1
|
Li J, Gao Z. MARCHF1 promotes breast cancer through accelerating REST ubiquitylation and following TFAM transcription. Cell Biol Int 2025; 49:161-176. [PMID: 39428668 DOI: 10.1002/cbin.12255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Breast cancer has become the leading cause of death in women. Membrane associated ring-CH-type finger 1 (MARCHF1) is associated with the development of various types of cancer, but the exact role of MARCHF1 in breast cancer remains unclear. In our study, the higher MARCHF1 expression was observed in tumor samples of patients with breast cancer and then the role of MARCHF1 in breast cancer was further evaluated. Overexpression of MARCHF1 contributed to proliferation of cancer cells and inhibition of oxidative stress. Knockdown of MARCHF1 reduced breast cancer cell proliferation, increased mitochondrial dysfunction induced by oxidative stress, eventually aggravating cell death. In vivo, MARCHF1 promoted the tumor growth and oppositely, MARCHF1 silencing suppressed the tumor development. Moreover, MARCHF1 interacted with repressor Element-1 silencing transcription factor (REST) and facilitated its ubiquitylation and degradation. Subsequently, REST negatively regulated the transcription of mitochondrial transcription factor A (TFAM). The subcutaneous tumor formation assay in nude mice also supported these conclusions. In details, knockdown of MARCHF1 upregulated the protein expression of REST and downregulated the mRNA level of TFAM. On the contrary, MARCHF1 overexpression exhibited opposite effects. Thus, MARCHF1 is conducive to the progression of breast cancer via promoting the ubiquitylation and degradation of RSET and then the transcription of TFAM. Downregulating MARCHF1 could provide a novel direction for treating breast cancer.
Collapse
Affiliation(s)
- Jutao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Thyroid Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Zhenming Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- Organ Transplantation Center, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Xiong H, Lin C, Huang X, Wang H. A novel mitochondrial-related lncRNA signature mediated prediction of overall survival, immune landscape, and the chemotherapeutic outcomes for bladder cancer patients. Discov Oncol 2024; 15:239. [PMID: 38907134 PMCID: PMC11192708 DOI: 10.1007/s12672-024-01108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVE To develop a prognostic risk model for Bladder Cancer (BLCA) based on mitochondrial-related long non-coding RNAs (lncRNAs). METHODS Transcriptome and clinical data of BLCA patients were retrieved from the TCGA database. Mitochondrial-related lncRNAs with independent prognostic significance were screened to develop a prognostic risk model. Patients were categorized into high- and low-risk groups using the model. Various methods including Kaplan-Meier (KM) analysis, ROC curve analysis, Gene Set Enrichment Analysis (GSEA), immune analysis, and chemotherapy drug analysis were used to verify and evaluate the model. RESULTS A mitochondrial-associated lncRNA prognostic risk model with independent prognostic significance was developed. High-risk group (HRG) patients exhibited significantly shorter survival periods compared to low-risk group (LRG) patients (P < 0.01). The risk score from the model was an independent predictor of BLCA prognosis, correlating with tumor grade, pathological stage, and lymph node metastasis (P < 0.05). The HRG showed significant positive correlations with high expressions of immune checkpoints (CTLA4, LAG3, PD-1, TIGIT, PD-L1, PD-L2, and TIM-3) and lower IC50 for chemotherapy drugs (cisplatin, docetaxel, paclitaxel, methotrexate, and vinblastine) (P < 0.001). CONCLUSIONS The mitochondrial-related lncRNA-based prognostic risk model effectively predicts BLCA prognosis and can guide individualized treatment for BLCA patients.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, China
| | - Cheng Lin
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, China
| | - Xiang Huang
- Department of Urology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, 353000, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Chang CF, Chang PC, Lee YC, Pan CY, Chang HM, Wu WJ, Lin MY, Chen CY, Wen ZH, Lee CH. The Antimicrobial Peptide Tilapia Piscidin 4 Induced the Apoptosis of Bladder Cancer Through ERK/SIRT1/PGC-1α Signaling Pathway. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10296-2. [PMID: 38805142 DOI: 10.1007/s12602-024-10296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Marine antimicrobial peptides have been demonstrated in numerous studies to possess anti-cancer properties. This research investigation aimed to explore the fundamental molecular mechanisms underlying the antitumor activity of Tilapia piscidin 4 (TP4), an antimicrobial peptide, in human bladder cancer. TP4 exhibited a remarkable inhibitory effect on the proliferation of bladder cancer cells through cell cycle arrest at the G2/M phase. Additionally, TP4 upregulated the expression of cleaved caspase-3, caspase-9, and PARP, leading to the activation of apoptotic pathways in bladder cancer cells. TP4 exhibit a marked rise in mitochondria reactive oxygen species, leading to the subsequent loss of potential for the mitochondrial membrane. Furthermore, the inhibition of mitochondrial oxidative phosphorylation resulted in a decrease in downstream ATP production. Meanwhile, TP4-treated bladder cancer cells showed an increase in Bax and ERK but a decrease in SIRT1, PGC-1α, and Bcl2. ERK activation, SIRT1/PGC-1α-axis, and TP4-induced apoptosis were all significantly reversed by the ERK inhibitor SCH772984. Finally, the inhibitory effect of TP4 on tumor growth has been confirmed in a zebrafish bladder cancer xenotransplantation model. These findings suggest that TP4 may be a potential agents for human bladder cancer through apoptosis induction, ERK activation, and the promotion of SIRT1-mediated signaling pathways.
