (DUCBT) with an antithymocyte globulin-containing regimen at our institution. A subset of 65 patients was prospectively evaluated for recovery of T, natural killer (NK), and B cells, and in 46 patients we also examined viral-specific T cell recovery against adenovirus, Epstein-Barr virus, cytomegalovirus, BK virus, respiratory syncytial virus, and influenza antigen. Our results indicate that in recipients of DUCBT, the day 30 absolute lymphocyte count is highly predictive of nonrelapse mortality and overall survival. Immune recovery post-DUCBT was characterized by prolonged CD8+ and CD4+ T lymphopenia associated with preferential expansion of B and NK cells. We also observed profound delays in quantitative and functional recovery of viral-specific CD4+ and CD8+ T cell responses for the first year post-CBT. Taken together, our data support efforts aimed at optimizing viral-specific T cell recovery to improve outcomes post-CBT.
Collapse
Affiliation(s)
- Rima M Saliba
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Ann Leen
- Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Jeffrey Jorgensen
- Department of Laboratory Medicine, MD Anderson Cancer Center, Houston, Texas
| | - Nina Shah
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Simrit Parmar
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Julianne Chen
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Charles Martinez
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Amir Hamdi
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Roy F Chemaly
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas
| | - Ila M Saunders
- Hematology/Oncology and Bone Marrow Transplant, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Catherine M Bollard
- Division of Blood and Marrow Transplantation, Children's National Hospital System and George Washington University, Washington, DC
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
34
|
Del Pino A, Ligero G, López MB, Navarro H, Carrillo JA, Pantoll SC, Díaz de la Guardia R. Morphology, cell viability, karyotype, expression of surface markers and plasticity of three human primary cell line cultures before and after the cryostorage in LN2 and GN2. Cryobiology 2014; 70:1-8. [PMID: 25445570 DOI: 10.1016/j.cryobiol.2014.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023]
Abstract
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2.
Collapse
Affiliation(s)
- Alberto Del Pino
- Biobanco del Sistema Sanitario Público de Andalucía (BBSSPA), Centro de Investigaciones Biomédicas, Consejería de Salud - Universidad de Granada, Granada, Spain
| | - Gertrudis Ligero
- Biobanco del Sistema Sanitario Público de Andalucía (BBSSPA), Centro de Investigaciones Biomédicas, Consejería de Salud - Universidad de Granada, Granada, Spain
| | - María B López
- Department of Physiology, Institute of Nutrition and Food Technology, University of Granada, Granada, Spain
| | - Héctor Navarro
- Biobanco del Sistema Sanitario Público de Andalucía (BBSSPA), Centro de Investigaciones Biomédicas, Consejería de Salud - Universidad de Granada, Granada, Spain
| | - Jose A Carrillo
- Biobanco del Sistema Sanitario Público de Andalucía (BBSSPA), Centro de Investigaciones Biomédicas, Consejería de Salud - Universidad de Granada, Granada, Spain
| | - Siobhan C Pantoll
- Biobanco del Sistema Sanitario Público de Andalucía (BBSSPA), Centro de Investigaciones Biomédicas, Consejería de Salud - Universidad de Granada, Granada, Spain
| | - Rafael Díaz de la Guardia
- Biobanco del Sistema Sanitario Público de Andalucía (BBSSPA), Centro de Investigaciones Biomédicas, Consejería de Salud - Universidad de Granada, Granada, Spain.
| |
Collapse
|
35
|
Pereira-Cunha FG, Duarte ASS, Reis-Alves SC, Olalla Saad ST, Metze K, Lorand-Metze I, Luzo ÂCM. Umbilical cord blood CD34(+) stem cells and other mononuclear cell subtypes processed up to 96 h from collection and stored at room temperature maintain a satisfactory functionality for cell therapy. Vox Sang 2014; 108:72-81. [PMID: 25333825 DOI: 10.1111/vox.12199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/13/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Umbilical cord blood (UCB) is a good stem cell source for cell therapy. We recently demonstrated that cord blood mononuclear cell (MNCs) subtypes were viable and functional until 96 h after collection, even stored at room temperature. Now, we analyzed the viability and functionality of the cells before and after cryopreservation. MATERIALS AND METHODS Twenty UCB units were analyzed at 24 and 96 h after collection, frozen for 6 months, thawed and re-evaluated. MNCs were analyzed by flow cytometry, viability by 7-AAD and clonogenic assays (CFU) were performed. RESULTS After 96 h of storage, no substantial loss of MNC was found (median 7.320 × 10(6 ) × 6.05 × 10(6) ). Percentage and viability CD34(+) cells, B-cell precursors and mesenchymal stem cells were not affected. However, mature B and T lymphocytes as well as granulocytes had a substantial loss. CFU growth was observed in all samples. Prefreezing storage of 96 h was associated with a relative loss of colony formation (median 12%). Postthaw, this loss had a median of 49% (24 h samples) to 56% (96 h samples). CONCLUSION The delay of 96 h before UCB processing is possible, without a prohibitive impairment of CD34(+) loss in number and functionality.
