1
|
Li Y, Ma L, Xiong Y, Shi J, Zhang F, Chai Q, Hu G, Liu Y. Delivering Relaxin Plasmid by Polymeric Metformin Lipid Nanoparticles for Liver Fibrosis Treatment. Curr Drug Deliv 2024; 21:431-437. [PMID: 37032506 DOI: 10.2174/1567201820666230407135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Liver fibrosis usually progresses to liver cirrhosis and even results in hepatocellular carcinoma, which accounts for one million deaths annually worldwide. To date, anti-liver fibrosis drugs for clinical treatment have not yet been approved. Nowadays, as a natural regulator, Relaxin (RLX) has received increased attention because the expression of RLX could deactivate the activation of hepatic stellate cells (aHSCs) and resolve liver fibrosis. However, its application in treatment is limited due to the short half-life in circulation and low accumulation within the target organ. METHODS To address these problems, a kind of polymeric metformin (PolyMet)-loaded relaxin plasmid (pRLX) core-membrane lipid nanoparticle (PolyMet-pRLX-LNPs, PRLNP) was prepared. Here, PolyMet was used as a carrier to replace the traditional polymer polyethylene diene (PEI), which is of higher toxicity, to prolong the circulation time of pRLX in vivo. Then, the antifibrotic ability of PRLNP to overcome liver fibrosis was carried out in C57BL/6 mice. It is worth mentioning that this is the first time to investigate the potential of PRLNP in carbon tetrachloride-induced liver fibrosis. RESULTS The results showed that PRLNP effectively downregulated fibrosis-related biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, histopathological examinations also showed low collagen accumulation, revealing that PRLNP could histologically and functionally alleviate liver fibrosis. In addition, no significant difference in serum biochemical value between the PRLNP and the normal group, suggesting the safety profile of PRLNP. CONCLUSION This research proposed a novel non-toxic treatment method for liver fibrosis with a nanosystem to effectively treat liver fibrosis.
Collapse
Affiliation(s)
- Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feifeng Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gengshan Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
2
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
3
|
Eshun GB, Osonga FJ, Erdogan T, Gölcü A, Sadik OA. Controlled synthesis and computational analysis of gold nanostars for the treatment of Fusarium oxysporum. RSC Adv 2023; 13:21781-21792. [PMID: 37476037 PMCID: PMC10354592 DOI: 10.1039/d3ra04088g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Fusarium oxysporum (F. oxysporum) is linked to the widespread fusarium wilt in plants affecting the quality and yield of food crops. Management of fusarium wilt by synthetic fertilizers poses safety concerns. Safer-by-design nanomaterials synthesized with a greener approach can meet the needs of commercial antifungal drug resistance. Herein, a simple aqueous reduction method has been adopted for the synthesis of anisotropic gold nanostars (AuNSs) using quercetin-para aminobenzoic acid (QPABA) as both a reducing and stabilizing agent at room temperature for the treatment of F. oxysporum. QPABA was used to control the growth of Au3+ star-shaped nanoparticles at increasing concentrations in the ratio of 2 : 1 (QPABA : Au3+ ions) respectively. Transmission electron microscopy (TEM) analysis of the as-prepared gold nanoparticles confirmed the formation of nanostars with sizes of 40 ± 2 nm. The formation of anisotropic gold nanoparticles was evaluated by UV-vis characterizations which showed longitudinal surface plasmon modes at 540 and 800 nm. The gold nanoparticles exhibit excellent antifungal activity against F. oxysporum with the minimum inhibitory concentration (MIC) of 100 μg mL-1 using an agar well-diffusion assay. AuNSs proved to be efficacious in controlling F. oxysporum, as shown in the SEM analysis with a disintegrated cell membrane upon treatment. Computational analysis was performed to determine the specific binding sites on the QPABA ligand for gold ion interactions using the DFT B3LYP method, with a 6-31+G(d) basis set. Results showed that the interaction between Au3+ and QPABA at the 4 and 3 positions yielded the highest stability and formation of gold nanostars. The results suggest that the synthesized AuNSs act as a promising antifungal agent with great potential in treating frequent fungal infections that affect agricultural production.
Collapse
Affiliation(s)
- Gaddi B Eshun
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights 151 Warren Street Newark NJ 07102 USA
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights 151 Warren Street Newark NJ 07102 USA
| | - Taner Erdogan
- Kocaeli Vocat Sch, Department of Chemistry and Chemical Processing Technologies, Kocaeli University Kocaeli 41380 Turkey
| | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Science and Letter, Istanbul Technical University Istanbul 34469 Turkey
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights 151 Warren Street Newark NJ 07102 USA
| |
Collapse
|
4
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. Tumor microenvironment responsive nanocarriers for gene therapy. Chem Commun (Camb) 2022; 58:8754-8765. [PMID: 35880654 DOI: 10.1039/d2cc02759c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli responsive nanocarriers are important non-viral gene carriers for gene therapy. We discuss the stimulus conditions and then highlight various stimuli responsive nanocarriers in the tumor microenvironment for cancer gene therapy. We hope that this review will inspire readers to develop more effective stimuli responsive nanocarriers for delivering genes.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
5
|
Toma I, Porfire AS, Tefas LR, Berindan-Neagoe I, Tomuță I. A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA. Pharmaceutics 2022; 14:1482. [PMID: 35890377 PMCID: PMC9322860 DOI: 10.3390/pharmaceutics14071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is the leading cause of death worldwide. Tumors consist of heterogeneous cell populations that have different biological properties. While conventional cancer therapy such as chemotherapy, radiotherapy, and surgery does not target cancer cells specifically, gene therapy is attracting increasing attention as an alternative capable of overcoming these limitations. With the advent of gene therapy, there is increasing interest in developing non-viral vectors for genetic material delivery in cancer therapy. Nanosystems, both organic and inorganic, are the most common non-viral vectors used in gene therapy. The most used organic vectors are polymeric and lipid-based delivery systems. These nanostructures are designed to bind and protect the genetic material, leading to high efficiency, prolonged gene expression, and low toxicity. Quality by Design (QbD) is a step-by-step approach that investigates all the factors that may affect the quality of the final product, leading to efficient pharmaceutical development. This paper aims to provide a new perspective regarding the use of the QbD approach for improving the quality of non-viral vectors for genetic material delivery and their application in cancer therapy.
