1
|
Wu Z, Li Y, Dong J, Qin JJ. An updated review on the role of small molecules in mediating protein degradation. Eur J Med Chem 2025; 287:117370. [PMID: 39933402 DOI: 10.1016/j.ejmech.2025.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Targeted protein degradation (TPD) technologies, inspired by physiological processes, have recently provided new directions for drug development. Unlike conventional drug development focusing on targeting the active sites of disease-related proteins, TPD can utilize any nook or cranny of a protein to drive degradation through the cell's inherent destruction mechanism. It offers various advantages such as stronger pharmacological effects, an expanded range of drug targets, and higher selectivity. Based on the ubiquitin-proteasome system and the lysosomal degradation pathway, a variety of TPD strategies have been developed including PROTAC, PROTAB, and AUTOTAC. These TPD strategies have continuously enriched the toolbox for targeted protein degradation and expanded the scope of application, providing new ideas for biological research and drug discovery. This review attempts to introduce up-to-date research progress in the TPD strategies, focusing mainly on their design concepts, advantages, potential applications, and challenges, which may provide some inspiration for drug design, drug discovery, and clinical application for biologists and chemists.
Collapse
Affiliation(s)
- Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Ribeiro R, Vítor JMB, Voronovska A, Moreira JN, Goncalves J. Novel Strategy of Antibody Affinity Maturation and Enhancement of Nucleolin-Mediated Antibody-Dependent Cellular Cytotoxicity Against Triple-Negative Breast Cancer. Biotechnol J 2025; 20:e202400380. [PMID: 39868978 DOI: 10.1002/biot.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that remains an unmet medical need. Because TNBC cells do not express the most common markers of breast cancers, there is an active search for novel molecular targets in triple-negative tumors. Additionally, this subtype of breast cancer presents strong immunogenic characteristics which have been encouraging the development of immunotherapeutic approaches against the disease. In this context, nucleolin arises as a promising target for immunotherapy against TNBC. Our group has previously developed an anti-nucleolin VHH-Fc antibody capable of eliciting antibody-dependent cellular cytotoxicity (ADCC). Moreover, we constructed and characterized an antibody library, that was screened against nucleolin-overexpressing cells, originating an enriched anti-nucleolin antibody pool. In this work, a strategy to select individual clones from the pool was designed, combining NGS data with 3D modeling. Two antibodies demonstrated a significant 4.4- and 6.1-fold increase in binding to nucleolin-overexpressing and TNBC cells, and an improvement in affinity to the sub-micromolar range (0.19 µM and 83.69 nM). Additionally, an increment in 4.6- and 3.1-fold in ADCC activity against respective cell lines was observed for the M2 antibody clone. Herein, the affinity maturation strategy developed was validated and corroborated a positive, but not proportional, correlation between antibody binding, affinity, and ADCC.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-UC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
| | - Jorge M B Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Anastasiya Voronovska
- CNC-UC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
| | - João N Moreira
- CNC-UC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Zhang Q, Liu L. Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough. Cancer Lett 2024; 587:216691. [PMID: 38360139 DOI: 10.1016/j.canlet.2024.216691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Traditionally, non-coding RNAs (ncRNAs) are regarded as a class of RNA transcripts that lack encoding capability; however, advancements in technology have revealed that some ncRNAs contain small open reading frames (sORFs) that are capable of encoding micropeptides of approximately 150 amino acids in length. sORF-encoded micropeptides (SEPs) have emerged as intriguing entities in hepatocellular carcinoma (HCC) research, shedding light on this previously unexplored realm. Recent studies have highlighted the regulatory functions of SEPs in the occurrence and progression of HCC. Some SEPs exhibit inhibitory effects on HCC, but others facilitate its development. This discovery has revolutionized the landscape of HCC research and clinical management. Here, we introduce the concept and characteristics of SEPs, summarize their associations with HCC, and elucidate their carcinogenic mechanisms in HCC metabolism, signaling pathways, cell proliferation, and metastasis. In addition, we propose a step-by-step workflow for the investigation of HCC-associated SEPs. Lastly, we discuss the challenges and prospects of applying SEPs in the diagnosis and treatment of HCC. This review aims to facilitate the discovery, optimization, and clinical application of HCC-related SEPs, inspiring the development of early diagnostic, individualized, and precision therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China.
| |
Collapse
|
4
|
Kong J, Ju X, Qi G, Wang J, Diao X, Wang B, Zhang C, Li J, Jin Y. "Light-On" Fluorescent Nanoprobes for Monitoring Dynamic Distribution of Cellular Nucleolin During Pyroptosis. Anal Chem 2024; 96:926-933. [PMID: 38158373 DOI: 10.1021/acs.analchem.3c05122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nucleolin (NCL) is a multifunctional nuclear protein that plays significant roles in regulating physiological activities of the cells. However, it remains a challenge to monitor the dynamic distribution and expression of nucleolin within living cells during cell stress processes directly. Here, we designed "turn-on" fluorescent nanoprobes composed of specific AS1411 aptamer and nucleus-targeting peptide on gold nanoparticles (AuNPs) to effectively capture and track the NCL distribution and expression during pyroptosis triggered by electrical stimulation (ES). The distribution of nucleolin in the cell membrane and nucleus can be easily observed by simply changing the particle size of the nanoprobes. The present strategy exhibits obvious advantages such as simple operation, low cost, time saving, and suitability for living cell imaging. The ES can induce cancer cell pyroptosis controllably and selectively, with less harm to the viability of normal cells. The palpable cell nuclear stress responses of cancerous cells, including nucleus wrinkling and nucleolus fusion after ES at 1.0 V were obviously observed. Compared with normal cells (MCF-10A), NCL is overexpressed within cancerous cells (MCF-7 cells) using the as-designed nanoprobes, and the ES can effectively inhibit NCL expression within cancerous cells. The developed NCL sensing platform and ES-based methods hold great potential for cellular studies of cancer-related diseases.
