1
|
Rangelova E, Stoop TF, van Ramshorst TME, Ali M, van Bodegraven EA, Javed AA, Hashimoto D, Steyerberg E, Banerjee A, Jain A, Sauvanet A, Serrablo A, Giani A, Giardino A, Zerbi A, Arshad A, Wijma AG, Coratti A, Zironda A, Socratous A, Rojas A, Halimi A, Ejaz A, Oba A, Patel BY, Björnsson B, Reames BN, Tingstedt B, Goh BKP, Payá-Llorente C, Del Pozo CD, González-Abós C, Medin C, van Eijck CHJ, de Ponthaud C, Takishita C, Schwabl C, Månsson C, Ricci C, Thiels CA, Douchi D, Hughes DL, Kilburn D, Flanking D, Kleive D, Silva DS, Edil BH, Pando E, Moltzer E, Kauffman EF, Warren E, Bozkurt E, Sparrelid E, Thoma E, Verkolf E, Ausania F, Giannone F, Hüttner FJ, Burdio F, Souche FR, Berrevoet F, Daams F, Motoi F, Saliba G, Kazemier G, Roeyen G, Nappo G, Butturini G, Ferrari G, Kito Fusai G, Honda G, Sergeant G, Karteszi H, Takami H, Suto H, Matsumoto I, Mora-Oliver I, Frigerio I, Fabre JM, Chen J, Sham JG, Davide J, Urdzik J, de Martino J, Nielsen K, Okano K, Kamei K, Okada K, Tanaka K, Labori KJ, Goodsell KE, Alberici L, Webber L, Kirkov L, de Franco L, Miyashita M, Maglione M, Gramellini M, Ramera M, Amaral MJ, et alRangelova E, Stoop TF, van Ramshorst TME, Ali M, van Bodegraven EA, Javed AA, Hashimoto D, Steyerberg E, Banerjee A, Jain A, Sauvanet A, Serrablo A, Giani A, Giardino A, Zerbi A, Arshad A, Wijma AG, Coratti A, Zironda A, Socratous A, Rojas A, Halimi A, Ejaz A, Oba A, Patel BY, Björnsson B, Reames BN, Tingstedt B, Goh BKP, Payá-Llorente C, Del Pozo CD, González-Abós C, Medin C, van Eijck CHJ, de Ponthaud C, Takishita C, Schwabl C, Månsson C, Ricci C, Thiels CA, Douchi D, Hughes DL, Kilburn D, Flanking D, Kleive D, Silva DS, Edil BH, Pando E, Moltzer E, Kauffman EF, Warren E, Bozkurt E, Sparrelid E, Thoma E, Verkolf E, Ausania F, Giannone F, Hüttner FJ, Burdio F, Souche FR, Berrevoet F, Daams F, Motoi F, Saliba G, Kazemier G, Roeyen G, Nappo G, Butturini G, Ferrari G, Kito Fusai G, Honda G, Sergeant G, Karteszi H, Takami H, Suto H, Matsumoto I, Mora-Oliver I, Frigerio I, Fabre JM, Chen J, Sham JG, Davide J, Urdzik J, de Martino J, Nielsen K, Okano K, Kamei K, Okada K, Tanaka K, Labori KJ, Goodsell KE, Alberici L, Webber L, Kirkov L, de Franco L, Miyashita M, Maglione M, Gramellini M, Ramera M, Amaral MJ, Ramaekers M, Truty MJ, van Dam MA, Stommel MWJ, Petrikowski M, Imamura M, Hayashi M, D'Hondt M, Brunner M, Hogg ME, Zhang C, Suárez-Muñoz MÁ, Luyer MD, Unno M, Mizuma M, Janot M, Sahakyan MA, Jamieson NB, Busch OR, Bilge O, Belyaev O, Franklin O, Sánchez-Velázquez P, Pessaux P, Holka PS, Ghorbani P, Casadei R, Sartoris R, Schulick RD, Grützmann R, Sutcliffe R, Mata R, Patel RB, Takahashi R, Rodriguez Franco S, Cabús SS, Hirano S, Gaujoux S, Festen S, Kozono S, Maithel SK, Chai SM, Yamaki S, van Laarhoven S, Mieog JSD, Murakami T, Codjia T, Sumiyoshi T, Karsten TM, Nakamura T, Sugawara T, Boggi U, Hartman V, de Meijer VE, Bartholomä W, Kwon W, Koh YX, Cho Y, Takeyama Y, Inoue Y, Nagakawa Y, Kawamoto Y, Ome Y, Soonawalla Z, Uemura K, Wolfgang CL, Jang JY, Padbury R, Satoi S, Messersmith W, Wilmink JW, Abu Hilal M, Besselink MG, Del Chiaro M. The impact of neoadjuvant therapy in patients with left-sided resectable pancreatic cancer: an international multicenter study. Ann Oncol 2025; 36:529-542. [PMID: 39814200 DOI: 10.1016/j.annonc.2024.12.015] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Left-sided pancreatic cancer is associated with worse overall survival (OS) compared with right-sided pancreatic cancer. Although neoadjuvant therapy is currently seen as not effective in patients with resectable pancreatic cancer (RPC), current randomized trials included mostly patients with right-sided RPC. The purpose of this study was to assess the association between neoadjuvant therapy and OS in patients with left-sided RPC compared with upfront surgery. PATIENTS AND METHODS This was an international multicenter retrospective study including consecutive patients after left-sided pancreatic resection for pathology-proven RPC, either after neoadjuvant therapy or upfront surgery in 76 centers from 18 countries on 4 continents (2013-2019). The primary endpoint was OS from diagnosis. Time-dependent Cox regression analysis was carried out to investigate the association of neoadjuvant therapy with OS, adjusting for confounders at the time of diagnosis. Adjusted OS probabilities were calculated. RESULTS Overall, 2282 patients after left-sided pancreatic resection for RPC were included of whom 290 patients (13%) received neoadjuvant therapy. The most common neoadjuvant regimens were (m)FOLFIRINOX (38%) and gemcitabine-nab-paclitaxel (22%). After upfront surgery, 72% of patients received adjuvant chemotherapy, mostly a single-agent regimen (74%). Neoadjuvant therapy was associated with prolonged OS compared with upfront surgery (adjusted hazard ratio 0.69, 95% confidence interval 0.58-0.83) with an adjusted median OS of 53 versus 37 months (P = 0.0003) and adjusted 5-year OS rates of 47% versus 35% (P = 0.0001) compared with upfront surgery. Interaction analysis demonstrated a stronger effect of neoadjuvant therapy in patients with a larger tumor (Pinteraction = 0.003) and higher serum carbohydrate antigen 19-9 (CA19-9; Pinteraction = 0.005). In contrast, the effect of neoadjuvant therapy was not enhanced for splenic artery (Pinteraction = 0.43), splenic vein (Pinteraction = 0.30), retroperitoneal (Pinteraction = 0.84), and multivisceral (Pinteraction = 0.96) involvement. CONCLUSIONS Neoadjuvant therapy in patients with left-sided RPC was associated with improved OS compared with upfront surgery. The impact of neoadjuvant therapy increased with larger tumor size and higher serum CA19-9 at diagnosis. Randomized controlled trials on neoadjuvant therapy specifically in patients with left-sided RPC are needed.