Collapse
Affiliation(s)
- Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| |
Collapse
|
6
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
7
|
Bellotti E, Cascone MG, Barbani N, Rossin D, Rastaldo R, Giachino C, Cristallini C. Targeting Cancer Cells Overexpressing Folate Receptors with New Terpolymer-Based Nanocapsules: Toward a Novel Targeted DNA Delivery System for Cancer Therapy. Biomedicines 2021; 9:biomedicines9091275. [PMID: 34572461 PMCID: PMC8471118 DOI: 10.3390/biomedicines9091275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemotherapeutics represent the standard treatment for a wide range of cancers. However, these agents also affect healthy cells, thus leading to severe off-target effects. Given the non-selectivity of the commonly used drugs, any increase in the selective tumor tissue uptake would represent a significant improvement in cancer therapy. Recently, the use of gene therapy to completely remove the lesion and avoid the toxicity of chemotherapeutics has become a tendency in oncotherapy. Ideally, the genetic material must be safely transferred from the site of administration to the target cells, without involving healthy tissues. This can be achieved by encapsulating genes into non-viral carriers and modifying their surface with ligands with high selectivity and affinity for a relevant receptor on the target cells. Hence, in this work we evaluate the use of terpolymer-based nanocapsules for the targeted delivery of DNA toward cancer cells. The surface of the nanocapsules is decorated with folic acid to actively target the folate receptors overexpressed on a variety of cancer cells. The nanocapsules demonstrate a good ability of encapsulating and releasing DNA. Moreover, the presence of the targeting moieties on the surface of the nanocapsules favors cell uptake, opening up the possibility of more effective therapies.
Collapse
Affiliation(s)
- Elena Bellotti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
- Correspondence: (E.B.); (C.C.); Tel.: +39-(010)-28961 (E.B.); +39-(050)-2217802 (C.C.)
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10143 Turin, Italy; (D.R.); (R.R.); (C.G.)
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10143 Turin, Italy; (D.R.); (R.R.); (C.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10143 Turin, Italy; (D.R.); (R.R.); (C.G.)
| | - Caterina Cristallini
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (M.G.C.); (N.B.)
- Institute for Chemical and Physical Processes, IPCF ss Pisa, 56122 Pisa, Italy
- Correspondence: (E.B.); (C.C.); Tel.: +39-(010)-28961 (E.B.); +39-(050)-2217802 (C.C.)
| |
Collapse
|
8
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. NANOMATERIALS 2020; 10:nano10050834. [PMID: 32349272 PMCID: PMC7712760 DOI: 10.3390/nano10050834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the abnormal, uncontrollable proliferation of cells in the breast. Conventional treatment modalities like chemotherapy induce deteriorating side effects on healthy cells. Non-viral inorganic nanoparticles (NPs) confer exclusive characteristics, such as, stability, controllable shape and size, facile surface modification, and unique magnetic and optical properties which make them attractive drug carriers. Among them, carbonate apatite (CA) particles are pH-responsive in nature, enabling rapid intracellular drug release, but are typically heterogeneous with the tendency to self-aggregate. Here, we modified the nano-carrier by partially substituting Ca2+ with Mg2+ and Fe3+ into a basic lattice structure of CA, forming Fe/Mg-carbonate apatite (Fe/Mg-CA) NPs with the ability to mitigate self-aggregation, form unique protein corona in the presence of serum and efficiently deliver doxorubicin (DOX), an anti-cancer drug into breast cancer cells. Two formulations of Fe/Mg-CA NPs were generated by adding different concentrations of Fe3+ and Mg2+ along with a fixed amount of Ca2+ in bicarbonate buffered DMEM (Dulbecco's Modified Eagle's Medium), followed by 30 min incubation at 37 °C. Particles were characterized by turbidity analysis, z-average diameter and zeta potential measurement, optical microscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), flame atomic absorption spectroscopy (FAAS), pH dissolution, drug binding, cellular uptake, thiazolyl blue tetrazolium bromide (MTT) assay, stability analysis, and protein corona study by LCMS (Liquid chromatography-mass spectrometry). Both formulations of Fe/Mg-CA displayed mostly uniform nano-sized particles with less tendency to aggregate. The EDX and FAAS elemental analysis confirmed the weight (%) of Ca, Fe and Mg, along with their Ca/P ratio in the particles. A constant drug binding efficiency was noticed with 5 μM to 10 μM of initial DOX concentration. A pH dissolution study of Fe/Mg-CA NPs revealed the quick release of DOX in acidic pH. Enhancement of cytotoxicity for the chemotherapy drug was greater for Fe/Mg-CA NPs as compared to CA NPs, which could be explained by an increase in cellular internalization as a result of the small z-average diameter of the former. The protein corona study by LCMS demonstrated that Fe/Mg-CA NPs exhibited the highest affinity towards transport proteins without binding with opsonins. Biodistribution study was performed to study the effect of DOX-loaded Fe/Mg-CA NPs on the tissue distribution of DOX in Balb/c 4T1 tumor-bearing mice. Both formulations of Fe/Mg-CA NPs have significantly increased the accumulation of DOX in tumors. Interestingly, high Fe/Mg-CA NPs exhibited less off-target distribution compared to low Fe/Mg-CA NPs. Furthermore, the blood plasma analysis revealed prolonged blood circulation half-life of DOX-loaded low and high Fe/Mg-CA NPs compared to free DOX solution. Modifying CA NPs with Fe3+ and Mg2+, thereby, led to the generation of nano-sized particles with less tendency to aggregate, enhancing the drug binding efficiency, cellular uptake, and cytotoxicity without hampering drug release in acidic pH, while improving the circulation half-life and tumor accumulation of DOX. Therefore, Fe/Mg-CA which predominantly forms a transport protein-related protein corona could be a proficient carrier for therapeutic delivery in breast cancer.