Collapse
Affiliation(s)
- F G Pereira-Cunha
- Flow Cytometry Laboratory, Haematology Hemotherapy Center, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol 2014; 5:68. [PMID: 24605111 PMCID: PMC3932655 DOI: 10.3389/fimmu.2014.00068] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSC) for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD) are unavailable. Although the overall survival results for UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cord blood. Furthermore, limited cell numbers and the non-availability of donor lymphocyte infusions currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infections, mixed chimerism, and disease relapse. To further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarizes our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides a comprehensive overview of promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third-party donors; isolation and expansion of natural killer cells, pathogen-specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation.
Collapse
Affiliation(s)
- Robert Danby
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| | - Vanderson Rocha
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Trust , Oxford , UK ; NHS Blood and Transplant, John Radcliffe Hospital , Oxford , UK ; Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH , Paris , France
| |
Collapse
|
37
|
Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Pai SY, Ballard B, Bauer SC, Bleesing JJH, Boyle M, Brower A, Buckley RH, van der Burg M, Burroughs LM, Candotti F, Cant AJ, Chatila T, Cunningham-Rundles C, Dinauer MC, Dvorak CC, Filipovich AH, Fleisher TA, Bobby Gaspar H, Gungor T, Haddad E, Hovermale E, Huang F, Hurley A, Hurley M, Iyengar S, Kang EM, Logan BR, Long-Boyle JR, Malech HL, McGhee SA, Modell F, Modell V, Ochs HD, O'Reilly RJ, Parkman R, Rawlings DJ, Routes JM, Shearer WT, Small TN, Smith H, Sullivan KE, Szabolcs P, Thrasher A, Torgerson TR, Veys P, Weinberg K, Zuniga-Pflucker JC. Primary Immune Deficiency Treatment Consortium (PIDTC) report. J Allergy Clin Immunol 2014; 133:335-47. [PMID: 24139498 PMCID: PMC3960312 DOI: 10.1016/j.jaci.2013.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 02/03/2023]
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases. Current protocols address the natural history of patients treated for severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, and chronic granulomatous disease through retrospective, prospective, and cross-sectional studies. The PIDTC additionally seeks to encourage training of junior investigators, establish partnerships with European and other International colleagues, work with patient advocacy groups to promote community awareness, and conduct pilot demonstration projects. Future goals include the conduct of prospective treatment studies to determine optimal therapies for primary immunodeficiency diseases. To date, the PIDTC has funded 2 pilot projects: newborn screening for SCID in Navajo Native Americans and B-cell reconstitution in patients with SCID after hematopoietic stem cell transplantation. Ten junior investigators have received grant awards. The PIDTC Annual Scientific Workshop has brought together consortium members, outside speakers, patient advocacy groups, and young investigators and trainees to report progress of the protocols and discuss common interests and goals, including new scientific developments and future directions of clinical research. Here we report the progress of the PIDTC to date, highlights of the first 2 PIDTC workshops, and consideration of future consortium objectives.