Collapse
Affiliation(s)
- E Rangelova
- Department of Upper Abdominal Surgery at Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - T F Stoop
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA
| | - T M E van Ramshorst
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Surgery, Fondazione Poliambulanza, Instituto Ospedaliero, Brescia, Italy
| | - M Ali
- Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, Location Vrije Universiteit, Department of Surgery, Amsterdam, The Netherlands
| | - E A van Bodegraven
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - A A Javed
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Surgical Oncology, Department of Surgery, New York University Medical Center, New York, USA
| | - D Hashimoto
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - E Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - A Banerjee
- HPB & Liver Transplant Unit, Royal Free Hospital, London, UK
| | - A Jain
- Division of Surgical Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - A Sauvanet
- Department of HPB Surgery and Liver Transplantation, APHP Beaujon Hospital, University of Paris Cité, Clichy, France
| | - A Serrablo
- HPB Surgical Division, Miguel Servet University Hospital, Zaragoza, Spain
| | - A Giani
- Division of Minimally-Invasive Surgical Oncology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - A Giardino
- Department of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, Peschiera, Italy
| | - A Zerbi
- Humanitas University, Department of Biomedical Sciences, Milan, Italy; Pancreatic Surgery Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - A Arshad
- Hepatopancreatobiliary Unit, University Hospitals Southampton NHS Trust, Southampton General Hospital, Southampton, UK
| | - A G Wijma
- Department of Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - A Coratti
- General and Emergency Surgery Unit, Misericordia Hospital, Azienda USL Toscana Sud-Est, Grosseto, Italy
| | - A Zironda
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, USA
| | - A Socratous
- Department of Upper Abdominal Surgery at Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - A Rojas
- Department of Surgery, NorthShore University Health System, Evanston, USA
| | - A Halimi
- Department of Surgery, Umeå University, Umeå, Sweden; Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - A Ejaz
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, USA
| | - A Oba
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo; Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - B Y Patel
- Hepatopancreatobiliary Unit, University Hospitals Southampton NHS Trust, Southampton General Hospital, Southampton, UK
| | - B Björnsson
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
| | - B N Reames
- Department of Surgery, University of Nebraska Medical Center, Omaha, USA
| | - B Tingstedt
- Department of Clinical Sciences Lund, Surgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - B K P Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
| | - C Payá-Llorente
- General and Digestive Surgery, Hospital Doctor Peset, Valencia, Spain
| | - C D Del Pozo
- General and Digestive Surgery, Hospital Doctor Peset, Valencia, Spain
| | - C González-Abós
- Hepatobiliopancreatic Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - C Medin
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - C H J van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - C de Ponthaud
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - C Takishita
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - C Schwabl
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - C Månsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Ricci
- Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy; Division of Pancreatic Surgery, IRCCS, Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - C A Thiels
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, USA
| | - D Douchi
- Department of Surgery, Tohoku University, Sendai, Japan
| | - D L Hughes
- Department of Hepatobiliary and Pancreatic Surgery, Oxford Radcliffe Hospitals NHS Foundation Trust, Oxford, UK
| | - D Kilburn
- Department of Surgery, Flinders Medical Centre, Adelaide, Australia
| | - D Flanking
- Department of Upper Abdominal Surgery at Sahlgrenska University Hospital, Gothenburg, Sweden
| | - D Kleive
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
| | - D S Silva
- HEBIPA Surgery, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - B H Edil
- Division of Surgical Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - E Pando
- Universitat Autónoma de Barcelona, Barcelona, Spain; Department of Hepato-Pancreato-Biliary and Transplant Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - E Moltzer
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E F Kauffman
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
| | - E Warren
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - E Bozkurt
- Department of General Surgery, Koç University School of Medicine, Istanbul, Turkey
| | - E Sparrelid
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - E Thoma
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - E Verkolf
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - F Ausania
- Hepatobiliopancreatic Department, Hospital Clinic de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - F Giannone
- Department of Visceral and Digestive Surgery, University Hospital of Strasbourg, Strasbourg, France
| | - F J Hüttner
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - F Burdio
- Department of Surgery, Hepatobiliary and Pancreatic Unit, Hospital del Mar de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute (IMIM), University Pompeu-Fabra, Barcelona, Spain
| | - F R Souche
- Oncologic & Minimally-Invasive Digestive Surgery, CHU Montpellier, University of Montpellier, Montpellier, France
| | - F Berrevoet
- Department of General and HPB Surgery and Liver Transplantation, Ghent University Hospital, Ghent, Belgium
| | - F Daams
- Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, Location Vrije Universiteit, Department of Surgery, Amsterdam, The Netherlands
| | - F Motoi
- Department of Surgery, Yamagata University, Yamagata, Japan
| | - G Saliba
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - G Kazemier
- Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, Location Vrije Universiteit, Department of Surgery, Amsterdam, The Netherlands
| | - G Roeyen
- Department of HPB, Endocrine and Transplantation Surgery, University Hospital Antwerp, Antwerp, Belgium
| | - G Nappo
- Humanitas University, Department of Biomedical Sciences, Milan, Italy; Pancreatic Surgery Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - G Butturini
- Department of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, Peschiera, Italy
| | - G Ferrari
- Division of Minimally-Invasive Surgical Oncology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - G Kito Fusai
- HPB & Liver Transplant Unit, Royal Free Hospital, London, UK
| | - G Honda
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - G Sergeant
- Department of Abdominal Surgery, Jessa Hospital, Faculty of Medicine and Health Sciences, Universiteit Hasselt, Hasselt, Belgium
| | - H Karteszi
- Department of Radiology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - H Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University, Nagoya, Japan
| | - H Suto
- Department of Gastroenterological Surgery, Kagawa University, Kagawa, Japan
| | - I Matsumoto
- Department of Surgery, Kindai University, Osakasayama, Japan
| | - I Mora-Oliver
- Department of Surgery, Liver and Pancreato-Biliary Unit, Hospital Clínico Universitario Valencia, Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - I Frigerio
- Department of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, Peschiera, Italy
| | - J M Fabre
- Oncologic & Minimally-Invasive Digestive Surgery, CHU Montpellier, University of Montpellier, Montpellier, France
| | - J Chen
- Department of Surgery, Flinders Medical Centre, Adelaide, Australia
| | - J G Sham
- Department of Surgery, University of Washington, Seattle, USA; Fred Hutchinson Cancer Center, Seattle, USA
| | - J Davide
- HEBIPA Surgery, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - J Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - J de Martino
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - K Nielsen
- Department of Hepatopancreatobiliary Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Okano
- Department of Gastroenterological Surgery, Kagawa University, Kagawa, Japan
| | - K Kamei
- Department of Surgery, Kindai University, Osakasayama, Japan
| | - K Okada
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - K Tanaka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - K J Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K E Goodsell
- Department of Surgery, University of Washington, Seattle, USA
| | - L Alberici
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - L Webber
- Department of Upper GI Surgery, Fiona Stanley Hospital, Perth, Austria
| | - L Kirkov
- Oncologic & Minimally-Invasive Digestive Surgery, CHU Montpellier, University of Montpellier, Montpellier, France
| | - L de Franco
- General and Emergency Surgery Unit, Misericordia Hospital, Azienda USL Toscana Sud-Est, Grosseto, Italy
| | - M Miyashita
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - M Maglione
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - M Gramellini
- Humanitas University, Department of Biomedical Sciences, Milan, Italy; Pancreatic Surgery Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - M Ramera
- Department of Surgery, Fondazione Poliambulanza, Instituto Ospedaliero, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - M J Amaral
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M Ramaekers
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - M J Truty
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, USA
| | - M A van Dam
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - M W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Petrikowski
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - M Imamura
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Hokkaido, Japan
| | - M Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University, Nagoya, Japan
| | - M D'Hondt
- Department of Digestive and Hepatobiliary-Pancreatic Surgery, Groeninge Hospital, Kortrijk, Belgium
| | - M Brunner
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - M E Hogg
- Department of Surgery, NorthShore University Health System, Evanston, USA
| | - C Zhang
- Department of Surgery, University of Nebraska Medical Center, Omaha, USA
| | - M Á Suárez-Muñoz
- HPB Surgical Unit, University Hospital Virgen de la Victoria, Málaga, Spain
| | - M D Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - M Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| | - M Mizuma