Collapse
Affiliation(s)
- Chun-Feng Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Lien-Hai Rd, Kaohsiung, 804201, Taiwan
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Zhongzheng 1st Rd, Kaohsiung, 802301, ROC
| | - Po-Chih Chang
- Division of Thoracic Surgery, Department of Surgery, Weight Management Center Kaohsiung Medical University Hospital/Kaohsiung Medical University, Department of Sports Medicine, Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811532, Taiwan
| | - Hui-Min Chang
- Division of Pharmacology and Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wan-Ju Wu
- Division of Pharmacology and Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Lien-Hai Rd, Kaohsiung, 804201, Taiwan.
- Department of Marine Biotechnology and Resources, Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
4
|
Li J, Wang Z, Wang T. Machine-learning prediction of a novel diagnostic model using mitochondria-related genes for patients with bladder cancer. Sci Rep 2024; 14:9282. [PMID: 38654047 DOI: 10.1038/s41598-024-60068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Bladder cancer (BC) is the ninth most-common cancer worldwide and it is associated with high morbidity and mortality. Mitochondrial Dysfunction is involved in the progression of BC. This study aimed to developed a novel diagnostic model based on mitochondria-related genes (MRGs) for BC patients using Machine Learning. In this study, we analyzed GSE13507 datasets and identified 752 DE-MRGs in BC specimens. Functional enrichment analysis uncovered the significant roles of 752 DE-MRGs in key processes such as cellular and organ development, as well as gene regulation. The analysis revealed the crucial functions of these genes in transcriptional regulation and protein-DNA interactions. Then, we performed LASSO and SVM-RFE, and identified four critical diagnostic genes including GLRX2, NMT1, OXSM and TRAF3IP3. Based on the above four genes, we developed a novel diagnostic model whose diagnostic value was confirmed in GSE13507, GSE3167 and GSE37816 datasets. Moreover, we reported the expressing pattern of GLRX2, NMT1, OXSM and TRAF3IP3 in BC samples. Immune cell infiltration analysis revealed that the four genes were associated with several immune cells. Finally, we performed RT-PCR and confirmed NMT1 was highly expressed in BC cells. Functional experiments revealed that knockdown of NMT1 suppressed the proliferation of BC cells. Overall, we have formulated a diagnostic potential that offered a comprehensive framework for delving into the underlying mechanisms of BC. Before proceeding with clinical implementation, it is essential to undertake further investigative efforts to validate its diagnostic effectiveness in BC patients.
Collapse
Affiliation(s)
- Jian Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhiyong Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianen Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang L, Shi X, Zhang L, Mi Y, Zuo L, Gao S. A first-in-class TIMM44 blocker inhibits bladder cancer cell growth. Cell Death Dis 2024; 15:204. [PMID: 38467612 PMCID: PMC10928220 DOI: 10.1038/s41419-024-06585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Urology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Department of Urology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
- Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai, Province, China.
| |
Collapse
|
6
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
7
|
Peng M, Chu X, Peng Y, Li D, Zhang Z, Wang W, Zhou X, Xiao D, Yang X. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (Beijing) 2023; 4:e455. [PMID: 38107059 PMCID: PMC10724512 DOI: 10.1002/mco2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Bladder cancer (BC) is one of the most prevalent malignancies in men. Understanding molecular characteristics via studying signaling pathways has made tremendous breakthroughs in BC therapies. Thus, targeted therapies including immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and tyrosine kinase inhibitor (TKI) have markedly improved advanced BC outcomes over the last few years. However, the considerable patients still progress after a period of treatment with current therapeutic regimens. Therefore, it is crucial to guide future drug development to improve BC survival, based on the molecular characteristics of BC and clinical outcomes of existing drugs. In this perspective, we summarize the applications and benefits of these targeted drugs and highlight our understanding of mechanisms of low response rates and immune escape of ICIs, ADCs toxicity, and TKI resistance. We also discuss potential solutions to these problems. In addition, we underscore the future drug development of targeting metabolic reprogramming and cancer stem cells (CSCs) with a deep understanding of their signaling pathways features. We expect that finding biomarkers, developing novo drugs and designing clinical trials with precisely selected patients and rationalized drugs will dramatically improve the quality of life and survival of patients with advanced BC.
Collapse
Affiliation(s)
- Mei Peng
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xuetong Chu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Yan Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Zhirong Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Weifan Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaochen Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan ProvinceThe Research Center of Reproduction and Translational Medicine of Hunan ProvinceKey Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of EducationDepartment of PharmacySchool of MedicineHunan Normal UniversityChangshaHunanChina
| |
Collapse
|
8
|
Grębowski R, Saluk J, Bijak M, Szemraj J, Wigner-Jeziorska P. The role of SOD2 and NOS2 genes in the molecular aspect of bladder cancer pathophysiology. Sci Rep 2023; 13:14491. [PMID: 37660159 PMCID: PMC10475080 DOI: 10.1038/s41598-023-41752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Bladder cancer (BC) is a severe health problem of the genitourinary system and is characterised by a high risk of recurrence. According to the recent GLOBOCAN report, bladder cancer accounts for 3% of diagnosed cancers in the world, taking 10th place on the list of the most common cancers. Despite numerous studies, the full mechanism of BC development remains unknown. Nevertheless, precious results suggest a crucial role of oxidative stress in the development of BC. Therefore, this study explores whether the c. 47 C > T (rs4880)-SOD2, (c. 1823 C > T (rs2297518) and g.-1026 C > A (rs2779249)-NOS2(iNOS) polymorphisms are associated with BC occurrence and whether the bladder carcinogenesis induces changes in SOD2 and NOS2 expression and methylation status in peripheral blood mononuclear cells (PBMCs). In this aim, the TaqMan SNP genotyping assay, TaqMan Gene Expression Assay, and methylation-sensitive high-resolution melting techniques were used to genotype profiling and evaluate the expression of the genes and the methylation status of their promoters, respectively. Our findings confirm that heterozygote of the g.-1026 C > A SNP was associated with a decreased risk of BC. Moreover, we detected that BC development influenced the expression level and methylation status of the promoter region of investigated genes in PBMCs. Concluding, our results confirmed that oxidative stress, especially NOS2 polymorphisms and changes in the expression and methylation of the promoters of SOD2 and NOS2 are involved in the cancer transformation initiation of the cell urinary bladder.