Collapse
Affiliation(s)
- Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Morton J Cowan
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Luigi D Notarangelo
- Division of Immunology, the Manton Center for Orphan Disease Research, Children's Hospital, and Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Donald B Kohn
- Departments of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | - Jennifer M Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif; Institute for Human Genetics, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Pediatric Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Sarah C Bauer
- Developmental and Behavioral Pediatrics, Lurie Children's Hospital of Chicago, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Jack J H Bleesing
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Amy Brower
- Newborn Screening Translational Research Network, American College of Medical Genetics and Genomics, Bethesda, Md
| | - Rebecca H Buckley
- Pediatric Allergy and Immunology, Duke University School of Medicine, Durham, NC
| | | | - Lauri M Burroughs
- Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Wash
| | - Fabio Candotti
- Genetics & Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Andrew J Cant
- Pediatric Immunology and Infectious Diseases and Pediatric Bone Marrow Transplant, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| | - Talal Chatila
- Pediatric Allergy/Immunology, Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Mary C Dinauer
- Pediatric Hematology/Oncology, Washington University School of Medicine, St Louis, Mo
| | - Christopher C Dvorak
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Alexandra H Filipovich
- Pediatric Clinical Immunology, Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Hubert Bobby Gaspar
- Pediatric Immunology, Center for Immunodeficiency, Institute of Child Health, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Tayfun Gungor
- Pediatric Immunology and Blood and Marrow Transplantation, Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elie Haddad
- Pediatric Immunology, Mother and Child Ste-Justine Hospital, Montreal, Quebec, Canada
| | | | - Faith Huang
- Pediatric Allergy/Immunology, Mount Sinai Medical Center, New York, NY
| | - Alan Hurley
- Chronic Granulomatous Disease Association, San Marino, Calif
| | - Mary Hurley
- Chronic Granulomatous Disease Association, San Marino, Calif
| | | | - Elizabeth M Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Brent R Logan
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Janel R Long-Boyle
- Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, Calif
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sean A McGhee
- Pediatric Allergy/Immunology, Lucile Packard Children's Hospital, Stanford University Medical Center, Stanford, Calif
| | | | | | - Hans D Ochs
- Center for Immunity and Immunotherapy, Seattle Children's Hospital Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Richard J O'Reilly
- Pediatrics and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robertson Parkman
- Division of Research Immunology/B.M.T., Children's Hospital Los Angeles, Los Angeles, Calif
| | - David J Rawlings
- Pediatric Immunology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - John M Routes
- Pediatric Allergy and Clinical Immunology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - William T Shearer
- Pediatric Allergy & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Trudy N Small
- Pediatric Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Kathleen E Sullivan
- Pediatric Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Paul Szabolcs
- Bone Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Adrian Thrasher
- Pediatric Immunology, Center for Immunodeficiency, Institute of Child Health, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Troy R Torgerson
- Pediatric Rheumatology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Paul Veys
- Blood and Marrow Transplantation, Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | - Kenneth Weinberg
- Pediatric Stem Cell Transplantation and Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, Calif
| | | |
Collapse
|
38
|
Rieber N, Gille C, Köstlin N, Schäfer I, Spring B, Ost M, Spieles H, Kugel HA, Pfeiffer M, Heininger V, Alkhaled M, Hector A, Mays L, Kormann M, Zundel S, Fuchs J, Handgretinger R, Poets CF, Hartl D. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol 2013; 174:45-52. [PMID: 23701226 DOI: 10.1111/cei.12143] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 01/15/2023] Open
Abstract
Neonates show an impaired anti-microbial host defence, but the underlying immune mechanisms are not understood fully. Myeloid-derived suppressor cells (MDSCs) represent an innate immune cell subset characterized by their capacity to suppress T cell immunity. In this study we demonstrate that a distinct MDSC subset with a neutrophilic/granulocytic phenotype (Gr-MDSCs) is highly increased in cord blood compared to peripheral blood of children and adults. Functionally, cord blood isolated Gr-MDSCs suppressed T cell proliferation efficiently as well as T helper type 1 (Th1), Th2 and Th17 cytokine secretion. Beyond T cells, cord blood Gr-MDSCs controlled natural killer (NK) cell cytotoxicity in a cell contact-dependent manner. These studies establish neutrophilic Gr-MDSCs as a novel immunosuppressive cell subset that controls innate (NK) and adaptive (T cell) immune responses in neonates. Increased MDSC activity in cord blood might serve as key fetomaternal immunosuppressive mechanism impairing neonatal host defence. Gr-MDSCs in cord blood might therefore represent a therapeutic target in neonatal infections.