- Department of Surgery, Tohoku University, Sendai, Japan
| | - M Janot
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - M A Sahakyan
- The Intervention Center, Oslo University Hospital, Rigshospitalet, Oslo, Norway
| | - N B Jamieson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - O R Busch
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - O Bilge
- Department of General Surgery, Koç University School of Medicine, Istanbul, Turkey
| | - O Belyaev
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - O Franklin
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA; Department of Surgery, Umeå University, Umeå, Sweden
| | - P Sánchez-Velázquez
- Department of Surgery, Hepatobiliary and Pancreatic Unit, Hospital del Mar de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute (IMIM), University Pompeu-Fabra, Barcelona, Spain
| | - P Pessaux
- Department of Visceral and Digestive Surgery, University Hospital of Strasbourg, Strasbourg, France
| | - P S Holka
- Department of Clinical Sciences Lund, Surgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - P Ghorbani
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - R Casadei
- Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy; Division of Pancreatic Surgery, IRCCS, Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - R Sartoris
- Department of Radiology, APHP Beaujon Hospital, University of Paris Cité, Clichy, France
| | - R D Schulick
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA
| | - R Grützmann
- The Intervention Center, Oslo University Hospital, Rigshospitalet, Oslo, Norway
| | - R Sutcliffe
- Department of Hepatopancreatobiliary Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - R Mata
- Universitat Autónoma de Barcelona, Barcelona, Spain; Department of Hepato-Pancreato-Biliary and Transplant Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - R B Patel
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, USA
| | - R Takahashi
- Department of Surgery, Yamagata University, Yamagata, Japan
| | - S Rodriguez Franco
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA
| | - S S Cabús
- Department of HPB Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - S Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - S Gaujoux
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantation, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - S Festen
- Department of Surgery, OLVG, Amsterdam, The Netherlands
| | - S Kozono
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - S K Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA
| | - S M Chai
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Perth, Australia
| | - S Yamaki
- Department of Surgery, Kansai Medical University, Osaka, Japan
| | - S van Laarhoven
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; Department of HPB Surgery, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - J S D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - T Murakami
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Hokkaido, Japan
| | - T Codjia
- Department of Digestive Surgery, Rouen University Hospital, Rouen, France
| | - T Sumiyoshi
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - T M Karsten
- Department of Surgery, OLVG, Amsterdam, The Netherlands
| | - T Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Hokkaido, Japan
| | - T Sugawara
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - U Boggi
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
| | - V Hartman
- Department of HPB, Endocrine and Transplantation Surgery, University Hospital Antwerp, Antwerp, Belgium
| | - V E de Meijer
- Department of Surgery, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - W Bartholomä
- Department of Radiology, Linköping University, Linköping, Sweden
| | - W Kwon
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Y X Koh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
| | - Y Cho
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Y Takeyama
- Department of Surgery, Kindai University, Osakasayama, Japan
| | - Y Inoue
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Y Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Y Kawamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Y Ome
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Z Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford Radcliffe Hospitals NHS Foundation Trust, Oxford, UK
| | - K Uemura
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C L Wolfgang
- Department of Surgical Oncology, Department of Surgery, New York University Medical Center, New York, USA
| | - J Y Jang
- Department of Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - R Padbury
- Department of Surgery, Flinders Medical Centre, Adelaide, Australia
| | - S Satoi
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA; Department of Surgery, Kansai Medical University, Osaka, Japan
| | - W Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, USA
| | - J W Wilmink
- Cancer Center Amsterdam, Amsterdam, The Netherlands; Amsterdam UMC, Location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - M Abu Hilal
- Department of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, Peschiera, Italy
| | - M G Besselink
- Amsterdam UMC, Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - M Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
2
|
Stoop TF, Javed AA, Oba A, Koerkamp BG, Seufferlein T, Wilmink JW, Besselink MG. Pancreatic cancer. Lancet 2025; 405:1182-1202. [PMID: 40187844 DOI: 10.1016/s0140-6736(25)00261-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Pancreatic cancer is frequently a lethal disease with an aggressive tumour biology often presenting with non-specific symptoms. Median survival is approximately 4 months with a 5-year survival of 13%. Surveillance is recommended in individuals with familial pancreatic cancer, specific mutations, and high-risk intraductal papillary mucinous neoplasm, as they are at high risk of developing pancreatic cancer. Chemotherapy combined with surgical resection remains the cornerstone of treatment. However, only a small subset of patients are candidates for surgery. Multi-agent chemotherapy has improved survival in the palliative setting for patients with metastatic disease, as (neo)adjuvant and induction therapy have in patients with borderline resectable and locally advanced pancreatic. Given that pancreatic cancer is predicted to become the second leading cause of cancer-related death by 2030, novel therapies are urgently needed.
Collapse
Affiliation(s)
- Thomas F Stoop
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Ammar A Javed
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Division of Surgical Oncology, Department of Surgery, New York University Medical Center, New York, NY, USA
| | - Atsushi Oba
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan; Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan; Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Thomas Seufferlein
- Department of International Medicine I, Ulm University Hospital, Ulm, Germany
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Zhang M, Chen X, Zhou Q, Guo N, Cao B, Zeng H, Chen W, Sun F. The global progress and quality assessment of research on the association between circulating tumor DNA and clinical prognosis: a systematic review. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:156-166. [PMID: 40265099 PMCID: PMC12010383 DOI: 10.1016/j.jncc.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 04/24/2025] Open
Abstract
Objective Circulating tumor DNA (ctDNA) has shown potential as a prognostic biomarker in patients with solid tumors. This study aimed to systematically summarize the global application of ctDNA in the prognostic management of solid tumor patients and to evaluate the quality of the current studies. Methods PubMed, Web of Science, Embase, Cochrane Library, Scopus, and clinical trials.gov databases were searched to collect cohort studies on ctDNA in the prognosis of solid tumor patients from January 2016 to May 2022. The language was limited to English. Information including general information, participants and cancer characteristics, ctDNA and outcome information were extracted. The quality of the studies was assessed using the Newcastle-Ottawa Scale checklist. Results A total of 214 studies were included in the final analysis, encompassing 21,076 patients. The number of studies has increased annually from 2016 to 2022. The most common types of solid tumors studied were colorectal cancer (27.10 %), lung cancer (20.09 %), pancreatic cancer (16.82 %), and breast cancer (14.02 %). The top three journals by number of publications had an impact factor in 2023 greater than 10. Of the studies, the median sample size was 69 (interquartile range: 41-111), 69.81 % had a sample size <100, 68.92 % had a median/mean age ≥60 years, and 74.05 % were from developed countries. Multi-center studies accounted for 40.36 %. Additionally, 29.82 % of the studies had a bias risk score ≤6. Only 16.67 % of studies on liver cancer had a bias risk score >6. The primary criteria not met by the studies included "Adequacy of follow-up of cohorts" (33.33 %), "Assessment of outcome" (32.16 %) and "Representativeness of the exposed cohort" (27.49 %). Conclusions The prognostic value of ctDNA in patients with solid tumors is gaining increasing attention, leading to a steady rise in the number of studies. However, many studies still suffer from small sample sizes and a lack of representativeness. Furthermore, details regarding ctDNA detection methods and results reporting are often insufficiently described. There is an urgent need to improve the quality of such research.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Xiaowei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Qingxin Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Nana Guo
- Hebei Centers for Disease Control and Prevention, Shijiazhuang, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Cottrell TR, Lotze MT, Ali A, Bifulco CB, Capitini CM, Chow LQM, Cillo AR, Collyar D, Cope L, Deutsch JS, Dubrovsky G, Gnjatic S, Goh D, Halabi S, Kohanbash G, Maecker HT, Maleki Vareki S, Mullin S, Seliger B, Taube J, Vos W, Yeong J, Anderson KG, Bruno TC, Chiuzan C, Diaz-Padilla I, Garrett-Mayer E, Glitza Oliva IC, Grandi P, Hill EG, Hobbs BP, Najjar YG, Pettit Nassi P, Simons VH, Subudhi SK, Sullivan RJ, Takimoto CH. Society for Immunotherapy of Cancer (SITC) consensus statement on essential biomarkers for immunotherapy clinical protocols. J Immunother Cancer 2025; 13:e010928. [PMID: 40054999 PMCID: PMC11891540 DOI: 10.1136/jitc-2024-010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025] Open
Abstract