Collapse
Affiliation(s)
- Radosław Grębowski
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
- Department of Urology, Provincial Integrated Hospital in Plock, Plock, Poland, Medyczna 19, 09-400
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland, Mazowiecka 6/8, 90-001
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland, Pomorska 141/143, 90-236.
| |
Collapse
|
9
|
Murphy N, Shih AJ, Shah P, Yaskiv O, Khalili H, Liew A, Lee AT, Zhu XH. Predictive molecular biomarkers for determining neoadjuvant chemosensitivity in muscle invasive bladder cancer. Oncotarget 2022; 13:1188-1200. [PMID: 36322407 PMCID: PMC9629806 DOI: 10.18632/oncotarget.28302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Identifying neoadjuvant chemotherapy (NAC) response in patients with muscle invasive bladder cancer (MIBC) has had limited success based on clinicopathological features and molecular subtyping. Identification of chemotherapy responsive cohorts would facilitate delivery to those most likely to benefit. OBJECTIVE Develop a molecular signature that can identify MIBC NAC responders (R) and non-responders (NR) using a cohort of known NAC response phenotypes, and better understand differences in molecular pathways and subtype classifications between NAC R and NR. MATERIALS AND METHODS Presented are the messenger RNA (mRNA) and microRNA (miRNA) differential expression profiles from initial transurethral resection of bladder tumor (TURBT) specimens of a discovery cohort of MIBC patients consisting of 7 known NAC R and 11 NR, and a validation cohort consisting of 3 R and 5 NR. Pathological response at time of cystectomy after NAC was used to classify initial TURBT specimens as R (pT0) versus NR (≥pT2). RNA and miRNA from FFPE blocks were sequenced using RNAseq and qPCR, respectively. RESULTS The discovery cohort had 2309 genes, while the validation cohort had 602 genes and 13 miRNA differentially expressed between R and NR. Gene set enrichment analysis identified mitochondrial gene expression, DNA replication initiation, DNA unwinding in the R discovery cohort and positive regulation of vascular associated smooth muscle cell proliferation in the NR discovery cohort. Canonical correlation (CC) analysis was applied to differentiate R versus NR. 3 CCs (CC13, CC16, and CC17) had an AUC >0.65 in the discovery and validation dataset. Gene ontology enrichment showed CC13 as nucleoside triphosphate metabolic process, CC16 as cell cycle and cellular response to DNA damage, CC17 as DNA packaging complex. All patients were classified using established molecular subtypes: Baylor, UNC, CIT, Lund, MD Anderson, TCGA, and Consensus Class. The MD Anderson p53-like subtype, CIT MC4 subtype and Consensus Class stroma rich subtype had the strongest correlation with a NR phenotype, while no subtype had a strong correlation with the R phenotype. CONCLUSIONS Our results identify molecular signatures that can be used to differentiate MIBC NAC R versus NR, salient molecular pathway differences, and highlight the utility of molecular subtyping in relation to NAC response.