Collapse
Affiliation(s)
- Jiao Kong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingkai Ju
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin,P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
| | - Chenyu Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin,P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
5
|
Liu L, Zhou Y, Lei X. RMDGCN: Prediction of RNA methylation and disease associations based on graph convolutional network with attention mechanism. PLoS Comput Biol 2023; 19:e1011677. [PMID: 38055721 DOI: 10.1371/journal.pcbi.1011677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
RNA modification is a post transcriptional modification that occurs in all organisms and plays a crucial role in the stages of RNA life, closely related to many life processes. As one of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in gene expression regulation, closely related to the occurrence and development of diseases. However, due to the low abundance of m1A, verifying the associations between m1As and diseases through wet experiments requires a great quantity of manpower and resources. In this study, we proposed a computational method for predicting the associations of RNA methylation and disease based on graph convolutional network (RMDGCN) with attention mechanism. We build an adjacency matrix through the collected m1As and diseases associations, and use positive-unlabeled learning to increase the number of positive samples. By extracting the features of m1As and diseases, a heterogeneous network is constructed, and a GCN with attention mechanism is adopted to predict the associations between m1As and diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies indicate that RMDGCN can predict the relationships between unknown m1As and diseases. In summary, RMDGCN is an effective method for predicting the associations between m1As and diseases.
Collapse
Affiliation(s)
- Lian Liu
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yumeng Zhou
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Farahbakhsh Z, Zamani M, Nasirian V, Shariati L, Kermani S, Karizmeh MS, Rafienia M. An insight into fluorescence and magnetic resonance bioimaging using a multifunctional polyethyleneimine-passivated gadocarbon dots nanoconstruct assembled with AS1411. Mikrochim Acta 2023; 190:275. [PMID: 37358641 DOI: 10.1007/s00604-023-05853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
A nanoassembly of PEI-passivated Gd@CDs, a type of aptamer, is presented which was designed and characterized in order to target specific cancer cells based on their recognition of the receptor nucleolin (NCL), which is overexpressed on the cell membrane of breast cancer cells for fluorescence and magnetic resonance imaging and treatment. Using hydrothermal methods, Gd-doped nanostructures were synthesized, then modified by a two-step chemical procedure for subsequent applications: the passivating of Gd@CDs with branched polyethyleneimine (PEI) (to form Gd@CDs-PEI1 and Gd@CDs-PEI2), and using AS1411 aptamer (AS) as a DNA-targeted molecule (to generate AS/Gd@CDs-PEI1 and AS/Gd@CDs-PEI2). Consequently, these nanoassemblies were constructed as a result of electrostatic interactions between cationic Gd@CDs-passivated PEI and AS aptamers, offering efficient multimodal targeting nanoassemblies for cancer cell detection. It has been demonstrated through in vitro studies that both types of AS-conjugated nanoassemblies are highly biocompatible, have high cellular uptake efficiency (equivalent concentration of AS: 0.25 μΜ), and enable targeted fluorescence imaging in nucleolin-positive MCF7 and MDA-MB-231 cancer cells compared to MCF10-A normal cells. Importantly, the as-prepared Gd@CDs, Gd@CDs-PEI1, and Gd@CDs-PEI2 exhibit higher longitudinal relaxivity values (r1) compared with the commercial Gd-DTPA, equal to 5.212, 7.488, and 5.667 mM-1s-1, respectively. Accordingly, it is concluded that the prepared nanoassemblies have the potential to become excellent candidates for cancer targeting and fluorescence/MR imaging agents, which can be applied to cancer imaging and personalized nanomedicine.
Collapse
Affiliation(s)
- Zohreh Farahbakhsh
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Mohammadreza Zamani
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Vahid Nasirian
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Kermani
- Department of Bioelectric and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Shie Karizmeh
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran.
| |
Collapse
|
7
|
Li M, Yang G, Zheng Y, Lv J, Zhou W, Zhang H, You F, Wu C, Yang H, Liu Y. NIR/pH-triggered aptamer-functionalized DNA origami nanovehicle for imaging-guided chemo-phototherapy. J Nanobiotechnology 2023; 21:186. [PMID: 37301952 DOI: 10.1186/s12951-023-01953-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Targeted chemo-phototherapy has received widespread attention in cancer treatment for its advantages in reducing the side effects of chemotherapeutics and improving therapeutic effects. However, safe and efficient targeted-delivery of therapeutic agents remains a major obstacle. Herein, we successfully constructed an AS1411-functionalized triangle DNA origami (TOA) to codeliver chemotherapeutic drug (doxorubicin, DOX) and a photosensitizer (indocyanine green, ICG), denoted as TOADI (DOX/ICG-loaded TOA), for targeted synergistic chemo-phototherapy. In vitro studies show that AS1411 as an aptamer of nucleolin efficiently enhances the nanocarrier's endocytosis more than 3 times by tumor cells highly expressing nucleolin. Subsequently, TOADI controllably releases the DOX into the nucleus through the photothermal effect of ICG triggered by near-infrared (NIR) laser irradiation, and the acidic environment of lysosomes/endosomes facilitates the release. The downregulated Bcl-2 and upregulated Bax, Cyt c, and cleaved caspase-3 indicate that the synergistic chemo-phototherapeutic effect of TOADI induces the apoptosis of 4T1 cells, causing ~ 80% cell death. In 4T1 tumor-bearing mice, TOADI exhibits 2.5-fold targeted accumulation in tumor region than TODI without AS1411, and 4-fold higher than free ICG, demonstrating its excellent tumor targeting ability in vivo. With the synergetic treatment of DOX and ICG, TOADI shows a significant therapeutic effect of ~ 90% inhibition of tumor growth with negligible systemic toxicity. In addition, TOADI presents outstanding superiority in fluorescence and photothermal imaging. Taken together, this multifunctional DNA origami-based nanosystem with the advantages of specific tumor targeting and controllable drug release provides a new strategy for enhanced cancer therapy.