Immunotherapy of cancer is now an essential pillar of treatment for patients with many individual tumor types. Novel immune targets and technical advances are driving a rapid exploration of new treatment strategies incorporating immune agents in cancer clinical practice. Immunotherapies perturb a complex system of interactions among genomically unstable tumor cells, diverse cells within the tumor microenvironment including the systemic adaptive and innate immune cells. The drive to develop increasingly effective immunotherapy regimens is tempered by the risk of immune-related adverse events. Evidence-based biomarkers that measure the potential for therapeutic response and/or toxicity are critical to guide optimal patient care and contextualize the results of immunotherapy clinical trials. Responding to the lack of guidance on biomarker testing in early-phase immunotherapy clinical trials, we propose a definition and listing of essential biomarkers recommended for inclusion in all such protocols. These recommendations are based on consensus provided by the Society for Immunotherapy of Cancer (SITC) Clinical Immuno-Oncology Network (SCION) faculty with input from the SITC Pathology and Biomarker Committees and the Journal for ImmunoTherapy of Cancer readership. A consensus-based selection of essential biomarkers was conducted using a Delphi survey of SCION faculty. Regular updates to these recommendations are planned. The inaugural list of essential biomarkers includes complete blood count with differential to generate a neutrophil-to-lymphocyte ratio or systemic immune-inflammation index, serum lactate dehydrogenase and albumin, programmed death-ligand 1 immunohistochemistry, microsatellite stability assessment, and tumor mutational burden. Inclusion of these biomarkers across early-phase immunotherapy clinical trials will capture variation among trials, provide deeper insight into the novel and established therapies, and support improved patient selection and stratification for later-phase clinical trials.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Queen's University Sinclair Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, Washington, DC, USA
| | - Carlo B Bifulco
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Christian M Capitini
- University of Wisconsin School of Medicine and Public Health and Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Collyar
- Patient Advocates In Research (PAIR), Danville, California, USA
| | - Leslie Cope
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Susan Halabi
- Duke School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Gary Kohanbash
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Holden T Maecker
- Stanford University School of Medicine, Stanford, California, USA
| | - Saman Maleki Vareki
- Department of Oncology and Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Sarah Mullin
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Barbara Seliger
- Campus Brandenburg an der Havel, Brandenburg Medical School, Halle, Germany
| | - Janis Taube
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wim Vos
- Radiomics.bio, Liège, Belgium
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Department of Obstetrics and Gynecology, Beirne B. Carter Center for Immunology Research and the University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Codruta Chiuzan
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian P Hobbs
- Dell Medical School, The University of Texas, Austin, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Sumit K Subudhi
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Needham, Massachusetts, USA
| | | |
Collapse
|
5
|
Chun JW, Lee DE, Han N, Heo S, Kim H, Lee MR, Park HM, Han SS, Park SJ, Kim TH, Lee WJ, Kim YH, Kong SY, Woo SM. Mutant KRAS and GATA6 Stratify Survival in Patients Treated with Chemotherapy for Pancreatic Adenocarcinoma: A Prospective Cohort Study. Cancers (Basel) 2025; 17:896. [PMID: 40075743 PMCID: PMC11899085 DOI: 10.3390/cancers17050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Several pancreatic adenocarcinoma (PA) biomarkers beyond the traditional carbohydrate antigen (CA)19-9 have been identified but are lacking large-scale prospective validation. This prospective cohort study evaluated the prognostic impact of potential PA biomarkers. METHODS We enrolled 238 of 288 patients with histologically proven PA. We assessed candidate biomarkers, including CA19-9, germline BRCA1/2, and ATM mutations, as well as mutant KRAS circulating tumor DNA (ctDNA) in blood samples. Additionally, we evaluated the expression of SLC29A1 (hENT1), DCK, CES2, and GATA6. We examined the association of candidate biomarkers with progression-free survival (PFS) and overall survival (OS). RESULTS We analyzed biomarker efficacy in 200 (median age 65 years; 55% male) of the enrolled patients who received chemotherapy. A high mutant KRAS ctDNA concentration (hazard ratio [HR]: 1.508 and 95% confidence interval [CI]: 1.052-2.161 for PFS; HR: 1.796 and 95% CI: 1.203-2.681 for OS) and high CA19-9 level (HR: 1.647 and 95% CI: 1.177-2.306 for PFS; HR: 1.803 and 95% CI: 1.248-2.605 for OS) were associated with poor prognosis. High GATA6 RNA expression was linked to longer PFS (HR: 0.336 and 95% CI: 0.195-0.582) and OS (HR: 0.304 and 95% CI: 0.165-0.560). CONCLUSIONS Plasma mutant KRAS ctDNA concentrations and GATA6 expression could serve as significant prognostic biomarkers in patients with PA, potentially guiding therapeutic decisions and prognostication.
Collapse
Affiliation(s)
- Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Dong-eun Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Nayoung Han
- Department of Pathology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - SooBeen Heo
- Targeted Therapy Branch, Center for Rare Cancers, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Hyeji Kim
- Targeted Therapy Branch, Center for Rare Cancers, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Mi Rim Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Hyeong Min Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Tae Hyun Kim
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Sun-Young Kong
- Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Targeted Therapy Branch, Center for Rare Cancers, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Department of Laboratory Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
- Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Republic of Korea
| |
Collapse
|
6
|
Jazieh K, Tsai J, Solomon S, Zhu M, Sinicrope FA, Pedersen KS, Fernandez-Zapico ME, Xie H. Identification of Candidate Alterations Mediating KRASG12C Inhibitor Resistance in Advanced Colorectal and Pancreatic Cancers. Clin Cancer Res 2025; 31:899-906. [PMID: 40025995 PMCID: PMC11879249 DOI: 10.1158/1078-0432.ccr-24-2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 12/20/2024] [Indexed: 03/04/2025]
Abstract
PURPOSE KRAS G12C inhibitors can treat KRASG12C-mutant advanced colorectal cancers and pancreatic ductal adenocarcinomas (PDAC), but alterations in Kirsten rat sarcoma (KRAS), EGFR, BRAF, MAP2K1, and other genes bypass KRAS inhibition and reduce therapy efficacy. Our study evaluates the genetic landscape of candidate primary resistance alterations relevant to KRAS targeting in KRASG12C-mutant colorectal cancer and PDAC. EXPERIMENTAL DESIGN We analyzed two cohorts (national database and Mayo) of patients with advanced colorectal cancer or PDAC tested with next-generation sequencing of ctDNA via Guardant360. Cohorts were divided into three groups: KRASG12C alone (KRASG12C without a resistance gene), KRASG12C with resistance (KRASG12C and ≥1 candidate resistance gene), and KRAS not detected. Candidate resistance mutations were inferred from the reported literature. RESULTS Among the national (13,603 colorectal cancer and 5,016 PDAC cases) and Mayo (741 colorectal cancer and 422 PDAC cases) cohorts, resistance alterations were identified in a considerable number of KRASG12C cases (46.5% of national colorectal cancer, 16.4% of national PDAC, 53.8% of Mayo colorectal cancer, and 36.4% of Mayo PDAC). The presence of resistance alterations was associated with a trend toward worse overall survival in KRASG12C colorectal cancer (P = 0.05). CONCLUSIONS Putative resistance alterations are prevalent in PDAC and colorectal cancer and may limit monotherapy efficacy. Identifying these alterations has potential implications in optimal patient selection for targeted therapies and the development of combination therapy strategies to overcome primary resistance.
Collapse
Affiliation(s)
| | | | | | - Mojun Zhu
- Department of Oncology, Mayo Clinic, Rochester MN
| | | | | | | | - Hao Xie
- Department of Oncology, Mayo Clinic, Rochester MN
| |
Collapse
|
7
|
Kaorey N, Dickinson K, Agnihotram VR, Zeitouni A, Sadeghi N, Burnier JV. The role of ctDNA from liquid biopsy in predicting survival outcomes in HPV-negative head and neck cancer: A meta-analysis. Oral Oncol 2025; 161:107148. [PMID: 39742703 DOI: 10.1016/j.oraloncology.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
The incidence of head and neck cancer (HNC) is on the rise, making it a significant clinical challenge. Human papillomavirus (HPV)-related and HPV-negative HNC exhibit distinct etiopathogenesis and prognoses, requiring targeted approaches for effective management. Conventional tissue biopsies are essential for confirming the diagnosis and locating solid tumors. However, they have limitations in detecting microscopic disease, tracking treatment response, and capturing the dynamic heterogeneity of the mutational profile within the tumor. Liquid biopsy using circulating tumor DNA (ctDNA) analysis has emerged as a promising non-invasive tool to overcome the drawbacks of conventional biopsy for comprehensive molecular profiling. This meta-analysis aims to colligate available evidence on the clinical utility of ctDNA analysis in predicting survival outcomes, specifically in HPV-negative HNC. Our systematic search of six electronic databases identified eight publications (N = 886 patients) meeting the inclusion criteria. The included studies reported data from HPV-negative HNC patients, employing ctDNA analysis to report survival outcomes. Our findings reveal a significant association between mutation or methylation in ctDNA and worsened survival outcomes in HPV-negative HNC cases. The presence of ctDNA mutations in TP53 and methylation of SEPT9 and SHOX2 was linked to reduced overall survival, disease-free survival, and progression-free survival. Subgroup analyses demonstrated consistent associations across different survival outcomes, ctDNA detection methods, and blood collection tubes used. Our study underscores the need for future research endeavors prioritizing larger, well-designed prospective studies with standardized methodologies to further elucidate the role of ctDNA analysis in guiding personalized treatment approaches and optimizing patient care in this specific HNC cohort.