Collapse
Affiliation(s)
- Neal Murphy
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
- These authors contributed equally to this work and share first authorship
| | - Andrew J. Shih
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- These authors contributed equally to this work and share first authorship
| | | | - Oksana Yaskiv
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Department of Pathology, Greenvale, NY 11548, USA
| | - Houman Khalili
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Anthony Liew
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Annette T. Lee
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- These authors contributed equally to this work and share last authorship
| | - Xin-Hua Zhu
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Northwell Health Cancer Institute, Lake Success, NY 11042, USA
- These authors contributed equally to this work and share last authorship
| |
Collapse
|
10
|
Gao L, Cao M, Du GH, Qin XM. Huangqin Decoction Exerts Beneficial Effects on Rotenone-Induced Rat Model of Parkinson's Disease by Improving Mitochondrial Dysfunction and Alleviating Metabolic Abnormality of Mitochondria. Front Aging Neurosci 2022; 14:911924. [PMID: 35912075 PMCID: PMC9334858 DOI: 10.3389/fnagi.2022.911924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the pathogenesis of PD is closely related to mitochondrial dysfunction. Previous studies have indicated that traditional Chinese medicine composition of Huangqin Decoction (HQD), including Scutellariae Radix, licorice, and Paeoniae Radix Alba, has therapeutic effects on PD, but whether HQD has a therapeutic effect on PD has not been reported. In this study, the protective effects of HQD on rotenone-induced PD rats were evaluated by behavioral assays (open field, rotating rod, suspension, gait, inclined plate, and grid) and immunohistochemistry. The mechanisms of HQD on attenuation of mitochondrial dysfunction were detected by biochemical assays and mitochondrial metabolomics. The results showed that HQD (20 g/kg) can protect rats with PD by improving motor coordination and muscle strength, increasing the number of tyrosine hydroxylase (TH)-positive neurons in rats with PD. Besides, HQD can improve mitochondrial dysfunction by increasing the content of adenosine triphosphate (ATP) and mitochondrial complex I. Mitochondrial metabolomics analysis revealed that the ketone body of acetoacetic acid (AcAc) in the rotenone group was significantly higher than that of the control group. Ketone bodies have been known to be used as an alternative energy source to provide energy to the brain when glucose was deficient. Further studies demonstrated that HQD could increase the expression of glucose transporter GLUT1, the content of tricarboxylic acid cycle rate-limiting enzyme citrate synthase (CS), and the level of hexokinase (HK) in rats with PD but could decrease the content of ketone bodies [AcAc and β-hydroxybutyric acid (β-HB)] and the expression of their transporters (MCT1). Our study revealed that the decrease of glucose metabolism in the rotenone group was parallel to the increase of substitute substrates (ketone bodies) and related transporters, and HQD could improve PD symptoms by activating the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- *Correspondence: Li Gao
| | - Min Cao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-hua Du
- Peking Union Medical College, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- Xue-mei Qin
| |
Collapse
|
11
|
Zhong W, Qu H, Yao B, Wang D, Qiu J. Analysis of a Long Non-coding RNA associated Signature to Predict Survival in Patients with Bladder Cancer. Cureus 2022; 14:e24818. [PMID: 35693359 PMCID: PMC9172899 DOI: 10.7759/cureus.24818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
|
12
|
Jiang X, Xia Y, Meng H, Liu Y, Cui J, Huang H, Yin G, Shi B. Identification of a Nuclear Mitochondrial-Related Multi-Genes Signature to Predict the Prognosis of Bladder Cancer. Front Oncol 2021; 11:746029. [PMID: 34692528 PMCID: PMC8528313 DOI: 10.3389/fonc.2021.746029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Bladder cancer (BC) is one of the most prevalent urinary cancers, and its management is still a problem causing recurrence and progression, elevating mortality. MATERIALS AND METHODS We aimed at the nuclear mitochondria-related genes (MTRGs), collected from the MITOMAP: A Human Mitochondrial Genome Database. Meanwhile, the expression profiles and clinical information of BC were downloaded from the Cancer Genome Atlas (TCGA) as a training group. The univariate, multivariate, and the least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a nuclear mitochondrial-related multi-genes signature and the prognostic nomogram. RESULTS A total of 17 nuclear MTRGs were identified to be correlated with the overall survival (OS) of BC patients, and a nuclear MTRGs signature based on 16 genes expression was further determined by the LASSO Cox regression analysis. Based on a nuclear MTRGs scoring system, BC patients from the TCGA cohort were divided into high- and low- nuclear MTRGs score groups. Patients with a high nuclear MTRGs score exhibited a significantly poorer outcome (median OS: 92.90 vs 20.20 months, p<0.0001). The nuclear MTRGs signature was further verified in three independent datasets, namely, GSE13507, GSE31684, and GSE32548, from the Gene Expression Omnibus (GEO). The BC patients with a high nuclear MTRGs score had significantly worse survival (median OS in GSE13507: 31.52 vs 98.00 months, p<0.05; GSE31684: 32.85 months vs unreached, p<0.05; GSE32548: unreached vs unreached, p<0.05). Furthermore, muscle-invasive bladder cancer (MIBC) patients had a significantly higher nuclear MTRGs score (p<0.05) than non-muscle-invasive bladder cancer (NMIBC) patients. The integrated signature outperformed each involved MTRG. In addition, a nuclear MTRGs-based nomogram was constructed as a novel prediction prognosis model, whose AUC values for OS at 1, 3, 5 years were 0.76, 0.75, and 0.75, respectively, showing the prognostic nomogram had good and stable predicting ability. Enrichment analyses of the hallmark gene set and KEGG pathway revealed that the E2F targets, G2M checkpoint pathways, and cell cycle had influences on the survival of BC patients. Furthermore, the analysis of tumor microenvironment indicated more CD8+ T cells and higher immune score in patients with high nuclear MTRGs score, which might confer sensitivity to immune checkpoint inhibitors. CONCLUSIONS Not only could the signature and prognostic nomogram predict the prognosis of BC, but it also had potential therapeutic guidance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| |
Collapse
|
13
|
Cormio A, Busetto GM, Musicco C, Sanguedolce F, Calò B, Chirico M, Falagario UG, Carrieri G, Piccoli C, Cormio L. Mitofusin-2 Down-Regulation Predicts Progression of Non-Muscle Invasive Bladder Cancer. Diagnostics (Basel) 2021; 11:diagnostics11081500. [PMID: 34441434 PMCID: PMC8394056 DOI: 10.3390/diagnostics11081500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Identification of markers predicting disease outcome is a major clinical issue for non-muscle invasive bladder cancer (NMIBC). The present study aimed to determine the role of the mitochondrial proteins Mitofusin-2 (Mfn2) and caseinolytic protease P (ClpP) in predicting the outcome of NMIBC. The study population consisted of patients scheduled for transurethral resection of bladder tumor upon the clinical diagnosis of bladder cancer (BC). Samples of the main bladder tumor and healthy-looking bladder wall from patients classified as NMIBC were tested for Mfn2 and ClpP. The expression levels of these proteins were correlated to disease recurrence, progression. Mfn2 and ClpP expression levels were significantly higher in lesional than in non-lesional tissue. Low-risk NMIBC had significantly higher Mfn2 expression levels and significantly lower ClpP expression levels than high-risk NMIBC; there were no differences in non-lesional levels of the two proteins. Lesional Mfn2 expression levels were significantly lower in patients who progressed whereas ClpP levels had no impact on any survival outcome. Multivariable analysis adjusting for the EORTC scores showed that Mfn2 downregulation was significantly associated with disease progression. In conclusion, Mfn2 and ClpP proteins were found to be overexpressed in BC as compared to non-lesional bladder tissue and Mfn2 expression predicted disease progression.