Collapse
Grants
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (12132004, U19A2006, 32171395) the National Natural Science Foundation of China
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (23NSFSC0392, 23SYSX0108, 2022NSFSC0048) the Sichuan Science and Technology Program
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
- (ZYGX2021YGLH204, ZYGX2021YGLH017, ZYGX2021YGLH023) the Joint Funds of Center for Engineering Medicine
Collapse
Affiliation(s)
- Mengyue Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Yue Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jiazhen Lv
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Wanyi Zhou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hanxi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P.R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P.R. China.
| |
Collapse
|
8
|
Chen M, Zhou P, Kong Y, Li J, Li Y, Zhang Y, Ran J, Zhou J, Chen Y, Xie S. Inducible Degradation of Oncogenic Nucleolin Using an Aptamer-Based PROTAC. J Med Chem 2023; 66:1339-1348. [PMID: 36608275 DOI: 10.1021/acs.jmedchem.2c01557] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While proteolysis-targeting chimeras (PROTACs) are showing promise for targeting previously undruggable molecules, their application has been limited by difficulties in identifying suitable ligands and undesired on-target toxicity. Aptamers can virtually recognize any protein through their unique and switchable conformations. Here, by exploiting aptamers as targeting warheads, we developed a novel strategy for inducible degradation of undruggable proteins. As a proof of concept, we chose oncogenic nucleolin (NCL) as the target and generated a series of NCL degraders, and demonstrated that dNCL#T1 induced NCL degradation in a ubiquitin-proteasome-dependent manner, thereby inhibiting NCL-mediated breast cancer cell proliferation. To reduce on-target toxicity, we further developed a light-controllable PROTAC, opto-dNCL#T1, by introducing a photolabile complementary oligonucleotide to hybridize with dNCL#T1. UVA irradiation liberated dNCL#T1 from caged opto-dNCL#T1, leading to dNCL#T1 activation and NCL degradation. These results indicate that aptamer-based PROTACs are a viable alternative approach to degrade proteins of interest in a highly tunable manner.
Collapse
Affiliation(s)
- Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yao Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yan Chen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China.,Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
9
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Janani SK, Dhanabal SP, Sureshkumar R, Nikitha Upadhyayula SS. Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer. Curr Pharm Des 2022; 28:3114-3126. [PMID: 36173049 DOI: 10.2174/1381612828666220928105044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Breast cancer is the second leading cause of cancer-related deaths. It is important to target the complex pathways using a suitable targeted delivery system. Targeted delivery systems can effectively act on cancer cells and lead to the annihilation of tumor proliferation. They mainly employ targeting agents like aptamers linked to the formulation. Based on the expression of the receptors on the surface of the cancer cells, suitable aptamers can be developed. AS1411 is one such aptamer that has the ability to bind to the over-expressed nucleolin present in breast cancer cells. Nucleolin is a phosphoprotein that is involved in various aspects, like cell growth, differentiation and survival. Mostly they are found in the nucleolus, nucleus, cytoplasm and cell surface. The shuttling effect of the nucleolin between the nucleus and cytoplasm serves as a bonus for the AS1411 aptamer. Because of the shutting effect, the internalization of the drug compound or chemotherapeutic drug inside the cell can be achieved. In this article, we have discussed nucleolin, anti-nucleolin aptamer, namely, AS1411, and its application in exhibiting various anticancer activities, including apoptosis, anti-angiogenesis, anti-metastasis, stimulation of tumor suppressor (i.e., P53), and inhibition of tumor inducer. Further, the ways of internalization, namely macropinocytosis, are also discussed. Additionally, we have also discussed the superiority of the aptamer compared to the antibodies as well as the limitations of the aptamers. By considering all the above parameters, we hope this aptamer will be effective in the management and eradication of breast cancer cells.
Collapse
Affiliation(s)
- S K Janani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - S P Dhanabal
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sai Surya Nikitha Upadhyayula
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
11
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
12
|
Falsafi M, Hassanzadeh Goji N, Sh Saljooghi A, Abnous K, Taghdisi SM, Nekooei S, Ramezani M, Alibolandi M. Synthesis of a targeted, dual pH and redox-responsive nanoscale coordination polymer theranostic against metastatic breast cancer in vitro and in vivo. Expert Opin Drug Deliv 2022; 19:743-754. [PMID: 35616345 DOI: 10.1080/17425247.2022.2083602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Nanoscale coordination polymers (nCP) have exhibited a great potential in designing of the theranostic platforms in the latest years. However, they have low selectivity for cancerous tissues and require to be modified for becoming effective cancer therapeutics. In this study, a novel nanoscale pH and redox-responsive coordination polymer with high selectivity was synthesized. METHODS The nCP was synthesized by iron(III) chloride and dithiodiglycolic acid. After loading the prepared nCP with doxorubicin (DOX), nCP was coated with an amphiphilic copolymer composed of α-tocopheryl succinate-polyethylene glycol (VEP). Next, AS1411 aptamer was decorated on the VEP shell of the DOX-loaded nCP (Apt-VEP-nCP@DOX) to provide a guided drug delivery platform. RESULTS The prepared platform demonstrated high DOX loading capacity and pH and redox-responsive DOX release. Apt-VEP-nCP@DOX displayed greater DOX internalization and toxicity towards breast cancer cells of 4T1 and MCF7 compared with that of non-targeted VEP-nCP@DOX. Also, the intravenous injection of Apt-VEP-nCP@DOX (a single dose) considerably suppressed the 4T1 tumor growth in vivo. Moreover, Apt-VEP-nCP@DOX showed outstanding magnetic resonance (MR) imaging capability for 4T1 adenocarcinoma diagnosis in ectopic 4T1 tumor model in mice. CONCLUSIONS The developed innovative intelligent Apt-VEP-nCP@DOX could serve as a safe and biocompatible theranostic platform appropriate for further translational purposes against breast cancer.