Collapse
Affiliation(s)
- N Rieber
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Newell LF, Flowers MED, Gooley TA, Milano F, Carpenter PA, Martin PJ, Delaney C. Characteristics of chronic GVHD after cord blood transplantation. Bone Marrow Transplant 2013; 48:1285-90. [PMID: 23584444 DOI: 10.1038/bmt.2013.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/06/2013] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
Most reports of chronic GVHD after cord blood transplantation (CBT) have utilized traditional diagnostic criteria. We used traditional criteria and National Institutes of Health (NIH) criteria prospectively to evaluate chronic GVHD in a cohort of 87 adult and pediatric recipients of single or double unrelated CBT for treatment of hematologic malignancies. Fifty-four patients developed traditionally defined chronic GVHD, for an estimated 2-year probability of 64%. Among 54 patients, 25 (46%) met the NIH criteria for persistent, recurrent or late acute GVHD at onset. Twenty-four (44%) had overlap chronic GVHD, including one who presented initially with late acute GVHD, and only seven (13%) had classic chronic GVHD, including one who also presented initially with late acute GVHD. Among patients who successfully discontinued all systemic immunosuppression (SI), the median time to discontinuation of corticosteroid treatment was 315 days (range 28-977), and the median time to discontinuation of all SI was 353 days (range 67-977). Chronic GVHD diagnosed by traditional criteria after CBT had a predominance of acute GVHD clinical features.
Collapse
Affiliation(s)
- L F Newell
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, WA, USA [2] Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA [3] Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Science University (OHSU) Knight Cancer Institute, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Andrade PZ, dos Santos F, Cabral JMS, da Silva CL. Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J Tissue Eng Regen Med 2013; 9:988-1003. [PMID: 23564692 DOI: 10.1002/term.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Umbilical cord blood (UCB) transplantation has observed a significant increase in recent years, due to the unique features of UCB haematopoietic stem/progenitor cells (HSCs) for the treatment of blood-related disorders. However, the low cell numbers available per UCB unit significantly impairs the widespread use of this source for transplantation of adult patients, resulting in graft failure, delayed engraftment and delayed immune reconstitution. In order to overcome this issue, distinct approaches are now being considered in clinical trials, such as double-UCB transplantation, intrabone injection or ex vivo expansion. In this article the authors review the current state of the art, future trends and challenges on the ex vivo expansion of UCB HSCs, focusing on culture parameters affecting the yield and quality of the expanded HSC grafts: novel HSC selection schemes prior to cell culture, cytokine/growth factor cocktails, the impact of biochemical factors (e.g. O2 ) or the addition of supportive cells, e.g. mesenchymal stem/stromal cell (MSC)-based feeder layers) were addressed. Importantly, a critical challenge in cellular therapy is still the scalability, reproducibility and control of the expansion process, in order to meet the clinical requirements for therapeutic applications. Efficient design of bioreactor systems and operation modes are now the focus of many bioengineers, integrating the increasing 'know-how' on HSC biology and physiology, while complying with the GMP standards for the production of cellular products, i.e. through the use of commercially available, highly controlled, disposable technologies.
Collapse
Affiliation(s)
- Pedro Z Andrade
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Francisco dos Santos
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
41
|
Lo WC, Chen WH, Lin TC, Hwang SM, Zeng R, Hsu WC, Chiang YM, Liu MC, Williams DF, Deng WP. Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines. Biomaterials 2013; 34:4739-48. [PMID: 23557858 DOI: 10.1016/j.biomaterials.2013.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a common rheumatic disease associated with imbalanced cartilage homeostasis which could be corrected by mesenchymal stem cells (MSCs) therapy. However, MSCs from different origins might exhibit distinct differentiation capacities. This study was undertaken to compare the therapeutic efficacies between MSCs from cord blood (CB-MSCs) and bone marrow (BM-MSCs) on OA treatment. The surface phenotypes and multipotent capacities of CB-MSCs and BM-MSCs were first characterized. The coculture commitment system was subsequently utilized for comparing the patterned molecules in stage-specific chondrogenesis of committed MSCs. For examining the therapeutic efficacies, committed CB-MSCs and BM-MSCs were encapsulated in neo-cartilage and subjected into pro-inflammatory cytokine environment. Finally, chondrogenic and inflammatory cytokine profiles in committed MSCs were evaluated. CB-MSCs and BM-MSCs were both negative for hematopoietic markers and positive for adhesion and mesenchymal cell markers. The CB-MSCs showed a markedly higher