Collapse
Affiliation(s)
- Antonella Cormio
- Department of Biosciences, Biotechnologies, and Biofarmaceutical, University of Bari, 70126 Bari, Italy;
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
- Correspondence:
| | - Clara Musicco
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy;
| | | | - Beppe Calò
- Department of Urology, Bonomo Hospital, 76123 Andria, Italy;
| | - Marco Chirico
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
| | - Ugo Giovanni Falagario
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (M.C.); (U.G.F.); (G.C.); (L.C.)
- Department of Urology, Bonomo Hospital, 76123 Andria, Italy;
| |
Collapse
|
14
|
Zhunina OA, Yabbarov NG, Grechko AV, Starodubova AV, Ivanova E, Nikiforov NG, Orekhov AN. The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Front Mol Biosci 2021; 8:671908. [PMID: 34026846 PMCID: PMC8138126 DOI: 10.3389/fmolb.2021.671908] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Nikita G. Yabbarov
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | | - Ekaterina Ivanova
- Department of Basic Research, Skolkovo Innovative Center, Institute for Atherosclerosis Research, Moscow, Russia
| | - Nikita G. Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia
- Institute of Gene Biology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
15
|
Zaidieh T, Smith JR, Ball KE, An Q. Mitochondrial DNA abnormalities provide mechanistic insight and predict reactive oxygen species-stimulating drug efficacy. BMC Cancer 2021; 21:427. [PMID: 33865346 PMCID: PMC8053302 DOI: 10.1186/s12885-021-08155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Associations between mitochondrial genetic abnormalities (variations and copy number, i.e. mtDNAcn, change) and elevated ROS have been reported in cancer compared to normal cells. Since excessive levels of ROS can trigger apoptosis, treating cancer cells with ROS-stimulating agents may enhance their death. This study aimed to investigate the link between baseline ROS levels and mitochondrial genetic abnormalities, and how mtDNA abnormalities might be used to predict cancer cells’ response to ROS-stimulating therapy. Methods Intracellular and mitochondrial specific-ROS levels were measured using the DCFDA and MitoSOX probes, respectively, in four cancer and one non-cancerous cell lines. Cells were treated with ROS-stimulating agents (cisplatin and dequalinium) and the IC50s were determined using the MTS assay. Sanger sequencing and qPCR were conducted to screen the complete mitochondrial genome for variations and to relatively quantify mtDNAcn, respectively. Non-synonymous variations were subjected to 3-dimensional (3D) protein structural mapping and analysis. Results Our data revealed novel significant associations between the total number of variations in the mitochondrial respiratory chain (MRC) complex I and III genes, mtDNAcn, ROS levels, and ROS-associated drug response. Furthermore, functional variations in complexes I/III correlated significantly and positively with mtDNAcn, ROS levels and drug resistance, indicating they might mechanistically influence these parameters in cancer cells. Conclusions Our findings suggest that mtDNAcn and complexes I/III functional variations have the potential to be efficient biomarkers to predict ROS-stimulating therapy efficacy in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08155-2.
Collapse
Affiliation(s)
- Tarek Zaidieh
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK. .,Institute of Life Science, Swansea University Medical School, Swansea, SA2 8PP, UK.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Karen E Ball
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Qian An
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
16
|
Liu D, Qiu X, Xiong X, Chen X, Pan F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin Transl Oncol 2020; 22:1687-1697. [PMID: 32189139 PMCID: PMC7423792 DOI: 10.1007/s12094-020-02330-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is the fourth most common urological malignancy in the world, it has become the costliest cancer to manage due to its high rate of recurrence and lack of effective treatment modalities. As a natural byproduct of cellular metabolism, reactive oxygen species (ROS) have an important role in cell signaling and homeostasis. Although up-regulation of ROS is known to induce tumorigenesis, growing evidence suggests a number of agents that can selectively kill cancer cells through ROS induction. In particular, accumulation of ROS results in oxidative stress-induced apoptosis in cancer cells. So, ROS is a double-edged sword. A modest level of ROS is required for cancer cells to survive, whereas excessive levels kill them. This review summarizes the up-to-date findings of oxidative stress-regulated signaling pathways and transcription factors involved in the etiology and progression of BCa and explores the possible therapeutic implications of ROS regulators as therapeutic agents for BCa.