Collapse
Affiliation(s)
- Monireh Falsafi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Lopes R, Shi K, Fonseca NA, Gama A, Ramalho JS, Almeida L, Moura V, Simões S, Tidor B, Moreira JN. Modelling the impact of nucleolin expression level on the activity of F3 peptide-targeted pH-sensitive pegylated liposomes containing doxorubicin. Drug Deliv Transl Res 2022; 12:629-646. [PMID: 33860446 DOI: 10.1007/s13346-021-00972-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 01/06/2023]
Abstract
Strategies targeting nucleolin have enabled a significant improvement in intracellular bioavailability of their encapsulated payloads. In this respect, assessment of the impact of target cell heterogeneity and nucleolin homology across species (structurally and functionally) is of major importance. This work also aimed at mathematically modelling the nucleolin expression levels at the cell membrane, binding and internalization of pH-sensitive pegylated liposomes encapsulating doxorubicin and functionalized with the nucleolin-binding F3 peptide (PEGASEMP), and resulting cytotoxicity against cancer cells from mouse, rat, canine, and human origin. Herein, it was shown that nucleolin expression levels were not a limitation on the continuous internalization of F3 peptide-targeted liposomes, despite the saturable nature of the binding mechanism. Modeling enabled the prediction of nucleolin-mediated total doxorubicin exposure provided by the experimental settings of the assessment of PEGASEMP's impact on cell death. The former increased proportionally with nucleolin-binding sites, a measure relevant for patient stratification. This pattern of variation was observed for the resulting cell death in nonsaturating conditions, depending on the cancer cell sensitivity to doxorubicin. This approach differs from standard determination of cytotoxic concentrations, which normally report values of incubation doses rather than the actual intracellular bioactive drug exposure. Importantly, in the context of development of nucleolin-based targeted drug delivery, the structural nucleolin homology (higher than 84%) and functional similarity across species presented herein, emphasized the potential to use toxicological data and other metrics from lower species to infer the dose for a first-in-human trial.
Collapse
Affiliation(s)
- Rui Lopes
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Kevin Shi
- Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, Apartado 1013, 5000-801, Vila Real, Portugal
| | - José S Ramalho
- Laboratory of Cellular and Molecular Biology, NOVA Medical School, New University of Lisbon, Campo Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Luís Almeida
- Blueclinical, Ltd, 4460-439, Senhora da Hora, Matosinhos, Portugal
| | - Vera Moura
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Bruce Tidor
- Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - João N Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
14
|
Targeted liposomal doxorubicin/ceramides combinations: the importance to assess the nature of drug interaction beyond bulk tumor cells. Eur J Pharm Biopharm 2022; 172:61-77. [PMID: 35104605 DOI: 10.1016/j.ejpb.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
Abstract
One of the major assets of anticancer nanomedicine is the ability to co-deliver drug combinations, as it enables targeting of different cellular populations and/or signaling pathways implicated in tumorigenesis and thus tackling tumor heterogeneity. Moreover, drug resistance can be circumvented, for example, upon co-encapsulation and delivery of doxorubicin and sphingolipids, as ceramides. Herein, the impact of short (C6) and long (C18) alkyl chain length ceramides on the nature of drug interaction, within the scope of combination with doxorubicin, was performed in bulk triple-negative breast cancer (TNBC) cells, as well as on the density of putative cancer stem cells and phenotype, including live single-cell tracking. C6- or C18-ceramide enabled a synergistic drug interaction in all conditions and (bulk) cell lines tested. However, differentiation among these two ceramides was reflected on the migratory potential of cancer cells, particularly significant against the highly motile MDA-MB-231 cells. This effect was supported by the downregulation of the PI3K/Akt pathway enabled by C6-ceramide and in contrast with C18-ceramide. The decrease of the migratory potential enabled by the targeted liposomal combinations is of high relevance in the context of TNBC, due to the underlying metastatic potential. Surprisingly, the nature of the drug interaction assessed at the level of bulk cancer cells revealed to be insufficient to predict whether a drug combination enables a decrease in the percentage of the master regulators of tumor relapse as ALDH+/high putative TNBC cancer stem cells, suggesting, for the first time, that it should be extended further down to this level.
Collapse
|
15
|
Shefer K, Boulos A, Gotea V, Arafat M, Ben Chaim Y, Muharram A, Isaac S, Eden A, Sperling J, Elnitski L, Sperling R. A novel role for nucleolin in splice site selection. RNA Biol 2021; 19:333-352. [PMID: 35220879 PMCID: PMC8890436 DOI: 10.1080/15476286.2021.2020455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/10/2021] [Indexed: 01/12/2023] Open
Abstract
Latent 5' splice sites, not normally used, are highly abundant in human introns, but are activated under stress and in cancer, generating thousands of nonsense mRNAs. A previously proposed mechanism to suppress latent splicing was shown to be independent of NMD, with a pivotal role for initiator-tRNA independent of protein translation. To further elucidate this mechanism, we searched for nuclear proteins directly bound to initiator-tRNA. Starting with UV-crosslinking, we identified nucleolin (NCL) interacting directly and specifically with initiator-tRNA in the nucleus, but not in the cytoplasm. Next, we show the association of ini-tRNA and NCL with pre-mRNA. We further show that recovery of suppression of latent splicing by initiator-tRNA complementation is NCL dependent. Finally, upon nucleolin knockdown we show activation of latent splicing in hundreds of coding transcripts having important cellular functions. We thus propose nucleolin, a component of the endogenous spliceosome, through its direct binding to initiator-tRNA and its effect on latent splicing, as the first protein of a nuclear quality control mechanism regulating splice site selection to protect cells from latent splicing that can generate defective mRNAs.