Collapse
|
10
|
Cabral TC, Ardisson JD, de Miranda MC, Gomes DA, Fernandez-Outon LE, Sousa EM, Ferreira TH. Boron nitride nanotube@NiFe 2O 4: a highly efficient system for magnetohyperthermia therapy. Nanomedicine (Lond) 2019; 14:3075-3088. [PMID: 31797726 DOI: 10.2217/nnm-2019-0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The field of nanotechnology promotes the development of innovative and more effective cancer therapies. This work is aimed to develop a hybrid system that combines the capacity of boron nitride nanotubes (BNNTs) to be internalized by tumor cells and the ability of nickel ferrite nanoparticles to efficiently release heat by induced AC magnetic heating. Materials & methods: The systems studied were characterized by using x-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry and Mössbauer spectroscopy. Results: The ferrite nanoparticles attached to BNNT were able to achieve the required temperatures for magnetohyperthermia therapies. After cellular internalization, AC induced magnetic heating of BNNT@NiFe2O4 can kill almost 80% of Hela cells lineage in a single cycle. Conclusion: This system can be a highly efficient magnetohyperthermia agent in cancer therapy.
Collapse
Affiliation(s)
- Thaylice Cs Cabral
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, MG, Brasil
| | - José D Ardisson
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, MG, Brasil
| | | | - Dawidson A Gomes
- Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brasil
| | - Luis E Fernandez-Outon
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, MG, Brasil.,Departamento de Física, ICEX, UFMG, Belo Horizonte, MG, Brasil
| | - Edésia Mb Sousa
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, MG, Brasil
| | - Tiago H Ferreira
- SENAN, Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, MG, Brasil
| |
Collapse
|
11
|
Histone H2A-peptide-hybrided upconversion mesoporous silica nanoparticles for bortezomib/p53 delivery and apoptosis induction. Colloids Surf B Biointerfaces 2019; 186:110674. [PMID: 31855686 DOI: 10.1016/j.colsurfb.2019.110674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 01/18/2023]
Abstract
The design and development of advanced gene/drug codelivery nanocarrier with good biocompatibility for cancer gene therapy is desirable. Herein, we reported a gene delivery nanoplatform to synergized bortezomib (BTZ) for cancer treatment with histone H2A-hybrided, upconversion luminescence (UCL)-guided mesoporous silica nanoparticles [UCNPs(BTZ)@mSiO2-H2A]. The functionalization of H2A on the surface of UCNPs(BTZ)@mSiO2 nanoparticles realized the improvement of biocompatibility and enhancement of gene encapsulation and transfection efficiency. More importantly, then UCNPs(BTZ)@mSiO2-H2A/p53 induced specific and efficient apoptotic cell death in p53-null cancer cells and restored the functional activity of tumor suppressor p53 by the success of co-delivery of BTZ/p53. Moreover, the transfection with UCNPs(BTZ)@mSiO2-H2A/p53 in p53-deficient non-small cell lung cancer cells changed the status of p53 and substantially enhanced the p53-mediated sensitivity of encapsulated BTZ inside the UCNPs(BTZ)@mSiO2/p53. Meanwhile, core-shell structured mesoporous silica nanoparticles UCNPs@mSiO2 as an UCL agent can detect the real-time interaction of nanoparticles with cells and uptake/penetration processes. The results here suggested that the as-developed UCNPs(BTZ)@mSiO2-H2A/p53 nanoplatform with coordinating biocompatibility, UCL image, and sustained release manner might be desirable gene/drug codelivery nanocarrier for clinical cancer therapy.
Collapse
|
12
|
Barzegari Firouzabadi F, Oryan SH, Sheikhha MH, Kalantar SM, Javed A. Preparation and Evaluation of A Novel Liposomal Nano-Formulation in Metastatic Cancer Treatment Studies. CELL JOURNAL 2019; 21:135-142. [PMID: 30825286 PMCID: PMC6397608 DOI: 10.22074/cellj.2019.6008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022]
Abstract
Objective Today, in clinical trials, we suffer from the lack of effective methods with minimal side effects to deliver medication.
Thus, efforts to identify better conditions for delivery of biomedical drugs seem necessary. The purpose of this study was to
design a new liposomal formula for transportation of microRNA in osteosarcoma.
Materials and Methods In this experimental study, several liposomal formulations were synthesized. Physical and chemical
parameters, including size, zeta potential, polydispersity index, long-term stability of the liposomal-microRNA complex and the
amount of miR-143 loading in liposome based nano-vesicles were optimized using different techniques. Similarly, the effect of
free and encapsulated microRNA toxicity were investigated and compared in a human bone osteosarcoma cell line, named
SaOs-2.
Results In this study, we could produce a novel and optimized formulation of cationic PEGylated liposomal microRNA
for gene delivery. The present synthesized microRNA lipoplex system was non-agglomerated. The system remained
stable after four months and miR-143 leakage was not observed by performing gel electrophoresis. The microRNA
lipoplex could enhance conduction of the loaded miR-143, and it also showed good biocompatibility to the healthy cells.
Conclusion The PEGylated microRNA lipoplex system had a high potential for the systematic migration of miR-143 and it
could improve intracellular stability of the released microRNA.