chondrogenic potential and relatively lower osteogenic and adipogenic capacities than BM-MSCs. During chondrogenesis, the committed CB-MSCs also showed significant increases in cell proliferation, adhesion molecules, signaling molecules, and chondrogenic-specific gene expressions in a coculture system. For the therapeutic efficacies, the committed CB-MSCs could strongly recover the pro-inflammatory cytokines diminished-Col II and proteoglycan expressions in a 3D arthritic model. The IL-10, ICAM-1 and TGF-β1 were also up-regulated in committed CB-MSCs analyzed by using cytokine profiling. Our data demonstrate that CB-MSCs possess specific advantages in cartilage regeneration over BM-MSCs. The CB-MSCs showed a better therapeutic potential that can contribute to advanced cell-based transplantation for clinical OA therapy.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pereira-Cunha FG, Duarte ASS, Costa FF, Saad STO, Lorand-Metze I, Luzo ACM. Viability of umbilical cord blood mononuclear cell subsets until 96 hours after collection. Transfusion 2013; 53:2034-42. [PMID: 23320473 DOI: 10.1111/trf.12078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is a good source of hematopoietic stem cells for transplantation and cell therapy. In 2006, the Brazilian Public Network of Cord Blood Banks was founded; however, because our country is large, logistic problems could hamper the collection of numerous samples. Our aim was to evaluate the viability of several UCB cell subsets until 96 hours after collection, to examine whether this delay would be acceptable for processing and freezing the samples. STUDY DESIGN AND METHODS Two experiments were performed: in the first one, volume reduction of the UCB units was carried out before analysis. In the second one, analysis was carried out with no previous manipulation. Samples were stored at room temperature and one aliquot was taken daily for analysis. We examined CD34+ cell, B-cell precursor, mature B and T lymphocyte, monocyte, granulocyte, and mesenchymal stem cell (MSCs) concentrations. RESULTS Thirty-six UCB units were analyzed. CD34+ cells and mature T lymphocytes increased (viability 99%). Mature B lymphocytes and MSCs decreased, maintaining viability. Granulocytes decreased with loss of viability. Monocytes and immature B lymphocytes remained stable. Clonogenic assays showed a decrease in colony-forming unit (CFU) number in UCB units stored for 96 hours. CONCLUSION UCB manipulation did not influence cell viability. All cell subsets remained viable until 96 hours after collection. CD34+ cells and T lymphocytes increased, probably due to the loss of other subsets. CFU growth during the period analyzed and confirmed stem cell functionality, despite the decrease at 96 hours. Results demonstrated that UCB units could probably be processed up to 96 hours after collection.
Collapse
Affiliation(s)
- Fernanda G Pereira-Cunha
- Flow Cytometry Laboratory and Public Umbilical Cord Blood Bank of Haematology Hemotherapy Center, INCT do Sangue, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Bartelink IH, Belitser SV, Knibbe CAJ, Danhof M, de Pagter AJ, Egberts TCG, Boelens JJ. Immune reconstitution kinetics as an early predictor for mortality using various hematopoietic stem cell sources in children. Biol Blood Marrow Transplant 2012; 19:305-13. [PMID: 23092812 DOI: 10.1016/j.bbmt.2012.10.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/10/2012] [Indexed: 11/15/2022]
Abstract
The severity of complications of allogeneic hematopoietic stem cell transplantation (HSCT) is governed mainly by the status of immune reconstitution. In this study, we investigated differences in immune reconstitution with different cell sources and the association between the kinetics of immune reconstitution and mortality. Immunophenotyping was performed every 2 weeks in children who had undergone HSCT between 2004 and 2008 at University Medical Center Utrecht. Lymphocyte reconstitution in the first 90 days after HSCT was studied in relation to mortality in 3 HSCT groups: matched sibling bone marrow (BM) recipients (35 patients), unrelated BM recipients (32 patients), and unrelated cord blood recipients (36 patients). The median age of recipients was 5.9 years (range, 0.1-21 years). The nature and speed of T cell, B cell, and natural killer (NK) cell reconstitution were highly dependent on the cell source. In the first 90 days after HSCT, faster B cell and NK cell reconstitution and delayed T cell reconstitution were shown in unrelated cord blood recipients compared with matched sibling BM and unrelated BM recipients. Of the lymphocyte subsets investigated, a large number of NK cells and a more rapid CD4(+) immune reconstitution over time, resulting in sustained higher CD4(+) counts, were the only predictors of a lower mortality risk in all cell sources. The final model showed that during the first 90 days, patients with an area under the CD4(+) cell receiver- operating curve of >4,300 cells/day and no peak in CD4(+) cell counts had the highest likelihood of survival (hazard ratio for mortality, 0.2; 95% confidence interval, 0.06-0.5). Our data indicate that CD4(+) kinetics may be used to identify patients at greatest risk for mortality early after HSCT.