Collapse
Affiliation(s)
- Kinneret Shefer
- Department of Genetics, The Hebrew University of Jerusalem, JerusalemIsrael
| | - Ayub Boulos
- Department of Genetics, The Hebrew University of Jerusalem, JerusalemIsrael
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MDUSA
| | - Maram Arafat
- Department of Genetics, The Hebrew University of Jerusalem, JerusalemIsrael
| | - Yair Ben Chaim
- Department of Natural Sciences, The Open University, RaananaIsrael
| | - Aya Muharram
- Department of Genetics, The Hebrew University of Jerusalem, JerusalemIsrael
| | - Sara Isaac
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, JerusalemIsrael
| | - Amir Eden
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, JerusalemIsrael
| | - Joseph Sperling
- Department of Organic Chemistry, The Weizmann Institute of Science, RehovotIsrael
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MDUSA
| | - Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, JerusalemIsrael
| |
Collapse
|
16
|
Cruz AF, Caleiras MB, Fonseca NA, Gonçalves N, Mendes VM, Sampaio SF, Moura V, Melo JB, Almeida RD, Manadas B, Simões S, Moreira JN. The Enhanced Efficacy of Intracellular Delivery of Doxorubicin/C6-Ceramide Combination Mediated by the F3 Peptide/Nucleolin System Is Supported by the Downregulation of the PI3K/Akt Pathway. Cancers (Basel) 2021; 13:cancers13123052. [PMID: 34207464 PMCID: PMC8235382 DOI: 10.3390/cancers13123052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Targeted nanomedicine-based approaches that aim at the simultaneous delivery of synergistic drug combinations to multiple cellular populations are of high relevance for tackling heterogeneity on solid tumors. Considering that cancer stem cells (CSC) may originate from non-stem cancer cells, single-drug regimens targeting only one of these cell populations could enable tumors to evade treatments. As such, the identification of a common marker, such as nucleolin, might result in a therapeutic advantage. The results herein generated suggested a transversal role of nucleolin in the internalization of F3 peptide-targeted pegylated pH-sensitive liposomes into bulk ovarian cancer cells, including putative CSC-enriched ovarian cells. The intracellular delivery of a drug combination such as the one tested herein was relevant in the context of cell lines with higher intrinsic resistances to doxorubicin. The enhanced efficacy of the F3 peptide-targeted liposomal combination of doxorubicin/C6-ceramide was supported by the downregulation of the Akt pathway, within a specific range of basal level of expression. Abstract Targeting multiple cellular populations is of high therapeutic relevance for the tackling of solid tumors heterogeneity. Herein, the ability of pegylated and pH-sensitive liposomes, functionalized with the nucleolin-binding F3 peptide and containing doxorubicin (DXR)/C6-ceramide synergistic combination, to target, in vitro, ovarian cancer, including ovarian cancer stem cells (CSC), was assessed. The underlying molecular mechanism of action of the nucleolin-mediated intracellular delivery of C6-ceramide to cancer cells was also explored. The assessment of overexpression of surface nucleolin expression by flow cytometry was critical to dissipate differences identified by Western blot in membrane/cytoplasm of SKOV-3, OVCAR-3 and TOV-112D ovarian cancer cell lines. The former was in line with the significant extent of uptake into (bulk) ovarian cancer cells, relative to non-targeted and non-specific counterparts. This pattern of uptake was recapitulated with putative CSC-enriched ovarian SKOV-3 and OVCAR-3 sub-population (EpCAMhigh/CD44high). Co-encapsulation of DXR:C6-ceramide into F3 peptide-targeted liposomes improved cytotoxic activity relative to liposomes containing DXR alone, in an extent that depended on the intrinsic resistance to DXR and on the incubation time. The enhanced cytotoxicity of the targeted combination was mechanistically supported by the downregulation of PI3K/Akt pathway by C6-ceramide, only among the nucleolin-overexpressing cancer cells presenting a basal p-Akt/total Akt ratio lower than 1.
Collapse
Affiliation(s)
- Ana F. Cruz
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Mariana B. Caleiras
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Nuno A. Fonseca
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- TREAT U, SA—Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
| | - Vera M. Mendes
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
| | - Susana F. Sampaio
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- Univ Coimbra—University of Coimbra, CIBB, Institute for Interdisciplinary Research (IIIUC), 3030-789 Coimbra, Portugal
| | - Vera Moura
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- TREAT U, SA—Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Joana B. Melo
- iCBR—Coimbra Institute for Clinical and Biomedical Research, CIBB, Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra—University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ramiro D. Almeida
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
| | - Bruno Manadas
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
| | - Sérgio Simões
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João N. Moreira
- CNC—Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; (A.F.C.); (M.B.C.); (N.A.F.); (N.G.); (V.M.M.); (S.F.S.); (V.M.); (R.D.A.); (B.M.); (S.S.)