Collapse
Affiliation(s)
- Fatemeh Barzegari Firouzabadi
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran. Elevtronic Address: .,Departeman of Biology, College of Science, Payame Noor University, Yazd, Iran
| | - S Hahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mohammad Hasan Sheikhha
- School of Biology, College of Science, University of Tehran, Tehran, Iran. Electronic Adress:
| | - Seyed Mehdi Kalantar
- Reproductive and Genetic Unit, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ameneh Javed
- Department of Biology, Faculty of Science, Science and Art University, Yazd, Iran
| |
Collapse
|
13
|
Karim ME, Shetty J, Islam RA, Kaiser A, Bakhtiar A, Chowdhury EH. Strontium Sulfite: A New pH-Responsive Inorganic Nanocarrier to Deliver Therapeutic siRNAs to Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11020089. [PMID: 30791612 PMCID: PMC6410046 DOI: 10.3390/pharmaceutics11020089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inorganic nanoparticles hold great potential in the area of precision medicine, particularly for treating cancer owing to their unique physicochemical properties, biocompatibility and improved pharmacokinetics properties compared to their organic counterparts. Here we introduce strontium sulfite nanoparticles as new pH-responsive inorganic nanocarriers for efficient transport of siRNAs into breast cancer cells. We employed the simplest nanoprecipitation method to generate the strontium sulfite nanoparticles (SSNs) and demonstrated the dramatic roles of NaCl and d-glucose in particle growth stabilization in order to produce even smaller nanosize particles (Na-Glc-SSN) with high affinity towards negatively charged siRNA, enabling it to efficiently enter the cancer cells. Moreover, the nanoparticles were found to be degraded with a small drop in pH, suggesting their potential capability to undergo rapid dissolution at endosomal pH so as to release the payload. While these particles were found to be nontoxic to the cells, they showed higher potency in facilitating cancer cell death through intracellular delivery and release of oncogene-specific siRNAs targeting ros1 and egfr1 mRNA transcripts, than the strontium sulfite particles prepared in absence of NaCl and d-glucose, as confirmed by growth inhibition assay. The mouse plasma binding analysis by Q-TOF LC-MS/MS demonstrated less protein binding to smaller particles of Na-Glc-SSNs. The biodistribution studies of the particles after 4 h of treatment showed Na-Glc-SSNs had less off-target distribution than SSNs, and after 24 h, all siRNAs were cleared from all major organs except the tumors. ROS1 siRNA with its potential therapeutic role in treating 4T1-induced breast tumor was selected for subsequent in vivo tumor regression study, revealing that ROS1 siRNA-loaded SSNs exerted more significant anti-tumor effects than Na-Glc-SSNs carrying the same siRNA following intravenous administration, without any systemic toxicity. Thus, strontium sulfite emerged as a powerful siRNA delivery tool with potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Jayalaxmi Shetty
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Ahsanul Kaiser
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| | - Athirah Bakhtiar
- Faculty of Pharmacy, Mahsa University, 2, Jalan SP 4/4, Bandar Saujana Putra, 42610 Jenjarom, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Malaysia.
| |
Collapse
|
14
|
Wang Z, Zhao X, Liu Y, Wang T, Li K. New therapeutic strategies based on interference with telomeric DNA synthesis of tumor cells to suppress the growth of tumors. RSC Adv 2018; 8:25001-25007. [PMID: 35542162 PMCID: PMC9082405 DOI: 10.1039/c8ra02599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022] Open
Abstract
An unusual enzyme called telomerase acts on parts of chromosomes known as telomeres. The enzyme has recently been found in many human tumors and is viewed as a new target for tumor therapy. In this research, we chose the analogue of guanine "2',3'-dideoxyguanosine" (ddG) as the telomerase inhibitor and prepared the ddG-loaded cationic nanoliposomes (ddG-Clip) to specifically target the tumor tissue and preferentially occupy the telomerase nucleotide binding site. The mean diameter of ddG-Clip is 101.54 ± 2.60 nm and they are cationically charged with a zeta potential of 34.0 ± 9.43 mV; also, the encapsulation efficiency of ddG-Clip is 53.44% ± 2.29%. In vitro cytotoxicity results show that cationic nanoliposomes by themselves are almost non-toxic, but with the increase in ddG concentration, ddG-Clip has the ability to kill S180 tumor cells. The anti-tumor activity study suggests that ddG-Clip could not only suppress the tumor growth, but also inhibit tumor liver metastasis well. In conclusion, reverse transcriptase inhibitor-loaded cationic nanoliposomes could interfere with the synthesis of telomeric DNA and block abnormal proliferation of tumor cells, therefore achieving tumor apoptosis.
Collapse
Affiliation(s)
- Zhongyan Wang
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Yan Liu
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Ting Wang
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University Liaoning Province China +8602423986293
| |
Collapse
|
15
|
Development of a novel cationic liposome: Evaluation of liposome mediated transfection and anti-proliferative effects of miR-101 in acute myeloid leukemia. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM. Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med 2018; 20:e3011. [PMID: 29423922 DOI: 10.1002/jgm.3011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 12/30/2022] Open
Abstract
The advantages and critical aspects of nanodimensional polymer-coated viral vector systems potentially applicable for gene delivery are reviewed. Various viral and nonviral vectors have been explored for gene therapy. Viral gene transfer methods, although highly efficient, are limited by their immunogenicity. Nonviral vectors have a lower transfection efficiency as a result of their inability to escape from the endosome. To overcome these drawbacks, novel nanotechnology-mediated interventions that involve the coating or modification of virus using polymers have emerged as a new paradigm in gene therapy. These alterations not only modify the tropism of the virus, but also reduce their undesirable interactions with the biological system. Also, co-encapsulation of other therapeutic agents in the polymeric coating may serve to augment the treatment efficacy. The viral particles can aid endosomal escape, as well as nuclear targeting, thereby enhancing the transfection efficiency. The integration of the desirable properties of both viral and nonviral vectors has been found beneficial for gene therapy by enhancing the transduction efficiency and minimizing the immune response. However, it is essential to ensure that these attempts should not compromise on the inherent ability of viruses to target and internalize into the cells and escape the endosomes.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Sowmiya Duraiswamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Jayandharan Giridhara Rao
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| |
Collapse
|
17
|
Roacho-Perez JA, Gallardo-Blanco HL, Sanchez-Dominguez M, Garcia-Casillas PE, Chapa-Gonzalez C, Sanchez-Dominguez CN. Nanoparticles for death‑induced gene therapy in cancer (Review). Mol Med Rep 2017; 17:1413-1420. [PMID: 29257213 DOI: 10.3892/mmr.2017.8091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Due to the high toxicity and side effects of the use of traditional chemotherapy in cancer, scientists are working on the development of alternative therapeutic technologies. An example of this is the use of death‑induced gene therapy. This therapy consists of the killing of tumor cells via transfection with plasmid DNA (pDNA) that contains a gene which produces a protein that results in the apoptosis of cancerous cells. The cell death is caused by the direct activation of apoptosis (apoptosis‑induced gene therapy) or by the protein toxic effects (toxin‑induced gene therapy). The introduction of pDNA into the tumor cells has been a challenge for the development of this therapy. The most recent implementation of gene vectors is the use of polymeric or inorganic nanoparticles, which have biological and physicochemical properties (shape, size, surface charge, water interaction and biodegradation rate) that allow them to carry the pDNA into the tumor cell. Furthermore, nanoparticles may be functionalized with specific molecules for the recognition of molecular markers on the surface of tumor cells. The binding between the nanoparticle and the tumor cell induces specific endocytosis, avoiding toxicity in healthy cells. Currently, there are no clinical protocols approved for the use of nanoparticles in death‑induced gene therapy. There are still various challenges in the design of the perfect transfection vector, however nanoparticles have been demonstrated to be a suitable candidate. This review describes the role of nanoparticles used for pDNA transfection and key aspects for their use in death‑induced gene therapy.