Collapse
Affiliation(s)
- D Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - X Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - X Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - X Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - F Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Calò B, Falagario U, Sanguedolce F, Veccia A, Chirico M, Carvalho-Diaz E, Mota P, Lima E, Autorino R, Carrieri G, Cormio L. Impact of time to second transurethral resection on oncological outcomes of patients with high-grade T1 bladder cancer treated with intravesical Bacillus Calmette-Guerin. World J Urol 2020; 38:3161-3167. [PMID: 32062805 DOI: 10.1007/s00345-020-03108-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine the impact of time to restaging transurethral resection (Re-TUR) on recurrence-free survival (RFS), progression-free survival (PFS), and cancer specific survival (CSS) of patients with high-grade T1 bladder cancer (BC) treated with intravesical Bacillus Calmette-Guerin (BCG). MATERIALS AND PATIENTS Our prospectively maintained NMIBC databases were queried to identify patients with high-grade T1 BC who underwent Re-TUR before receiving intravesical BCG treatment (induction + 1-year maintenance). Patients were divided into three groups based on time to Re-TUR (group A: ≤ 6 weeks; group B: > 6-12 weeks; group C: > 12-18 weeks). Kaplan-Meier plots were used to estimate differences in RFS, PFS, and CSS. Multivariate Cox regression analysis was used to assess the impact of time to Re-TUR on oncological outcomes. RESULTS Overall, 269 high-grade T1 BC patients were eligible for the analysis. Nineteen (7.1%) had concomitant CIS. Median follow-up was 49.3 (IQR 25-65) months. Kaplan-Meier plots showed no differences in RFS, PFS, and CSS between the three groups. Multivariate Cox regression analysis showed that Group B had a slightly better RFS, while the other outcomes were not affected by time to Re-TUR. CONCLUSIONS This is the first study testing the role of time to Re-TUR in a homogeneous population of patients with high-grade T1 BC who received complete BCG treatment. The study challenged the concept the sooner the Re-TUR the better, since time to Re-TUR did not significantly affect oncological outcomes.
Collapse
Affiliation(s)
- Beppe Calò
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy. .,Department of CUF Urology and Service of Urology, Hospital of Braga, Braga, Portugal.
| | - Ugo Falagario
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Veccia
- Division of Urology, Department of Surgery, VCU Health, Richmond, VA, USA
| | - Marco Chirico
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Emanuel Carvalho-Diaz
- Department of CUF Urology and Service of Urology, Hospital of Braga, Braga, Portugal
| | - Paulo Mota
- Department of CUF Urology and Service of Urology, Hospital of Braga, Braga, Portugal
| | - Estêvão Lima
- Department of CUF Urology and Service of Urology, Hospital of Braga, Braga, Portugal
| | - Riccardo Autorino
- Division of Urology, Department of Surgery, VCU Health, Richmond, VA, USA
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Zaidieh T, Smith JR, Ball KE, An Q. ROS as a novel indicator to predict anticancer drug efficacy. BMC Cancer 2019; 19:1224. [PMID: 31842863 PMCID: PMC6916036 DOI: 10.1186/s12885-019-6438-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mitochondria are considered a primary intracellular site of reactive oxygen species (ROS) generation. Generally, cancer cells with mitochondrial genetic abnormalities (copy number change and mutations) have escalated ROS levels compared to normal cells. Since high levels of ROS can trigger apoptosis, treating cancer cells with low doses of mitochondria-targeting / ROS-stimulating agents may offer cancer-specific therapy. This study aimed to investigate how baseline ROS levels might influence cancer cells’ response to ROS-stimulating therapy. Methods Four cancer and one normal cell lines were treated with a conventional drug (cisplatin) and a mitochondria-targeting agent (dequalinium chloride hydrate) separately and jointly. Cell viability was assessed and drug combination synergisms were indicated by the combination index (CI). Mitochondrial DNA copy number (mtDNAcn), ROS and mitochondrial membrane potential (MMP) were measured, and the relative expression levels of the genes and proteins involved in ROS-mediated apoptosis pathways were also investigated. Results Our data showed a correlation between the baseline ROS level, mtDNAcn and drug sensitivity in the tested cells. Synergistic effect of both drugs was also observed with ROS being the key contributor in cell death. Conclusions Our findings suggest that mitochondria-targeting therapy could be more effective compared to conventional treatments. In addition, cancer cells with low levels of ROS may be more sensitive to the treatment, while cells with high levels of ROS may be more resistant. Doubtlessly, further studies employing a wider range of cell lines and in vivo experiments are needed to validate our results. However, this study provides an insight into understanding the influence of intracellular ROS on drug sensitivity, and may lead to the development of new therapeutic strategies to improve efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Tarek Zaidieh
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Karen E Ball
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Qian An
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
19
|
Calò B, Sanguedolce F, Fortunato F, Stallone G, d’Altilia N, Chirico M, Falagario U, Mancini V, Carrieri G, Cormio L. The impact of age on intravesical instillation of Bacille Calmette-Guerin treatment in patients with high-grade T1 bladder cancer. Medicine (Baltimore) 2019; 98:e16223. [PMID: 31374003 PMCID: PMC6708772 DOI: 10.1097/md.0000000000016223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intravesical instillation of Bacille Calmette-Guèrin (BCG) is the standard adjuvant treatment for high-risk non muscle invasive bladder cancer (NMIBC). Since its mechanism of action is supposed to be linked to the immune system efficiency and senescence could negatively affect this efficiency, BCG efficacy in the elderly has been questioned. This study aimed to assess the impact of age on BCG efficacy and safety in patients with high-grade T1 bladder cancer (BC).Among 123 patients with high-grade T1 BCG scheduled for BCG treatment, 82 were <75 year-old (group A) and 41 were ≥75 year-old (group B). Follow-up: urine cytology and cystoscopy every 3 months for the first 2 years, every 6 months for the third year, and then yearly. Tumor recurrence was defined as pathological evidence of disease at the bladder biopsy; tumor progression was defined as pathological shift to muscle invasive disease at the bladder biopsy or the imaging techniques showing recurrent BC and distant metastasis likely related to it.The median follow-up was 65 months (range 11-152). Recurrence occurred in 35 patients, 19 (23.2%) in the group A and 16 (39%) in the group B. Progression occurred in 18 patients, 12 (14.6%) in the group A and 6 (14.6%) in the group B. Recurrence free rate was similar in both groups up to 2 years. The 5 years progression rate was almost the same in both groups A and B (85.9% vs 84.7%), whereas the 5 years cancer-specific survival (CSS) was 92.6% in the group A and 85.4% in the group B. Of the 18 patients with progression, 11 underwent cystectomy; 12 patients died because of their BC. Kaplan-Meier plots pointed out no difference in recurrence-free, progression-free, and CSS between the 2 groups. Adverse events were similar in the 2 groups. Only 4 (3.3%) patients, 2 (2.4%) in the group A and 2 (4.8%) in the group B, experienced mild adverse reactions compatible with treatment.Elderly patients with high-grade T1 BC are not poorer candidates to BCG treatment, as they had similar benefit and adverse reactions than those aging ≥75 years.