Collapse
Affiliation(s)
- Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada.
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada.
| | | | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Nader Sadeghi
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada; Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada.
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Maulat C, Canivet C, Cabarrou B, Pradines A, Selves J, Casanova A, Doussine A, Hanoun N, Cuellar E, Boulard P, Carrère N, Buscail L, Bournet B, Muscari F, Cordelier P. Prognostic impact of circulating tumor DNA detection in portal and peripheral blood in resected pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:27296. [PMID: 39516243 PMCID: PMC11549393 DOI: 10.1038/s41598-024-76903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In PDAC patients, ctDNA detection's prognostic significance needs validation especially in resected patients. This study investigated ctDNA kinetics in portal and peripheral blood before and after resection, and whether tissue mobilization during surgery influences ctDNA detection. In this single-center prospective cohort, portal and peripheral blood were drawn during pancreaticoduodenectomy before and after tissue mobilization, during 12 postoperative months and were associated with overall survival (OS), recurrence-free survival (RFS) and CA19-9 (secondary endpoints). Tumor mutations were identified using next-generation-sequencing and ctDNA detected by digital droplet PCR. From 2018 to 2022, 34 patients were included. The 2-year RFS and OS were 47.6%(95%CI[29.5; 63.6]) and 65.7%(95%CI[46.5; 79.4]) respectively. Intraoperatively, ctDNA detection in portal or peripheral blood was associated with worse RFS (HR[95%CI]3.26[1.26; 8.45],p = 0.010) and OS (HR[95%CI]5.46[1.65;18.01],p = 0.002). Portal vein sampling did not improve ctDNA detection. CtDNA levels were increased by 2.5-fold (p = 0.031) in peripheral blood after tissue mobilization but not significantly linked to RFS or OS. Detecting ctDNA intraoperatively was correlated with poorer RFS (HR [95% CI] 3.26 [1.26;8.45], p = 0.010) and 0S (HR [95% CI] 5.46 [1.65;18.01], p = 0.002). Portal vein sampling did not improve ctDNA detection. Tissue mobilization increases ctDNA levels. Intraoperative detection of ctDNA is associated with a worse prognosis.
Collapse
Affiliation(s)
- Charlotte Maulat
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France.
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
- Service de Chirurgie Digestive et Transplantation , CHU Rangueil , 1, avenue Jean Poulhès, Toulouse, 31059, France.
| | - Cindy Canivet
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Bastien Cabarrou
- Biostatistics and Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Anne Pradines
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Janick Selves
- Pathology Department, IUCT-Oncopole, Toulouse University Hospital Center (CHU), Toulouse, France
| | - Anne Casanova
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Aurélia Doussine
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Naïma Hanoun
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Emmanuel Cuellar
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Paul Boulard
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Nicolas Carrère
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Fabrice Muscari
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
| |
Collapse
|
9
|
Alexander EM, Miller HA, Egger ME, Smith ML, Yaddanapudi K, Linder MW. The Correlation between Plasma Circulating Tumor DNA and Radiographic Tumor Burden. J Mol Diagn 2024; 26:952-961. [PMID: 39181324 PMCID: PMC11524323 DOI: 10.1016/j.jmoldx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional blood-based biomarkers and radiographic imaging are excellent for use in monitoring different aspects of malignant disease, but given their specific shortcomings, their integration with other, complementary markers such as plasma circulating tumor DNA (ctDNA) will be beneficial toward a precision medicine-driven future. Plasma ctDNA analysis utilizes the measurement of cancer-specific molecular alterations in a variety of bodily fluids released by dying tumor cells to monitor and profile response to therapy, and is being employed in several clinical scenarios. Plasma concentrations of ctDNA have been reported to correlate with tumor burden. However, the strength of this association is generally poor and highly variable, confounding the interpretation of longitudinal plasma ctDNA measurements in conjunction with routine radiographic assessments. Herein is discussed what is currently understood with respect to the fundamental characteristics of tumor growth that dictate plasma ctDNA concentrations, with a perspective on its interpretation in conjunction with radiographically determined tumor burden assessments.
Collapse
Affiliation(s)
- Evan M Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Hunter A Miller
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- Hiram C. Polk, Jr, MD, Department of Surgery, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Melissa L Smith
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Kavitha Yaddanapudi
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
10
|
Dubrovsky G, Ross A, Jalali P, Lotze M. Liquid Biopsy in Pancreatic Ductal Adenocarcinoma: A Review of Methods and Applications. Int J Mol Sci 2024; 25:11013. [PMID: 39456796 PMCID: PMC11507494 DOI: 10.3390/ijms252011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a malignancy with one of the highest mortality rates. One limitation in the diagnosis and treatment of PDAC is the lack of an early and universal biomarker. Extensive research performed recently to develop new assays which could fit this role is available. In this review, we will discuss the current landscape of liquid biopsy in patients with PDAC. Specifically, we will review the various methods of liquid biopsy, focusing on circulating tumor DNA (ctDNA) and exosomes and future opportunities for improvement using artificial intelligence or machine learning to analyze results from a multi-omic approach. We will also consider applications which have been evaluated, including the utility of liquid biopsy for screening and staging patients at diagnosis as well as before and after surgery. We will also examine the potential for liquid biopsy to monitor patient treatment response in the setting of clinical trial development.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
- Pittsburgh VA Medical Center, Pittsburgh, PA 15240, USA
| | - Alison Ross
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Michael Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Hálková T, Bunganič B, Traboulsi E, Minárik M, Zavoral M, Benešová L. Prognostic Role of Specific KRAS Mutations Detected in Aspiration and Liquid Biopsies from Patients with Pancreatic Cancer. Genes (Basel) 2024; 15:1302. [PMID: 39457426 PMCID: PMC11507146 DOI: 10.3390/genes15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Although the overall survival prognosis of patients in advanced stages of pancreatic ductal adenocarcinoma (PDAC) is poor, typically ranging from days to months from diagnosis, there are rare cases of patients remaining in therapy for longer periods of time. Early estimations of survival prognosis would allow rational decisions on complex therapy interventions, including radical surgery and robust systemic therapy regimens. Understandably, there is great interest in finding prognostic markers that can be used for patient stratification. We determined the role of various KRAS mutations in the prognosis of PDAC patients using biopsy samples and circulating tumor DNA. Methods: A total of 118 patients with PDAC, clinically confirmed by endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNB), were included in the study. DNA was extracted from cytological slides following a standard cytology evaluation to ensure adequacy (viability and quantity) and to mark the tumor cell fraction. Circulating tumor DNA (ctDNA) was extracted from plasma samples of 45 patients in stage IV of the disease. KRAS mutations in exons 12 and 13 were detected by denaturing capillary electrophoresis (DCE), revealing a minute presence of mutation-specific heteroduplexes. Kaplan-Meier survival curves were calculated for individual KRAS mutation types. Results:KRAS mutations were detected in 90% of tissue (106/118) and 44% of plasma (20/45) samples. All mutations were localized at exon 2, codon 12, with G12D (GGT > GAT) being the most frequent at 44% (47/106) and 65% (13/20), followed by other types including G12V (GGT > GTT) at 31% (33/106) and 10% (2/20), G12R (GGT > CGT) at 17% (18/106) and 10% (2/20), G12C (GGT/TGT) at 5% (5/106) and 0% (0/20) and G12S (GGT/AGT) at 1% (1/106) and 5% (1/20) in tissue and plasma samples, respectively. Two patients had two mutations simultaneously (G12V + G12S and G12D + G12S) in both types of samples (2%, 2/106 and 10%, 2/20 in tissue and plasma samples, respectively). The median survival of patients with the G12D mutation in tissues was less than half that of other patients (median survival 101 days, 95% CI: 80-600 vs. 228 days, 95% CI: 184-602), with a statistically significant overall difference in survival (p = 0.0080, log-rank test), and furthermore it was less than that of all combined patients with other mutation types (101 days, 95% CI: 80-600 vs. 210 days, 95% CI: 161-602, p = 0.0166). For plasma samples, the survival of patients with this mutation was six times shorter than that of patients without the G12D mutation (27 days, 95% CI: 8-334 vs. 161 days, 95% CI: 107-536, p = 0.0200). In contrast, patients with detected KRAS G12R in the tissue survived nearly twice as long as other patients in the aggregate (286 days, 95% CI: 70-602 vs. 162 days, 95% CI: 122-600, p = 0.0374) or patients with other KRAS mutations (286 days, 95% CI: 70-602 vs. 137 days, 95% CI: 107-600, p = 0.0257). Conclusions: Differentiation of specific KRAS mutations in EUS-FNB and ctDNA (above all, the crucial G12D and G12R) is feasible in routine management of PDAC patients and imperative for assessment of prognosis.