Collapse
Affiliation(s)
- Jorge A Roacho-Perez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Hugo L Gallardo-Blanco
- Department of Genetics, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Margarita Sanchez-Dominguez
- Centro de Investigacion en Materiales Avanzados, S. C. (CIMAV, S.C.), Unidad Monterrey, Apodaca, Nuevo Leon 66628, Mexico
| | - Perla E Garcia-Casillas
- Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico
| | - Christian Chapa-Gonzalez
- Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico
| | - Celia N Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
18
|
Xue Y, Guo Y, Yu M, Wang M, Ma PX, Lei B. Monodispersed Bioactive Glass Nanoclusters with Ultralarge Pores and Intrinsic Exceptionally High miRNA Loading for Efficiently Enhancing Bone Regeneration. Adv Healthc Mater 2017; 6. [PMID: 28737023 DOI: 10.1002/adhm.201700630] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/18/2017] [Indexed: 11/09/2022]
Abstract
Bioactive glass nanoparticles (BGNs) have attracted much attention in drug delivery and bone tissue regeneration, due to the advantages including biodegradation, high bone-bonding bioactivity, and facile large-scale fabrication. However, the wide biomedical applications of BGNs such as efficient gene delivery are limited due to their poor pore structure and easy aggregation. Herein, for the first time, this study reports novel monodispersed bioactive glass nanoclusters (BGNCs) with ultralarge mesopores (10-30 nm) and excellent miRNA delivery for accelerating critical-sized bone regeneration. BGNCs with different size (100-500 nm) are fabricated by using a branched polyethylenimine as the structure director and catalyst. BGNCs show an excellent apatite-forming ability and high biocompatibility. Importantly, BGNCs demonstrate an almost 19 times higher miRNA loading than those of conventional BGNs. Additionally, BGNCs-miRNA nanocomplexes exhibit a significantly high antienzymolysis, enhance cellular uptake and miRNA transfection efficiency, overpassing BGNs and commercial Lipofectamine 3000. BGNCs-mediated miRNA delivery significantly improves the osteogenic differentiation of bone marrow stromal stem cells in vitro and efficiently enhances bone formation in vivo. BGNCs can be a highly efficient nonviral vector for various gene therapy applications. The study may provide a novel strategy to develop highly gene-activated bioactive nanomaterials for simultaneous tissue regeneration and disease therapy.
Collapse
Affiliation(s)
- Yumeng Xue
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Yi Guo
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Meng Yu
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Min Wang
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Peter X. Ma
- Department of Biologic and Materials Sciences; University of Michigan; Ann Arbor MI 48109-1078 USA
| | - Bo Lei
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- State Key Laboratory for Mechanical Behavior of Materials; Xi'an, Jiaotong University; Xi'an 710049 China
- State Key Laboratory for Manufacturing Systems Engineering; Xi'an Jiaotong University; Xi'an 710054 China
| |
Collapse
|
19
|
Jalil WBF, Pentón-Madrigal A, Mello A, Carneiro FA, Soares RM, Baptista LS, Sinnecker JP, de Oliveira LAS. Low toxicity superparamagnetic magnetite nanoparticles: One-pot facile green synthesis for biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:457-466. [PMID: 28576009 DOI: 10.1016/j.msec.2017.04.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Superparamagnetic magnetite nanoparticles have been synthesized by a highly reproducible polyvinyl alcohol (PVA)-based modified sol-gel process using water as the only solvent. The synthesis method has proven to be effective, time and cost saving and environmental friendly, resulting in PVA-coated magnetite nanoparticles as direct product from the synthesis, without any special atmosphere or further thermal treatment. X-ray diffraction and transmission electron microscopy revealed that the biocompatible PVA-coating prevents the nanoparticle agglomeration, giving rise to spherical crystals with sizes of 6.8nm (as-cast) and 9.5nm (heat treated) with great control over size and shape with narrow size distribution. Complementary compositional and magnetic characterizations were employed in order to study the surface chemistry and magnetic behavior of the samples, respectively. Cytotoxicity endpoints including no observed adverse effect concentration (NOAEC), 50% lethal concentration (LC50) and total lethal concentration (TLC) of the tested materials on cell viability were determined after 3, 24 and 48h of exposure. The PVA coating improved the biocompatibility of the synthesized magnetite nanoparticles showing good cell viability and low cytotoxicity effects on the MTT assay performed on BHK cells. Preliminary assessment of nanoparticles in vivo effects, performed after 48h on Balb/c mice, exposed to a range of different sub-lethal doses, showed their capacity to penetrate in liver and kidneys with no significant morphological alterations in both organs.
Collapse
Affiliation(s)
- W B F Jalil
- Núcleo Multidisciplinar de Pesquisas em Nanotecnologia - NUMPEX-NANO, Polo Xerém, Universidade Federal do Rio de Janeiro, Est. de Xerém 27, 25245-390 Duque de Caxias, RJ, Brazil
| | - A Pentón-Madrigal
- Facultad de Física, IMRE, Universidad de La Habana, San Lazaro y L, C. Habana CP 10400, Cuba
| | - A Mello
- Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil
| | - F A Carneiro
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Polo Xerém, Universidade Federal do Rio de Janeiro, Est. de Xerém 27, 25245-390 Duque de Caxias, RJ, Brazil
| | - R M Soares
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Polo Xerém, Universidade Federal do Rio de Janeiro, Est. de Xerém 27, 25245-390 Duque de Caxias, RJ, Brazil
| | - L S Baptista
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Polo Xerém, Universidade Federal do Rio de Janeiro, Est. de Xerém 27, 25245-390 Duque de Caxias, RJ, Brazil
| | - J P Sinnecker
- Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil
| | - L A S de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Nanotecnologia - NUMPEX-NANO, Polo Xerém, Universidade Federal do Rio de Janeiro, Est. de Xerém 27, 25245-390 Duque de Caxias, RJ, Brazil.