Collapse
Affiliation(s)
- B. Calò
- Department of Urology and Renal Transplantation
| | | | | | - G. Stallone
- Department of Nephrology, University of Foggia, Italy
| | | | - M. Chirico
- Department of Urology and Renal Transplantation
| | | | | | - G. Carrieri
- Department of Urology and Renal Transplantation
| | - L. Cormio
- Department of Urology and Renal Transplantation
| |
Collapse
|
20
|
Alterations of Antioxidant Enzymes and Biomarkers of Nitro-oxidative Stress in Tissues of Bladder Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2730896. [PMID: 31191796 PMCID: PMC6525891 DOI: 10.1155/2019/2730896] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 11/17/2022]
Abstract
Bladder cancer (BC) is one of the most common tumors found in the urinary bladder for both male and female in western countries. In vitro and in vivo studies suggest that high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and oxidative stress play a crucial role in human cancer. Low concentration of ROS and RNS is indispensable for cell survival and proliferation. However, high concentration of ROS and RNS can exert a cytotoxic effect. Increased oxidative stress is a result of either increased ROS/RNS production or a decrease of antioxidant defense mechanisms. A literature search was carried out on PubMed, Medline, and Google Scholar for articles in English published up to May 2018 using the following keywords: oxidative stress, antioxidants, reactive oxygen species, lipid peroxidation, paraoxonase, urinary bladder cancer, and nitric oxide. Literature data demonstrate that BC is associated with oxidative stress and with an imbalance between oxidants and antioxidant enzymes. Markers of lipid peroxidation, protein and nucleic acid oxidation are significantly higher in tissues of patients with BC compared with control groups. A decrease of activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione, and paraoxonase) has also been demonstrated. The imbalance between oxidants and antioxidants could have a potential role in the etiology and progression of bladder cancer.
Collapse
|
21
|
Zhang L, Liang Y, Li S, Zeng F, Meng Y, Chen Z, Liu S, Tao Y, Yu F. The interplay of circulating tumor DNA and chromatin modification, therapeutic resistance, and metastasis. Mol Cancer 2019; 18:36. [PMID: 30849971 PMCID: PMC6408771 DOI: 10.1186/s12943-019-0989-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Peripheral circulating free DNA (cfDNA) is DNA that is detected in plasma or serum fluid with a cell-free status. For cancer patients, cfDNA not only originates from apoptotic cells but also from necrotic tumor cells and disseminated tumor cells that have escaped into the blood during epithelial-mesenchymal transition. Additionally, cfDNA derived from tumors, also known as circulating tumor DNA (ctDNA), carries tumor-associated genetic and epigenetic changes in cancer patients, which makes ctDNA a potential biomarker for the early diagnosis of tumors, monitory and therapeutic evaluations, and prognostic assessments, among others, for various kinds of cancer. Moreover, analyses of cfDNA chromatin modifications can reflect the heterogeneity of tumors and have potential for predicting tumor drug resistance.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yiyi Liang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shifu Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Fanyuan Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yongan Meng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ziwei Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
22
|
Allegra A, Innao V, Allegra AG, Musolino C. Relationship between mitofusin 2 and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:209-236. [PMID: 31036292 DOI: 10.1016/bs.apcsb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles whose actions are fundamental for cell viability. Within the cell, the mitochondrial system is incessantly modified via the balance between fusion and fission processes. Among other proteins, mitofusin 2 is a central protagonist in all these mitochondrial events (fusion, trafficking, contacts with other organelles), the balance of which causes the correct mitochondrial action, shape, and distribution within the cell. Here we examine the structural and functional characteristics of mitofusin 2, underlining its essential role in numerous intracellular pathways, as well as in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
23
|
Sanguedolce F, Cormio A, Massenio P, Pedicillo MC, Cagiano S, Fortunato F, Calò B, Di Fino G, Carrieri G, Bufo P, Cormio L. Altered expression of HER-2 and the mismatch repair genes MLH1 and MSH2 predicts the outcome of T1 high-grade bladder cancer. J Cancer Res Clin Oncol 2018; 144:637-644. [PMID: 29362915 DOI: 10.1007/s00432-018-2593-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE The identification of factors predicting the outcome of stage T1 high-grade bladder cancer (BC) is a major clinical issue. METHODS We performed immunohistochemistry to assess the role of human epidermal growth factor receptor-2 (HER-2) and microsatellite instability (MSI) factors MutL homologue 1 (MLH1) and MutS homologue 2 (MSH2) in predicting recurrence and progression of T1 high-grade BCs having undergone transurethral resection of bladder tumor (TURBT) alone or TURBT + intravesical instillations of bacillus Calmette-Guerin (BCG). RESULTS HER-2 overexpression was a significant predictor of disease-free survival (DFS) in the overall as well as in the two patients' population; as for progression-free survival (PFS), it was significant in the overall but not in the two patients' population. MLH1 was an independent predictor of PFS only in patients treated with BCG and MSH2 failed to predict DFS and PFS in all populations. Most importantly, the higher the number of altered markers the lowers the DFS and PFS. In multivariate Cox proportional-hazards regression analysis, the number of altered molecular markers and BCG treatment were significant predictors (p = 0.0004 and 0.0283, respectively) of DFS, whereas the number of altered molecular markers was the only significant predictor (p = 0.0054) of PFS. CONCLUSIONS Altered expression of the proto-oncogene HER-2 and the two molecular markers of genetic instability MLH1 and MSH2 predicted T1 high-grade BC outcome with the higher the number of altered markers the lower the DFS and PFS. These findings provide grounds for further testing them in predicting the outcome of this challenging disease.