- Univ Coimbra—University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
17
|
Fang K, Wang L, Huang H, Dong S, Guo Y. Therapeutic efficacy and cardioprotection of nucleolin-targeted doxorubicin-loaded ultrasound nanobubbles in treating triple-negative breast cancer. NANOTECHNOLOGY 2021; 32:245102. [PMID: 33690196 DOI: 10.1088/1361-6528/abed03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Targeted lipid nanobubbles as theranostic ultrasound molecular probes with both targeted contrast-enhanced ultrasound molecular imaging and synergistic treatment capabilities are expected to overcome severe challenges in the diagnosis and treatment of refractory triple-negative breast cancer (TNBC). In this study, AS1411 aptamer-functionalised nucleolin-targeted doxorubicin-loaded lipid nanobubbles (AS1411-DOX-NBs) were constructed, and their physicochemical properties as well as anti-tumour and cardioprotective efficacies were systematically tested and evaluated. The results showed that AS1411-DOX-NBs can carry and maintain the physicochemical and pharmacodynamic properties of doxorubicin (DOX) and show stronger tumour cell-killing abilityin vitroby increasing the active uptake of drugs. AS1411-DOX-NBs also significantly inhibited the growth of TNBC xenografts while maintaining the weight and health of the mice. Echocardiography and pathological examination further confirmed that AS1411-DOX-NBs effectively caused tumour tissue apoptosis and necrosis while reducing DOX-induced cardiotoxicity. The AS1411-DOX-NBs constructed in this study enable both targeted contrast-enhanced ultrasound molecular imaging and synergistic therapeutic efficacy and can be used as safe and efficient theranostic ultrasound molecular probes for the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Kejing Fang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Luofu Wang
- Department of Urology, Army Characteristic Medical Center, Chongqing 400042, People's Republic of China
| | - Haiyun Huang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| |
Collapse
|
18
|
Lainetti PF, Leis-Filho AF, Kobayashi PE, de Camargo LS, Laufer-Amorim R, Fonseca-Alves CE, Souza FF. Proteomics Approach of Rapamycin Anti-Tumoral Effect on Primary and Metastatic Canine Mammary Tumor Cells In Vitro. Molecules 2021; 26:1213. [PMID: 33668689 PMCID: PMC7956669 DOI: 10.3390/molecules26051213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/05/2022] Open
Abstract
Rapamycin is an antifungal drug with antitumor activity and acts inhibiting the mTOR complex. Due to drug antitumor potential, the aim of this study was to evaluate its effect on a preclinical model of primary mammary gland tumors and their metastases from female dogs. Four cell lines from our cell bank, two from primary canine mammary tumors (UNESP-CM1, UNESP-CM60) and two metastases (UNESP-MM1, and UNESP-MM4) were cultured in vitro and investigated for rapamycin IC50. Then, cell lines were treated with rapamycin IC50 dose and mRNA and protein were extracted in treated and non-treated cells to perform AKT, mTOR, PTEN and 4EBP1 gene expression and global proteomics by mass spectrometry. MTT assay demonstrated rapamycin IC50 dose for all different tumor cells between 2 and 10 μM. RT-qPCR from cultured cells, control versus treated group and primary tumor cells versus metastatic tumor cells, did not shown statistical differences. In proteomics were found 273 proteins in all groups, and after data normalization 49 and 92 proteins were used for statistical analysis for comparisons between control versus rapamycin treatment groups, and metastasis versus primary tumor versus metastasis rapamycin versus primary tumor rapamycin, respectively. Considering the two statistical analysis, four proteins, phosphoglycerate mutase, malate dehydrogenase, l-lactate dehydrogenase and nucleolin were found in decreased abundance in the rapamycin group and they are related with cellular metabolic processes and enhanced tumor malignant behavior. Two proteins, dihydrolipoamide dehydrogenase and superoxide dismutase, also related with metabolic processes, were found in higher abundance in rapamycin group and are associated with apoptosis. The results suggested that rapamycin was able to inhibit cell growth of mammary gland tumor and metastatic tumors cells in vitro, however, concentrations needed to reach the IC50 were higher when compared to other studies.
Collapse
Affiliation(s)
- Patrícia F. Lainetti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (P.F.L.); (L.S.d.C.); (C.E.F.-A.)
| | - Antonio F. Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.); (R.L.-A.)
| | - Priscila E. Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.); (R.L.-A.)
| | - Laíza S. de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (P.F.L.); (L.S.d.C.); (C.E.F.-A.)
| | - Renee Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (A.F.L.-F.); (P.E.K.); (R.L.-A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (P.F.L.); (L.S.d.C.); (C.E.F.-A.)
- Institute of Health Sciences, Universidade Paulista—UNIP, Bauru 17048-290, Brazil
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University—UNESP, Botucatu 18618-681, Brazil; (P.F.L.); (L.S.d.C.); (C.E.F.-A.)
| |
Collapse
|
19
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
20
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
21
|
Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020; 12:pharmaceutics12100929. [PMID: 33003468 PMCID: PMC7599839 DOI: 10.3390/pharmaceutics12100929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. Patients' predisposition to relapse and metastasis, chemotherapeutics' cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics' resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles.
Collapse
|
22
|
Jing Y, Cai M, Zhou L, Jiang J, Gao J, Wang H. Aptamer AS1411 utilized for super-resolution imaging of nucleolin. Talanta 2020; 217:121037. [PMID: 32498876 DOI: 10.1016/j.talanta.2020.121037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
Nucleolin (NCL) is a multifunctional protein that mainly localizes in the nucleolus and also distributes in the nucleoplasm, cytoplasm and cell membrane. Most studies focus on its biofunctions in cell activities and diseases, however, its detailed distribution and organization pattern in situ remains obscure. Moreover, antibodies were commonly used to investigate NCL in cells. It is worth noting that antibody labeling of intracellular proteins needs detergents to permeabilize the membrane, which could disrupt the membrane structure and proteins. The emergence of aptamer AS1411 provides us a good choice to recognize the NCL without permeabilization owing to its superior cellular uptake and enhanced stability. Therefore, we applied aptamer AS1411 to super-resolution imaging to visualize the distribution of NCL at a nanometer level. Aptamer achieved a better recognition of intracellular NCL and displayed the detailed structure of NCL in different parts of cells. Significantly, cytoplasmic and membrane NCL have higher expression and larger clusters in cancer cells than that in normal cells. Our work presented a detailed organization of NCL in cells and revealed the distribution differences between cancer cells and normal cells, which promote the understanding of its functions in physiology and pathology.