Collapse
Affiliation(s)
- Tereza Hálková
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8/2030, 128 00 Prague, Czech Republic
| | - Bohuš Bunganič
- Department of Medicine, First Faculty of Medicine, Charles University and Military University Hospital, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic
| | - Eva Traboulsi
- Department of Pathology, Military University Hospital Prague, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic
| | - Marek Minárik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8/2030, 128 00 Prague, Czech Republic;
| | - Miroslav Zavoral
- Department of Medicine, First Faculty of Medicine, Charles University and Military University Hospital, U Vojenské Nemocnice 1200, 169 02 Prague, Czech Republic
| | - Lucie Benešová
- Centre for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Drnovská 1112/60, 161 00 Prague, Czech Republic
| |
Collapse
|
12
|
Zhang H, Jin T, Peng Y, Luan S, Li X, Xiao X, Yuan Y. Association between plasma circulating tumor DNA and the prognosis of esophageal cancer patients: a meta-analysis. Int J Surg 2024; 110:4370-4381. [PMID: 38526514 PMCID: PMC11254190 DOI: 10.1097/js9.0000000000001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The application of liquid biopsy analysis utilizing circulating tumor DNA (ctDNA) has gained prominence as a biomarker in specific cancer types. Nevertheless, the correlation between ctDNA and the prognostic outcomes of patients with esophageal cancer (EC) remains a subject of controversy. This meta-analysis aims to assess the correlation between ctDNA and the prognosis of EC patients. METHODS The authors systematically explored Embase, PubMed, and the Cochrane Database to identify studies reporting on the prognostic value of ctDNA in EC patients before November 2023. The primary outcome involved the determine of associations between ctDNA with overall survival (OS), disease-free survival (DFS)/recurrence-free survival (RFS), as well asprogression-free survival (PFS) among EC patients. Secondary outcomes encompassed a detailed subgroup analysis in the setting of EC, including parameters such as detection time, histological subtypes, treatment modalities, regions, anatomic locations, and detection methods. Publication bias was assessed utilizing Begg's test, Egger's test, and funnel plots. A sensitivity analysis was conducted by systematically excluding individual studies to evaluate the stability of the results. RESULTS A total of 1203 studies were initially screened, from which 13 studies underwent further analysis, encompassing 604 patients diagnosed with EC. The comprehensive pooled analysis indicated a significant association between the detection of ctDNA and poor OS (HR: 3.65; 95% CI: 1.97-6.75, P <0.001), DFS/RFS (HR: 6.08; 95% CI: 1.21-30.50, P <0.001), and PFS (HR: 2.84; 95% CI: 1.94-4.16, P <0.001). Subgroup analysis showed that ctDNA remained a consistent negative predictor of OS when stratified by different detection time, histological subtypes, regions, anatomic locations, and detection methods. Furthermore, subgroup analysis stratified by regions and study types demonstrated an association between ctDNA detection and poor PFS in EC patients. CONCLUSION Our results indicate plasma ctDNA may serve as robust prognostic markers for OS, DFS/RFS, and PFS among EC patients. This finding suggests that plasma ctDNA could offer a highly effective approach for risk stratification and personalized medicine.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University
| | - Tao Jin
- Gastric Cancer Center, West China Hospital, Sichuan University, People’s Republic of China; Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, People’s Republic of China
| | - Yuhao Peng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University
| | - Siyuan Luan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University
| | - Xiaokun Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University
| | - Xin Xiao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University
| | - Yong Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University
| |
Collapse
|
13
|
O'Sullivan NJ, Temperley HC, Kyle ET, Sweeney KJ, O'Neill M, Gilham C, O'Sullivan J, O'Kane G, Mehigan B, O'Toole S, Larkin J, Gallagher D, McCormick P, Kelly ME. Assessing circulating tumour DNA (ctDNA) as a prognostic biomarker in locally advanced rectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis 2024; 39:82. [PMID: 38809315 PMCID: PMC11136793 DOI: 10.1007/s00384-024-04656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Circulating tumour DNA (ctDNA) has emerged as a promising biomarker in various cancer types, including locally advanced rectal cancer (LARC), offering potential insights into disease progression, treatment response and recurrence. This review aims to comprehensively evaluate the utility of ctDNA as a prognostic biomarker in LARC. METHODS PubMed, EMBASE and Web of Science were searched as part of our review. Studies investigating the utility of ctDNA in locally advanced rectal cancer (LARC) were assessed for eligibility. Quality assessment of included studies was performed using the Newcastle Ottawa Scale (NOS) risk of bias tool. Outcomes extracted included basic participant characteristics, ctDNA details and survival data. A meta-analysis was performed on eligible studies to determine pooled recurrence-free survival (RFS). RESULTS Twenty-two studies involving 1676 participants were included in our analysis. Methodological quality categorised by the Newcastle Ottawa Scale was generally satisfactory across included studies. ctDNA detected at various time intervals was generally associated with poor outcomes across included studies. Meta-analysis demonstrated a pooled hazard ratio of 8.87 (95% CI 4.91-16.03) and 15.15 (95% CI 8.21-27.95), indicating an increased risk of recurrence with ctDNA positivity in the post-neoadjuvant and post-operative periods respectively. CONCLUSION Our systematic review provides evidence supporting the prognostic utility of ctDNA in patients with LARC, particularly in identifying patients at higher risk of disease recurrence in the post-neoadjuvant and post-operative periods.
Collapse
Affiliation(s)
- Niall J O'Sullivan
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland.
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Hugo C Temperley
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eimear T Kyle
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - Kevin J Sweeney
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - Maeve O'Neill
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - Charles Gilham
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Department of Radiation Oncology, St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, Trinity College, St. James's Hospital, Dublin, Ireland
| | - Grainne O'Kane
- Department of Medical Oncology, St. James's Hospital, Dublin 8, Ireland
| | - Brian Mehigan
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity Translational Medicine Institute, Trinity St. James's Cancer Institute, Trinity College, St. James's Hospital, Dublin, Ireland
| | - John Larkin
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - David Gallagher
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Department of Medical Oncology, St. James's Hospital, Dublin 8, Ireland
- Department of Genetics, St. James's Hospital, Dublin 8, Ireland
| | - Paul McCormick
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
| | - Michael E Kelly
- Department of Surgery, St. James's Hospital, Dublin 8, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
14
|
Imamura H, Tomimaru Y, Kobayashi S, Yamada D, Noda T, Takahashi H, Doki Y, Eguchi H. Diagnostic impact of postoperative CA19-9 dynamics on pancreatic cancer recurrence: a single-institution retrospective study. Updates Surg 2024; 76:479-486. [PMID: 38349569 DOI: 10.1007/s13304-024-01758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024]
Abstract
Postoperative CA19-9 elevation after pancreatic cancer resection suggests recurrence but can also occur in benign conditions. This study aimed to investigate the interpretation of postoperative CA19-9 elevation after pancreatic cancer surgery in terms of cancer recurrence. A cohort of patients undergoing pancreatectomy for pancreatic cancer at our hospital was included. Among them, 52 patients exhibited postoperative CA19-9 elevation without radiological evidence of recurrence. These patients were evaluated with follow-up CA19-9 measurements. The CA19-9 increase rates were calculated based on the first elevation and the follow-up measurement. The association between the CA19-9 increase rate and tumor recurrence was assessed. Patients with a CA19-9 increase rate of ≥ 30% had a significantly higher frequency of recurrence within 3 months compared to those without such an increase (p = 0.0002). Multivariate analysis demonstrated that a CA19-9 increase rate of ≥ 30% was an independent risk factor for recurrence (odds ratio 8.17, p = 0.0309). The CA19-9 value at the first elevation (p = 0.1794) and at the follow-up measurement (p = 0.1121) were not associated with recurrence. After the first postoperative CA19-9 elevation, the CA19-9 increase rate based on follow-up measurements can serve as a predictive factor for tumor recurrence.