| |
Collapse
|
20
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Wang B, Zhao RM, Zhang J, Liu YH, Huang Z, Yu QY, Yu XQ. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency. Eur J Med Chem 2017; 136:585-595. [DOI: 10.1016/j.ejmech.2017.05.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/10/2017] [Accepted: 05/14/2017] [Indexed: 12/12/2022]
|
22
|
Apoptin Gene Delivery by the Functionalized Polyamidoamine (PAMAM) Dendrimer Modified with Ornithine Induces Cell Death of HepG2 Cells. Polymers (Basel) 2017; 9:polym9060197. [PMID: 30970874 PMCID: PMC6432117 DOI: 10.3390/polym9060197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 02/02/2023] Open
Abstract
The use of tumor-specific therapeutic agents is a promising option for efficient and safe nonviral gene transfer in gene therapy. In this study, we describe the efficacy of polyamidoamine (PAMAM)-based nonviral gene delivery carriers, namely, an ornithine conjugated PAMAM (PAMAM-O) dendrimer in delivering apoptin, a tumor-specific killer gene, into human hepatocellular carcinoma (HepG2 cells) and dermal fibroblasts. We analyzed the transfection efficiency by the luciferase assay and assessed cell viability in both cell types. The transfection efficiency of the PAMAM-O dendrimer was found to be higher than that of the PAMAM dendrimer. Moreover, the cytotoxicity of the PAMAM-O dendrimer was very low. We treated both cell types with a polyplex of PAMAM-O dendrimer with apoptin, and analyzed its cellular uptake and localization by confocal microscopy. Cell cycle distribution, tetramethylrhodamine, ethyl ester (TMRE) analysis, and transmission electron microscopy imaging showed that apoptin induced cell death in HepG2 cells. We therefore demonstrated that a PAMAM-O/apoptin polyplex can be used as an effective therapeutic strategy in cancer owing to its effectiveness as a suitable nonviral gene vector for gene therapy.
Collapse
|
23
|
Rani K. Biomedical Applications of Silver and Gold Nanoparticles: Effective and Safe Non-Viral Delivery Vehicles. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/jabb.2017.03.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Wong JK, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM. Will Nanotechnology Bring New Hope for Gene Delivery? Trends Biotechnol 2017; 35:434-451. [DOI: 10.1016/j.tibtech.2016.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
|
25
|
Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. BIOSENSORS 2017; 7:E9. [PMID: 28212271 PMCID: PMC5371782 DOI: 10.3390/bios7010009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Despite the current progresses of modern medicine, the resistance of malignant tumors to present medical treatments points to the necessity of developing new therapeutic approaches. In recent years, numerous studies have focused their attention on the promising use of nanomaterials, like iron oxide nanowires, zinc oxide or mesoporous silica nanoparticles, for cancer and metastasis treatment with the advantage of operating directly at the bio-molecular scale. Among them, carbon nanotubes emerged as valid candidates not only for drug delivery, but also as a valuable tool in cancer imaging and physical ablation. Nevertheless, deep investigations about carbon nanotubes' potential bio-compatibility and cytotoxicity limits should be also critically addressed. In the present review, after introducing carbon nanotubes and their promising advantages and drawbacks for fighting cancer, we want to focus on the numerous and different ways in which they can assist to reach this goal. Specifically, we report on how they can be used not only for drug delivery purposes, but also as a powerful ally to develop effective contrast agents for tumors' medical or photodynamic imaging, to perform direct physical ablation of metastasis, as well as gene therapy.
Collapse
Affiliation(s)
- Alessandro Sanginario
- Electronics Design Laboratory (EDL), Istituto Italiano di Tecnologia, Via Melen 83b, 16152 Genova (GE), Italy.
| | - Beatrice Miccoli
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
26
|
Hsieh TY, Huang WC, Kang YD, Chu CY, Liao WL, Chen YY, Chen SY. Neurotensin-Conjugated Reduced Graphene Oxide with Multi-Stage Near-Infrared-Triggered Synergic Targeted Neuron Gene Transfection In Vitro and In Vivo for Neurodegenerative Disease Therapy. Adv Healthc Mater 2016; 5:3016-3026. [PMID: 27805786 DOI: 10.1002/adhm.201600647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Delivery efficiency with gene transfection is a pivotal point in achieving maximized therapeutic efficacy and has been an important challenge with central nervous system (CNS) diseases. In this study, neurotensin (NT, a neuro-specific peptide)-conjugated polyethylenimine (PEI)-modified reduced graphene oxide (rGO) nanoparticles with precisely controlled two-stage near-infrared (NIR)-laser photothermal treatment to enhance the ability to target neurons and achieve high gene transfection in neurons. First-stage NIR laser irradiation on the cells with nanoparticles attached on the surface can increase the permeability of the cell membrane, resulting in an apparent increase in cellular uptake compared to untreated cells. In addition, second-stage NIR laser irradiation on the cells with nanoparticles inside can further induce endo/lysosomal cavitation, which not only helps nanoparticles escape from endo/lysosomes but also prevents plasmid DNA (pDNA) from being digested by DNase I. At least double pDNA amount can be released from rGO-PEI-NT/pDNA under NIR laser trigger release compared to natural release. Moreover, in vitro differentiated PC-12 cell and in vivo mice (C57BL/6) brain transfection experiments have demonstrated the highest transfection efficiency occurring when NT modification is combined with external multi-stage stimuli-responsive NIR laser treatment. The combination of neuro-specific targeting peptide and external NIR-laser-triggered aid provides a nanoplatform for gene therapy in CNS diseases.