Collapse
Affiliation(s)
- Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230027, China; Laboratory for Marine Biology and Biotechnology, Qing Dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong, 266237, China.
| |
Collapse
|
23
|
Zafar A, Jabbar M, Manzoor Y, Gulzar H, Hassan SG, Nazir MA, Ain-ul-Haq, Mustafa G, Sahar R, Masood A, Iqbal A, Hussain M, Hasan M. Quantifying Serum Derived Differential Expressed and Low Molecular Weight Protein in Breast Cancer Patients. Protein Pept Lett 2020; 27:658-673. [DOI: 10.2174/0929866527666200110155609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Background:Searching the biomarker from complex heterogeneous material for early detection of disease is a challenging task in the field of biomedical sciences.Objective:The study has been arranged to explore the proteomics serum derived profiling of the differential expressed and low molecular weight protein in breast cancer patient.Methods:Quantitative proteome was analyzed using the Nano LC/Mass and Bioinformatics tool.Results:This quantification yields 239 total protein constituting 29% of differentially expressed protein, with 82% downregulated differential protein and 18% up-regulated differential protein. While 12% of total protein were found to be cancer inducing proteins. Gene Ontology (GO) described that the altered proteins with 0-60 kDa mass in nucleus, cytosol, ER, and mitochondria were abundant that chiefly controlled the RNA, DNA, ATP, Ca ion and receptor bindings.Conclusion:The study demonstrate that the organelle specific, low molecular weighted proteins are significantly important biomarker. That act as strong agents in the prognosis and diagnosis of breast cancer at early stage.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryum Jabbar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Manzoor
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Gulzar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shahzad Gul Hassan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Muniba Anum Nazir
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ain-ul-Haq
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Mustafa
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Romana Sahar
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aqeel Masood
- Bahawal Victoria Hospital, Bahawalpur (BVH), Pakistan
| | | | - Mulazim Hussain
- Department of Pediatrician, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Murtaza Hasan
- Department of Biochemistry & Biotechnology (Baghdad-ul-Jadeed Campus), Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
24
|
Fang K, Wang L, Huang H, Lan M, Shen D, Dong S, Guo Y. Construction of Nucleolin-Targeted Lipid Nanobubbles and Contrast-Enhanced Ultrasound Molecular Imaging in Triple-Negative Breast Cancer. Pharm Res 2020; 37:145. [PMID: 32666304 DOI: 10.1007/s11095-020-02873-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To construct aptamer AS1411-functionalized targeted lipid nanobubbles that could simultaneously target abnormally highly expressed nucleolin (NCL) on tumor tissue and neovasculature. Additionally, the study of their contrast-enhanced ultrasound molecular imaging capabilities in vitro and in vivo to explore new methods and approaches for the early and accurate diagnosis of triple-negative breast cancer (TNBC). METHODS First, the targeted lipid-nucleic acid molecules were constructed by an amide reaction. Then, the targeted lipid nanobubbles (AS1411-NBs) and nontargeted lipid nanobubbles (NBs) were prepared by membrane hydration, mechanical vibration and centrifugal floatation. The physicochemical characteristics and contrast-enhanced ultrasound imaging capabilities of AS1411-NBs and NBs were compared and analyzed in vitro and in vivo. RESULTS There were no significant differences between the AS1411-NBs and NBs in their concentration, average particle size or ultrasound imaging capabilities in vitro (P > 0.05). However, AS1411-NBs could simultaneously target NCL in tumor tissue and neovasculature to effectively prolong the duration of contrast-enhanced ultrasound imaging compared to NBs in vivo. The area under the time-intensity curve was significantly different between AS1411-NBs and NBs (P < 0.001), and the drug loading capacity of the AS1411-NBs was also significantly higher than that of the NBs (P < 0.05). CONCLUSIONS Aptamer AS1411-functionalized targeted lipid nanobubbles could significantly prolong the duration of contrast-enhanced ultrasound imaging to achieve dual-targeted ultrasound molecular imaging of tumor tissue and neovasculature. AS1411-NBs also have higher drug loading and targeted drug delivery capabilities compared with NBs, which can provide new methods and approaches for the early accurate diagnosis and effective treatment of TNBC.
Collapse
Affiliation(s)
- Kejing Fang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Biomedical Materials Science, Army Medical University, Chongqing, 400038, China
| | - Luofu Wang
- Department of Urology, Army Characteristic Medical Center, Chongqing, 400042, China
| | - Haiyun Huang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Minmin Lan
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Daijia Shen
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, 400038, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
25
|
Zottel A, Jovčevska I, Šamec N, Mlakar J, Šribar J, Križaj I, Skoblar Vidmar M, Komel R. Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Ther Adv Med Oncol 2020; 12:1758835920915302. [PMID: 32426045 PMCID: PMC7222267 DOI: 10.1177/1758835920915302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. Methods: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. Results: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. Conclusion: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
26
|
Beker MC, Caglayan B, Caglayan AB, Kelestemur T, Yalcin E, Caglayan A, Kilic U, Baykal AT, Reiter RJ, Kilic E. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019; 9:19082. [PMID: 31836786 PMCID: PMC6910929 DOI: 10.1038/s41598-019-55663-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3αβ, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1. Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.
Collapse
Affiliation(s)
- Mustafa C Beker
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Medical Biology, International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Aysun Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, School of Medicine, University of Health Sciences, 34668, Istanbul, Turkey
| | - Ahmet T Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752, Istanbul, Turkey
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 78229, Texas, USA
| | - Ertugrul Kilic
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey.