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Department of Pathology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Antonella Cormio
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70124, Bari, BA, Italy
| | - Paolo Massenio
- Department of Urology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Maria C Pedicillo
- Department of Pathology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Simona Cagiano
- Department of Pathology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Francesca Fortunato
- Department of Epidemiology and Public Health, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Beppe Calò
- Department of Urology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Giuseppe Di Fino
- Department of Urology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Giuseppe Carrieri
- Department of Urology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Pantaleo Bufo
- Department of Pathology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy
| | - Luigi Cormio
- Department of Urology, University of Foggia, Viale L. Pinto 1, 71122, Foggia, FG, Italy.
| |
Collapse
|
24
|
Liu X, Xu G. Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics - A review. Anal Chim Acta 2017; 1037:3-12. [PMID: 30292306 DOI: 10.1016/j.aca.2017.11.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023]
Abstract
Metabolomics and lipidomics generally targets a huge number of intermediate and end products of cellular metabolism in body fluids, tissues, and cells etc. At present, mass spectrometry (MS) based metabolic or lipid profiling of routine biological specimens including the whole cells, tissues, plasma, serum and urine etc., can cover hundreds of metabolites or lipid species in one analysis, which has qualified deep elucidation of global metabolic and lipid networks. Mitochondria are important intracellular organelles and many critical biochemical reactions occur here, they provide building block for new cells, control redox balance, participate in apoptosis and behave as a signalling platform. Evidence suggests high prevalence of mitochondrial dysfunction occurs in a variety of cancers and other diseases, thus there is an urgent demand for investigating and clarifying mitochondrial metabolic and lipid alterations induced by diseases. Nevertheless, mitochondria contribute a small fraction to cellular contents, profiling of whole cell is probably unsuitable for monitoring alterations in mitochondria. Therefore, metabolomics and lipidomics analyses specially for mitochondria are necessary to understand disturbed metabolic and lipid pathways induced by environment and diseases. However, methods for comprehensively profiling metabolites and lipids in mitochondria have been limited at present. This review summarizes the current states and progress of MS-based mitochondrial metabolomics and lipidomics study. Details of mitochondrial isolation procedure, analytical methods and their applications are described. The challenges and opportunities are also given.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Cormio L, Mancini V, Calò B, Selvaggio O, Mazzilli T, Sanguedolce F, Carrieri G. Asymptomatic solitary bladder plasmocytoma: A case report and literature review. Medicine (Baltimore) 2017; 96:e9347. [PMID: 29390408 PMCID: PMC5815820 DOI: 10.1097/md.0000000000009347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RATIONALE Solitary extramedullary plasmocytoma may arise in any organ, either as a primary tumor or as part of a systemic myeloma; if it rarely affects bladder, it presents with urinary symptoms. We describe the first case of asymptomatic BP occasionally diagnosed in a patient with ascites. PATIENT CONCERNS A 74-year-old woman with hepatitis C virus (HCV)-related liver cirrhosis presented with ascites and no urinary or other symptoms. DIAGNOSES Routine blood tests were within normal ranges, except for mild elevation of transaminases due to chronic hepatitis. Abdominal ultrasound and computed tomography (CT) scanning showed multiple liver nodules suspected for carcinomas and, incidentally, a 18 mm solid lesion of right bladder wall. OUTCOMES She underwent transurethral resection of the bladder tumor and percutaneous liver biopsies; final diagnosis was solitary bladder plasmocytoma (BP) and hepatocellular carcinoma (HCC), respectively. She was given chemoembolization of the main HCC nodule but no adjuvant treatment for BP. At 3-month follow-up, total-body CT showed no signs of bladder disease nor distant metastases; unfortunately, she died one month later due to liver failure. LESSONS This is the first reported case of asymptomatic BP. This rare neoplasm may pose difficulties in differential diagnosis with both bladder metastases and the plasmocytoid variant of bladder transitional cell carcinoma. We also highlighted lack of factors predicting disease outcome as well as response to potential adjuvant treatments.
Collapse
Affiliation(s)
| | | | - Beppe Calò
- Department of Urology and Renal Transplantation
| | | | | | | | | |
Collapse
|