Collapse
Affiliation(s)
- Tsung-Ying Hsieh
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Wei-Chen Huang
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Yi-Da Kang
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Chao-Yi Chu
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Wen-Lin Liao
- Taiwan Institute of Neuroscience; National Chengchi University; No. 64, Sec. 2, Zhinan Rd., Wenshan Dist Taipei City 116 Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering; National Yang Ming University; No. 155, Sec. 2, Linong St Taipei Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| |
Collapse
|
27
|
Wang T, Chen Q, Lu H, Li W, Li Z, Ma J, Gao H. Shedding PEG Palisade by Temporal Photostimulation and Intracellular Reducing Milieu for Facilitated Intracellular Trafficking and DNA Release. Bioconjug Chem 2016; 27:1949-57. [PMID: 27453033 DOI: 10.1021/acs.bioconjchem.6b00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dilemma of poly(ethylene glycol) surface modification (PEGylation) inspired us to develop an intracellularly sheddable PEG palisade for synthetic delivery systems. Here, we attempted to conjugate PEG to polyethylenimine (PEI) through tandem linkages of disulfide-bridge susceptible to cytoplasmic reduction and an azobenzene/cyclodextrin inclusion complex responsive to external photoirradiation. The subsequent investigations revealed that facile PEG detachment could be achieved in endosomes upon photoirradiation, consequently engendering exposure of membrane-disruptive PEI for facilitated endosome escape. The liberated formulation in the cytosol was further subjected to complete PEG detachment relying on disulfide cleavage in the reductive cytosol, thus accelerating dissociation of electrostatically assembled PEI/DNA polyplex to release DNA by means of polyion exchange reaction with intracellularly charged species, ultimately contributing to efficient gene expression.
Collapse
Affiliation(s)
- Tieyan Wang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Qixian Chen
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Zaifen Li
- School of Science, Tianjin University , 92 Weijin Road, Tianjin, Nankai District, 300072, China
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 391 Binshui Xidao, Tianjin, Xiqing District, 300384, China
| |
Collapse
|
28
|
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res 2016; 111:619-641. [PMID: 27436147 DOI: 10.1016/j.phrs.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Collapse
Affiliation(s)
- Riccardo Vago
- Università Vita-Salute San Raffaele, Milano, I-20132, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Collico
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Zuppone
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Davide Prosperi
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
29
|
Huang W, Liu Z, Zhou G, Tian A, Sun N. Magnetic gold nanoparticle-mediated small interference RNA silencing Bag-1 gene for colon cancer therapy. Oncol Rep 2015; 35:978-84. [PMID: 26717967 DOI: 10.3892/or.2015.4453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/19/2015] [Indexed: 11/06/2022] Open
Abstract
Bcl-2-associated athanogene 1 (Bag-1) is a positive regulator of Bcl-2 which is an anti-apoptotic gene. Bag-1 was very slightly expressed in normal tissues, but often highly expressed in many tumor tissues, particularly in colon cancer, which can promote metastasis, poor prognosis and anti-apoptotic function of colon cancer. We prepared and evaluated magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex, a gene therapy system, which can transfect cells efficiently, for both therapeutic effect and safety in vitro mainly by electrophoretic mobility shift assays, flow cytometric analyses, cell viability assays, western blot analyses and RT-PCR (real-time) assays. Magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex was successfully transfected into LoVo colon cancer cells and the exogenous gene was expressed in the cells. Flow cytometric results showed apoptosis rate was significantly increased. In MTT assays, magnetic gold nanoparticles revealed lower cytotoxicity than Lipofectamine 2000 transfection reagents (P<0.05). Both in western blot analyses and RT-PCR assays, magnetic gold nanoparticle/Bag-1 siRNA recombinant plasmid complex transfected cells demonstrated expression of Bag-1 mRNA (P<0.05) and protein (P<0.05) was decreased. In further study, c-myc and β-catenin which are main molecules of Wnt/β‑catenin pathway were decreased when Bag-1 were silenced in nanoparticle plasmid complex transfected LoVo cells. These results suggest that magnetic gold nanoparticle mediated siRNA silencing Bag-1 is an effective gene therapy method for colon cancer.
Collapse
Affiliation(s)
- Wenbai Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 200012, P.R. China
| | - Zhan'ao Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 200012, P.R. China
| | - Guanzhou Zhou
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 200012, P.R. China
| | - Ailing Tian
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 200012, P.R. China
| | - Nianfeng Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 200012, P.R. China
| |
Collapse
|
30
|
Chen J, Luo J, Zhao Y, Pu L, Lu X, Gao R, Wang G, Gu Z. Increase in transgene expression by pluronic L64-mediated endosomal/lysosomal escape through its membrane-disturbing action. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7282-7293. [PMID: 25786540 DOI: 10.1021/acsami.5b00486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For efficient transgene delivery and expression, internalized nucleic acids should quickly escape from cellular endosomes and lysosomes to avoid enzymatic destruction and degradation. Here, we report a novel strategy for safe and efficient endosomal/lysosomal escape of transgenes mediated by Pluronic L64, a neutral amphiphilic triblock copolymer. L64 enhanced the permeability of biomembranes by structural disturbance and pore formation in a concentration- and time-dependent manner. When applied at optimal concentration, it rapidly reached the endosome/lysosome compartments, where it facilitated escape of the transfection complex from the compartments and dissociation of the complex. Therefore, when applied properly, L64 not only significantly increased polyethylenimine- and liposome-mediated transgene expression, but also decreased the cytotoxicity occasioned by transfection process. Our studies revealed the function and mechanism of neutral amphiphilic triblock copolymer as potent mediator for safe and efficient gene delivery.
Collapse
Affiliation(s)
- Jianlin Chen
- †Key Laboratory for Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Luo
- †Key Laboratory for Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ying Zhao
- §College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Linyu Pu
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuejing Lu
- §College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Rong Gao
- †Key Laboratory for Bio-Resource and Eco-Environment of Ministry Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Gang Wang
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhongwei Gu
- ‡National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
31
|
Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 2015; 53:239-50. [PMID: 25890723 DOI: 10.1016/j.biomaterials.2015.02.071] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/22/2022]
Abstract
Elucidating the regulatory mechanisms of osteogenesis of human mesenchymal stem cell (hMSC) is important for the development of cell therapies for bone loss and regeneration. Here we showed that hsa-miR-199a-5p modulated osteogenic differentiation of hMSCs at both early and late stages through HIF1a pathway. hsa-miR-199a expression was up-regulated during osteogenesis for both of two mature forms, miR-199a-5p and -3p. Over-expression of miR-199a-5p but not -3p enhanced differentiation of hMSCs in vitro, whereas inhibition of miR-199a-5p reduced the expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and mineralization. Furthermore, over-expression of miR-199a enhanced ectopic bone formation in vivo. Chitosan nanoparticles were used for delivery of stable modified hsa-miR-199a-5p (agomir) both in vitro and in vivo, as a proof-of-concept for stable agomir delivery on bone regeneration. The hsa-mir199a-5p agomir were mixed with Chitosan nanoparticles to form nanoparticle/hsa-mir199a-5p agomir plasmid (nanoparticle/agomir) complexes, and nanoparticle/agomir complexes could improve the in vivo regeneration of bone. Further mechanism studies revealed that hypoxia enhanced osteogenesis at early stage and inhibited osteogenesis maturation at late stage through HIF1a-Twist1 pathway. At early stage of differentiation, hypoxia induced HIF1a-Twist1 pathway to enhance osteogenesis by up-regulating miR-199a-5p, while at late stage of differentiation, miR-199a-5p enhanced osteogenesis maturation by inhibiting HIF1α-Twist1 pathway.