Collapse
Affiliation(s)
- Hiroki Imamura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan.
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Zhang Y, Du H, Wang N, Wang L, Huang Y. An update of clinical value of circulating tumor DNA in esophageal cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:129. [PMID: 38267901 PMCID: PMC10809487 DOI: 10.1186/s12885-024-11879-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Esophageal cancer (EC) is a deadly disease with limited therapeutic options. Although circulating tumor DNA (ctDNA) could be a promising tool in this regard, the availiable evidence is limited. We performed a systematic review and meta-analysis to summarize the clinical applicability of the next-generation sequencing (NGS) and droplet digital polymerase chain reaction (ddPCR) technology on the ctDNA detection of the EC and listed the current challenges. METHODS We systematically searched MEDLINE (via PubMed), Embase (via OVID), ISI Web of Science database and Cochrane Library from January, 2000 to April, 2023. Progression-free survival (PFS) and overall survival (OS) were set as primary outcome endpoints. Pathologic response was evaluated by tumor regression grade (TRG), according to the eighth edition of the American Joint Committee on Cancer (AJCC). Major pathologic regression (MPR) was defined as TRG 1 and 2. The MPR was set as secondary endpoint. Hazard rate (HR) and associated 95% CI were used as the effect indicators the association between ctDNA and prognosis of EC. MPR rates were also calculated. Fixed-effect model (Inverse Variance) or random-effect model (Mantel-Haenszel method) was performed depending on the statistically heterogeneity. RESULTS Twenty-two studies, containing 1144 patients with EC, were included in this meta-analysis. The results showed that OS (HR = 3.87; 95% CI, 2.86-5.23) and PFS (HR = 4.28; 95% CI, 3.34-5.48) were shorter in ctDNA-positive patients. In the neoadjuvant therapy, the sensitivity analysis showed the clarified HR of ctDNA-positive was 1.13(95% CI, 1.01-1.28). We also found that TP53, NOTCH1, CCND1 and CNKN2A are the most frequent mutation genes. CONCLUSIONS Positive ctDNA is associated with poor prognosis, which demonstrated clinical value of ctDNA. Longitudinal ctDNA monitoring showed potential prognostic value in the neoadjuvant therapy. In an era of precision medicine, ctDNA could be a promising tool to individualize treatment planning and to improve outcomes in EC. PROSPERO REGISTRATION NUMBER CRD42023412465.
Collapse
Affiliation(s)
- Yaozhong Zhang
- Department of Infectious diseases, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huazhen Du
- Department of Emergency, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Wang
- Department of Molecular Biology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yajie Huang
- Department of Medical oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
16
|
Abstract
Pancreatic cancer remains among the malignancies with the worst outcomes. Survival has been improving, but at a slower rate than other cancers. Multimodal treatment, including chemotherapy, surgical resection, and radiotherapy, has been under investigation for many years. Because of the anatomical characteristics of the pancreas, more emphasis on treatment selection has been placed on local extension into major vessels. Recently, the development of more effective treatment regimens has opened up new treatment strategies, but urgent research questions have also become apparent. This review outlines the current management of pancreatic cancer, and the recent advances in its treatment. The review discusses future treatment pathways aimed at integrating novel findings of translational and clinical research.
Collapse
Affiliation(s)
- Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Toshitaka Sugawara
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sana D Karam
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wells A Messersmith
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
17
|
Alqahtani A, Alloghbi A, Coffin P, Yin C, Mukherji R, Weinberg BA. Prognostic utility of preoperative and postoperative KRAS-mutated circulating tumor DNA (ctDNA) in resected pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Surg Oncol 2023; 51:102007. [PMID: 37852124 DOI: 10.1016/j.suronc.2023.102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a challenging disease, with surgery being the only possible cure. However, despite surgery, the majority of patients experience recurrence. Recent evidence suggests that perioperative KRAS-mutated circulating tumor DNA (ctDNA) may have prognostic value. Therefore, we conducted a systematic review and meta-analysis to explore the prognostic significance of preoperative and postoperative KRAS-mutated ctDNA testing in resected PDAC. METHODS We searched PubMed/MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases for studies that reported the effect of preoperative and postoperative KRAS-mutated ctDNA on overall survival (OS) and/or relapse-free survival (RFS) in resected PDAC. We used a random-effects model to determine the pooled OS and RFS hazard ratios (HR) and their corresponding 95 % confidence intervals (CI). RESULTS We identified 15 studies (868 patients) eligible for analysis. In the preoperative setting, positive ctDNA correlated with worse RFS in 8 studies (HR, 2.067; 95 % CI, 1.346-3.174, P < 0.001) and worse OS in 10 studies (HR, 2.170; 95 % CI, 1.451-3.245, P < 0.001) compared to negative ctDNA. In the postoperative setting, positive ctDNA correlated with worse RFS across 9 studies (HR, 3.32; 95 % CI, 2.19-5.03, P < 0.001) and worse OS in 6 studies (HR, 6.62; 95 % CI, 2.18-20.16, P < 0.001) compared to negative ctDNA. CONCLUSION Our meta-analysis supports the utility of preoperative and postoperative KRAS-mutated ctDNA testing as a prognostic marker for resected PDAC. Further controlled studies are warranted to confirm these results and to investigate the potential therapeutic implications of positive KRAS-mutated ctDNA.