Collapse
|
44
|
Charrier E, Cordeiro P, Brito RM, Mezziani S, Herblot S, Le Deist F, Duval M. Reconstitution of maturating and regulatory lymphocyte subsets after cord blood and BMT in children. Bone Marrow Transplant 2012; 48:376-82. [PMID: 23064038 DOI: 10.1038/bmt.2012.176] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Some clinical characteristics of cord blood transplantation (CBT) might be explained by specificities in the reconstitution of immune subsets differing by their maturation stage or their implication in GVHD, tolerance or immune responses against tumor or infectious agents. Here, we compare the immune reconstitution of several of these subsets after CBT and BMT. B-cell count recovery was faster after CBT. There was no difference in the recovery of CD4(+) and CD8(+) cell counts. There was no difference either in the frequency of several subsets: CD45RO(+) memory, and CD45RA(+) naïve cells within the CD4(+) T-cell compartment, CD27(+) among B cells, CD56(bright), NKG2A(+), and KIR(+) cells among natural killer (NK) cells, CD25(+)FOXP3(+) regulatory T cells and invariant NKT cells. The proportion of the thymic naïve CD31(+)CD45RA(+)CD4(+) T cells was lower after CBT at 6 months post-transplant, and was still below normal at 1 year in both groups. NK-cell expansion was more sustained after CBT, with fewer double-negative NKG2A(-)KIR(-) hyporesponsive cells and more double-positive NKG2A(+)KIR(+) hyper-responsive NK cells. These results, therefore, indicate that further research to improve CBT outcome should try to improve thymopoieisis and take advantage of the sustained NK-cell reconstitution.
Collapse
Affiliation(s)
- E Charrier
- Groupe de Recherche En Transplantation et Immunologie du Sang de Cordon (GRETISC), Centre de Cancérologie Charles Bruneau, Centre de recherche du CHU Sainte-Justine, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol 2012; 42:45-57. [PMID: 22134956 DOI: 10.1007/s12016-011-8289-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because of its easier accessibility and less severe graft-versus-host disease, umbilical cord blood (UCB) has been increasingly used as an alternative to bone marrow for hematopoietic stem cell transplantation. Naiveté of UCB lymphocytes, however, results in delayed immune reconstitution and infection-related mortality in transplant recipients. This review updates the phenotypic and functional deficiencies of various immune cell populations in UCB compared with their adult counterparts and discusses clinical implications and possible therapeutic strategies to improve the outcome of stem cell transplantation.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
47
|
Yang J, Fan H, Hao J, Ren Y, Chen L, Li G, Xie R, Yang Y, Qian K, Liu M. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/Th17 balance in a mouse model. Transfusion 2011; 52:1333-47. [PMID: 22098312 DOI: 10.1111/j.1537-2995.2011.03448.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human cord blood (CB) is a superior source of regulatory T cells (Tregs) compared with peripheral blood. Initial studies have shown that CB-derived Tregs can be effectively expanded ex vivo. However, in vitro suppressor activity of expanded CB-Tregs and their efficacy in the prevention of acute graft-versus-host disease (aGVHD) in vivo are poorly understood. STUDY DESIGN AND METHODS In vitro, human CB CD4+CD25+ T cells expanded with anti-CD3/CD28 beads plus interleukin (IL)-2 and the phenotypes, expression of cytokines, and suppression of expanded cells were analyzed after two cycles of stimulation. In vivo, the addition of human CB-Tregs was transferred in the major histocompatibility complex-mismatched aGVHD mouse model. Survival, body weight, GVHD scoring, histopathologic specimens, serum cytokines, and Th subsets were analyzed in CB-Treg-treated mice and untreated controls. RESULTS After being expanded ex vivo, human CB-derived Tregs with potent suppressor function could meet clinical demands. Up to 85% of mice with CB-Tregs treatment survived beyond Day 63 after bone marrow transplantation; however, all aGVHD mice died within 18 days. In the serum of the CB-Treg-treated mice, the production of transforming growth factor-β increased continuously, as opposed to IL-17, which decreased quickly. Consistent with the changes of cytokines, the percentage of mouse CD4+ forkhead box protein 3+ Tregs increased while that of Th17 cells decreased. CONCLUSION Ex vivo expanded human CB-Tregs significantly prevented allogeneic aGVHD in vivo by modulating various cytokine secretion and polarizing the Treg/Th17 balance toward Treg, which suggests the potential use of expanded CB-Tregs as a therapeutic approach for GVHD.
Collapse
Affiliation(s)
- Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|