Collapse
|
32
|
Luo J, Li C, Chen J, Wang G, Gao R, Gu Z. An efficient method for in vitro gene delivery via regulation of cellular endocytosis pathway. Int J Nanomedicine 2015; 10:1667-78. [PMID: 25767387 PMCID: PMC4354693 DOI: 10.2147/ijn.s77527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transfection efficiency was the primary goal for in vitro gene delivery mediated by nonviral gene carriers. Here, we report a modified gene transfection method that could greatly increase the efficiency of, and accelerate the process mediated by, 25 kDa branched polyethyleneimine and Lipofectamine™ 2000 in a broad range of cell strains, including tumor, normal, primary, and embryonic stem cells. In this method, the combination of transfection procedure with optimized complexation volume had a determinant effect on gene delivery result. The superiorities of the method were found to be related to the change of cellular endocytosis pathway and decrease of particle size. The efficient and simple method established in this study can be widely used for in vitro gene delivery into cultured cells. We think it may also be applicable for many more nonviral gene delivery materials than polyethyleneimine and liposome.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, People's Republic of China ; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Caixia Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Jianlin Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, People's Republic of China ; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| | - Rong Gao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Science, Sichuan University, Chengdu, People's Republic of China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
33
|
Gene therapy for radioprotection. Cancer Gene Ther 2015; 22:172-80. [PMID: 25721205 DOI: 10.1038/cgt.2015.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
Radiation therapy is a critical component of cancer treatment with over half of patients receiving radiation during their treatment. Despite advances in image-guided therapy and dose fractionation, patients receiving radiation therapy are still at risk for side effects due to off-target radiation damage of normal tissues. To reduce normal tissue damage, researchers have sought radioprotectors, which are agents capable of protecting tissue against radiation by preventing radiation damage from occurring or by decreasing cell death in the presence of radiation damage. Although much early research focused on small-molecule radioprotectors, there has been a growing interest in gene therapy for radioprotection. The amenability of gene therapy vectors to targeting, as well as the flexibility of gene therapy to accomplish ablation or augmentation of biologically relevant genes, makes gene therapy an excellent strategy for radioprotection. Future improvements to vector targeting and delivery should greatly enhance radioprotection through gene therapy.
Collapse
|
34
|
Liu M, Feng B, Shi Y, Su C, Song H, Cheng W, Zhao L. Protamine nanoparticles for improving shRNA-mediated anti-cancer effects. NANOSCALE RESEARCH LETTERS 2015; 10:134. [PMID: 25852425 PMCID: PMC4385308 DOI: 10.1186/s11671-015-0845-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/27/2015] [Indexed: 05/03/2023]
Abstract
Protamine nanoparticles were designed by encapsulating small hairpin RNA (shRNA)-expressing plasmid DNA targeting the Bcl-2 gene (shBcl-2) to silence apoptosis-related Bcl-2 protein for improving the transfection efficiency and cytotoxicity in cancer therapy. Our findings demonstrated that the obtained protamine nanoparticles possessed excellent characterizations of small particle size, homogenous distribution, positive charge, and high encapsulation efficiency of gene. shBcl-2 loaded in nanoparticles (NPs) was protected effectively from the degradation of DNase I and serum. More importantly, it significantly improved the efficiency of transfection of shRNA in vitro in A549 cells and increased its cytotoxicity and induced more cell apoptosis by silencing Bcl-2.
Collapse
Affiliation(s)
- Ming Liu
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Bo Feng
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yijie Shi
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Chang Su
- />School of Veterinary Medicine, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Huijuan Song
- />Central Laboratory of Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Wei Cheng
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| | - Liang Zhao
- />School of Pharmacy, Liaoning Medical University, Jinzhou, 121000 People’s Republic of China
| |
Collapse
|
35
|
Wang Y, Cui H, Yang Y, Zhao X, Sun C, Chen W, Du W, Cui J. Mechanism Study of Gene Delivery and Expression in PK-15 Cells Using Magnetic Iron Oxide Nanoparticles as Gene Carriers. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414410189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of gene delivery and expression is one of the most important concerns raised by the development of gene delivery methods. Limited investigation is performed on how magnetic nanoparticles combine with DNA and deliver gene into mammalian cells. In this context, polyethyleneimine (PEI) coated iron oxide magnetic nanoparticles (MNPs) were used as gene carriers for binding and condensing with plasmid DNA expressing enhanced green fluorescent protein (EGFP). The morphology and structure of MNP–DNA complexes were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). We evidenced that large amounts of DNA wrapped around the surface of MNPs and that the MNPs were physically entrapped by the DNA arranged both horizontally and vertically. EGFP gene was successfully expressed under mediation of an external magnetic field which is necessary to efficiently target EGFP gene to the cells. Fluorescence from EGFP was separately detected in the cell cytoplasm and cell nucleus.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Yongguang Yang
- Department of Cancer and Cell Biology, University of Cincinnati, College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Wenjie Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Wei Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| | - Jinhui Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 South Street of Zhongguancun Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
36
|
Nanomedicine in Cancer Diagnosis and Therapy: Converging Medical Technologies Impacting Healthcare. Nanomedicine (Lond) 2014. [DOI: 10.1007/978-1-4614-2140-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|