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
27
|
Romano S, Fonseca N, Simões S, Gonçalves J, Moreira JN. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov Today 2019; 24:1985-2001. [PMID: 31271738 DOI: 10.1016/j.drudis.2019.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells. One of the strategies to overcome this problem is targeting the more accessible tumor vasculature via molecules such as nucleolin, which is expressed at the surface of cancer and angiogenic endothelial cells, thus enabling a dual cellular targeting strategy. In this review, we present and discuss nucleolin-based targeting strategies that have been developed for cancer therapy, with a special focus on recent antibody-based approaches.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Nuno Fonseca
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal
| | - João Gonçalves
- iMed. ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal.
| |
Collapse
|
28
|
Camorani S, Fedele M, Zannetti A, Cerchia L. TNBC Challenge: Oligonucleotide Aptamers for New Imaging and Therapy Modalities. Pharmaceuticals (Basel) 2018; 11:ph11040123. [PMID: 30428522 PMCID: PMC6316260 DOI: 10.3390/ph11040123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
Compared to other breast cancers, triple-negative breast cancer (TNBC) usually affects younger patients, is larger in size, of higher grade and is biologically more aggressive. To date, conventional cytotoxic chemotherapy remains the only available treatment for TNBC because it lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2), and no alternative targetable molecules have been identified so far. The high biological and clinical heterogeneity adds a further challenge to TNBC management and requires the identification of new biomarkers to improve detection by imaging, thus allowing the specific treatment of each individual TNBC subtype. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique holds great promise to the search for novel targetable biomarkers, and aptamer-based molecular approaches have the potential to overcome obstacles of current imaging and therapy modalities. In this review, we highlight recent advances in oligonucleotide aptamers used as imaging and/or therapeutic agents in TNBC, discussing the potential options to discover, image and hit new actionable targets in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | - Monica Fedele
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| | | | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore (IEOS), CNR, 80145 Naples, Italy.
| |
Collapse
|
29
|
Nguyen Van Long F, Lardy-Cleaud A, Bray S, Chabaud S, Dubois T, Diot A, Jordan LB, Thompson AM, Bourdon JC, Perol D, Bouvet P, Diaz JJ, Marcel V. Druggable Nucleolin Identifies Breast Tumours Associated with Poor Prognosis That Exhibit Different Biological Processes. Cancers (Basel) 2018; 10:cancers10100390. [PMID: 30360377 PMCID: PMC6210205 DOI: 10.3390/cancers10100390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Nucleolin (NCL) is a multifunctional protein with oncogenic properties. Anti-NCL drugs show strong cytotoxic effects, including in triple-negative breast cancer (TNBC) models, and are currently being evaluated in phase II clinical trials. However, few studies have investigated the clinical value of NCL and whether NCL stratified cancer patients. Here, we have investigated for the first time the association of NCL with clinical characteristics in breast cancers independently of the different subtypes. Methods: Using two independent series (n = 216; n = 661), we evaluated the prognostic value of NCL in non-metastatic breast cancers using univariate and/or multivariate Cox-regression analyses. Results: We reported that NCL mRNA expression levels are markers of poor survivals independently of tumour size and lymph node invasion status (n = 216). In addition, an association of NCL expression levels with poor survival was observed in TNBC (n = 40, overall survival (OS) p = 0.0287, disease-free survival (DFS) p = 0.0194). Transcriptomic analyses issued from The Cancer Genome Atlas (TCGA) database (n = 661) revealed that breast tumours expressing either low or high NCL mRNA expression levels exhibit different gene expression profiles. These data suggest that tumours expressing high NCL mRNA levels are different from those expressing low NCL mRNA levels. Conclusions: NCL is an independent marker of prognosis in breast cancers. We anticipated that anti-NCL is a promising therapeutic strategy that could rapidly be evaluated in high NCL-expressing tumours to improve breast cancer management.
Collapse
Affiliation(s)
- Flora Nguyen Van Long
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, 69373 Lyon, France; (F.N.V.L.); (P.B.)
| | - Audrey Lardy-Cleaud
- Department of Clinical Research, Léon Bérard Cancer Centre, 28 rue Laennec, 69008 Lyon, France; (A.L.-C.); (S.C.); (D.P.)
| | - Susan Bray
- Tayside Tissue Bank, Ninewells Hospital and Medical School, NHS Tayside, Dundee DD1 9SY, Scotland, UK;
| | - Sylvie Chabaud
- Department of Clinical Research, Léon Bérard Cancer Centre, 28 rue Laennec, 69008 Lyon, France; (A.L.-C.); (S.C.); (D.P.)
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, PSL Research University, Institut Curie, 26 rue d’Ulm, 75005 Paris, France;
| | - Alexandra Diot
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK; (A.D.); (A.M.T.); (J.-C.B.)
| | - Lee B. Jordan
- Department of Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK;
| | - Alastair M. Thompson
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK; (A.D.); (A.M.T.); (J.-C.B.)
- Olga Keith Wiess Chair of Surgery, Dan L. Duncan Breast Center, Division of Surgical Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK; (A.D.); (A.M.T.); (J.-C.B.)
| | - David Perol
- Department of Clinical Research, Léon Bérard Cancer Centre, 28 rue Laennec, 69008 Lyon, France; (A.L.-C.); (S.C.); (D.P.)
| | - Philippe Bouvet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, 69373 Lyon, France; (F.N.V.L.); (P.B.)
- Ecole Normale Supérieure de Lyon, Université de Lyon, CEDEX 07, 69342 Lyon, France
| | - Jean-Jacques Diaz
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, 69373 Lyon, France; (F.N.V.L.); (P.B.)
- Correspondence: (J.-J.D.); (V.M.); Tel.: +33-42655-2819 (J.-J.D.); +33-42655-6745 (V.M.)
| | - Virginie Marcel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, 69373 Lyon, France; (F.N.V.L.); (P.B.)
- Correspondence: (J.-J.D.); (V.M.); Tel.: +33-42655-2819 (J.-J.D.); +33-42655-6745 (V.M.)
| |
Collapse
|