Collapse
Affiliation(s)
- Ali Alqahtani
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA; Medical Oncology Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdurahman Alloghbi
- Cancer Research Unit and Department of Oncology, King Khalid University, Abha, Saudi Arabia
| | - Philip Coffin
- Department of Internal Medicine, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chao Yin
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Reetu Mukherji
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Benjamin A Weinberg
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
18
|
Stoecklein NH, Fluegen G, Guglielmi R, Neves RPL, Hackert T, Birgin E, Cieslik SA, Sudarsanam M, Driemel C, van Dalum G, Franken A, Niederacher D, Neubauer H, Fehm T, Rox JM, Böhme P, Häberle L, Göring W, Esposito I, Topp SA, Coumans FAW, Weitz J, Knoefel WT, Fischer JC, Bork U, Rahbari NN. Ultra-sensitive CTC-based liquid biopsy for pancreatic cancer enabled by large blood volume analysis. Mol Cancer 2023; 22:181. [PMID: 37957606 PMCID: PMC10641981 DOI: 10.1186/s12943-023-01880-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
The limited sensitivity of circulating tumor cell (CTC) detection in pancreatic adenocarcinoma (PDAC) stems from their extremely low concentration in the whole circulating blood, necessitating enhanced detection methodologies. This study sought to amplify assay-sensitivity by employing diagnostic leukapheresis (DLA) to screen large blood volumes. Sixty patients were subjected to DLA, with a median processed blood volume of ~ 2.8 L and approximately 5% of the resulting DLA-product analyzed using CellSearch (CS). Notably, DLA significantly increased CS-CTC detection to 44% in M0-patients and 74% in M1-patients, yielding a 60-fold increase in CS-CTC enumeration. DLA also provided sufficient CS-CTCs for genomic profiling, thereby delivering additional genomic information compared to tissue biopsy samples. DLA CS-CTCs exhibited a pronounced negative prognostic impact on overall survival (OS), evidenced by a reduction in OS from 28.6 to 8.5 months (univariate: p = 0.002; multivariable: p = 0.043). Additionally, a marked enhancement in sensitivity was achieved (by around 3-4-times) compared to peripheral blood (PB) samples, with positive predictive values for OS being preserved at around 90%. Prognostic relevance of CS-CTCs in PDAC was further validated in PB-samples from 228 PDAC patients, consolidating the established association between CTC-presence and reduced OS (8.5 vs. 19.0 months, p < 0.001). In conclusion, DLA-derived CS-CTCs may serve as a viable tool for identifying high-risk PDAC-patients and aiding the optimization of multimodal treatment strategies. Moreover, DLA enables comprehensive diagnostic profiling by providing ample CTC material, reinforcing its utility as a reliable liquid-biopsy approach. This high-volume liquid-biopsy strategy presents a potential pathway for enhancing clinical management in this malignancy.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Georg Fluegen
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rosa Guglielmi
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rui P L Neves
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Emrullah Birgin
- Department of Surgery, Medical Faculty Mannheim, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan A Cieslik
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Monica Sudarsanam
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christiane Driemel
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Guus van Dalum
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jutta M Rox
- Department of Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Petra Böhme
- Institute of Forensic Medicine Düsseldorf, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wolfgang Göring
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Stefan A Topp
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Frank A W Coumans
- Decisive Science, Ertskade 10, 1019 BB, Amsterdam, The Netherlands
- Current Affiliation: Department for General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Jürgen Weitz
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wolfram T Knoefel
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Johannes C Fischer
- Department of Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Ulrich Bork
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus of the Technical University Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Nuh N Rahbari
- Department of Surgery, Medical Faculty Mannheim, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
- Current Affiliation: Department for General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
19
|
Lim DH, Yoon H, Kim KP, Ryoo BY, Lee SS, Park DH, Song TJ, Hwang DW, Lee JH, Song KB, Kim SC, Hong SM, Hyung J, Yoo C. Analysis of Plasma Circulating Tumor DNA in Borderline Resectable Pancreatic Cancer Treated with Neoadjuvant Modified FOLFIRINOX: Clinical Relevance of DNA Damage Repair Gene Alteration Detection. Cancer Res Treat 2023; 55:1313-1320. [PMID: 37139665 PMCID: PMC10582539 DOI: 10.4143/crt.2023.452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023] Open
Abstract
PURPOSE There are no reliable biomarkers to guide treatment for patients with borderline resectable pancreatic cancer (BRPC) in the neoadjuvant setting. We used plasma circulating tumor DNA (ctDNA) sequencing to search biomarkers for patients with BRPC receiving neoadjuvant mFOLFIRINOX in our phase 2 clinical trial (NCT02749136). MATERIALS AND METHODS Among the 44 patients enrolled in the trial, patients with plasma ctDNA sequencing at baseline or post-operation were included in this analysis. Plasma cell-free DNA isolation and sequencing were performed using the Guardant 360 assay. Detection of genomic alterations, including DNA damage repair (DDR) genes, were examined for correlations with survival. RESULTS Among the 44 patients, 28 patients had ctDNA sequencing data qualified for the analysis and were included in this study. Among the 25 patients with baseline plasma ctDNA data, 10 patients (40%) had alterations of DDR genes detected at baseline, inclu-ding ATM, BRCA1, BRCA2 and MLH1, and showed significantly better progression-free survival than those without such DDR gene alterations detected (median, 26.6 vs. 13.5 months; log-rank p=0.004). Patients with somatic KRAS mutations detected at baseline (n=6) had significantly worse overall survival (median, 8.5 months vs. not applicable; log-rank p=0.003) than those without. Among 13 patients with post-operative plasma ctDNA data, eight patients (61.5%) had detectable somatic alterations. CONCLUSION Detection of DDR gene mutations from plasma ctDNA at baseline was associated with better survival outcomes of pati-ents with borderline resectable pancreatic ductal adenocarcinoma treated with neoadjuvant mFOLFIRINOX and may be a prognostic biomarker.
Collapse
Affiliation(s)
- Dong-Hoon Lim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hyunseok Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Kyu-pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sang Soo Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Do Hyun Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Jun Song
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Dae Wook Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae Hoon Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Ki Byung Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
20
|
Edland KH, Tjensvoll K, Oltedal S, Dalen I, Lapin M, Garresori H, Glenjen N, Gilje B, Nordgård O. Monitoring of circulating tumour DNA in advanced pancreatic ductal adenocarcinoma predicts clinical outcome and reveals disease progression earlier than radiological imaging. Mol Oncol 2023; 17:1857-1870. [PMID: 37341038 PMCID: PMC10483602 DOI: 10.1002/1878-0261.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a need for better tools to guide treatment selection and follow-up. The aim of this prospective study was to investigate the prognostic value and treatment monitoring potential of longitudinal circulating tumour DNA (ctDNA) measurements in patients with advanced PDAC undergoing palliative chemotherapy. Using KRAS peptide nucleic acid clamp-PCR, we measured ctDNA levels in plasma samples obtained at baseline and every 4 weeks during chemotherapy from 81 patients with locally advanced and metastatic PDAC. Cox proportional hazard regression showed that ctDNA detection at baseline was an independent predictor of progression-free and overall survival. Joint modelling demonstrated that the dynamic ctDNA level was a strong predictor of time to first disease progression. Longitudinal ctDNA measurements during chemotherapy successfully revealed disease progression in 20 (67%) of 30 patients with ctDNA detected at baseline, with a median lead time of 23 days (P = 0.01) over radiological imaging. Here, we confirmed the clinical relevance of ctDNA in advanced PDAC with regard to both the prediction of clinical outcome and disease monitoring during treatment.
Collapse
Affiliation(s)
| | - Kjersti Tjensvoll
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Satu Oltedal
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Ingvild Dalen
- Section of Biostatistics, Department of ResearchStavanger University HospitalNorway
| | - Morten Lapin
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Herish Garresori
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Nils Glenjen
- Department of OncologyHaukeland University HospitalBergenNorway
| | - Bjørnar Gilje
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Oddmund Nordgård
- Department of Hematology and OncologyStavanger University HospitalNorway
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and TechnologyUniversity of StavangerNorway
| |
Collapse
|
21
|
Manzi J, Hoff CO, Ferreira R, Glehn-Ponsirenas R, Selvaggi G, Tekin A, O'Brien CB, Feun L, Vianna R, Abreu P. Cell-Free DNA as a Surveillance Tool for Hepatocellular Carcinoma Patients after Liver Transplant. Cancers (Basel) 2023; 15:3165. [PMID: 37370775 PMCID: PMC10296050 DOI: 10.3390/cancers15123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the world's sixth most common primary tumor site, responsible for approximately 5% of all cancers and over 8% of cancer-related deaths. Hepatocellular carcinoma (HCC) is the predominant type of liver cancer, accounting for approximately 75% of all primary liver tumors. A major therapeutic tool for this disease is liver transplantation. Two of the most significant issues in treating HCC are tumor recurrence and graft rejection. Currently, the detection and monitoring of HCC recurrence and graft rejection mainly consist of imaging methods, tissue biopsies, and alpha-fetoprotein (AFP) follow-up. However, they have limited accuracy and precision. One of the many possible components of cfDNA is circulating tumor DNA (ctDNA), which is cfDNA derived from tumor cells. Another important component in transplantation is donor-derived cfDNA (dd-cfDNA), derived from donor tissue. All the components of cfDNA can be analyzed in blood samples as liquid biopsies. These can play a role in determining prognosis, tumor recurrence, and graft rejection, assisting in an overall manner in clinical decision-making in the treatment of HCC.
Collapse
Affiliation(s)
- Joao Manzi
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | | | - Gennaro Selvaggi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Akin Tekin
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Christopher B O'Brien
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Lynn Feun
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
22
|
Liou GY, Byrd CJ. Diagnostic Bioliquid Markers for Pancreatic Cancer: What We Have vs. What We Need. Cancers (Basel) 2023; 15:2446. [PMID: 37173913 PMCID: PMC10177101 DOI: 10.3390/cancers15092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, currently has a dismal five-year survival rate of approximately 10% due to late diagnosis and a lack of efficient treatment options such as surgery. Furthermore, the majority of PDAC patients have surgically unresectable cancer, meaning cancer cells have either reached the surrounding blood vessels or metastasized to other organs distant from the pancreas area, resulting in low survival rates as compared to other types of cancers. In contrast, the five-year survival rate of surgically resectable PDAC patients is currently 44%. The late diagnosis of PDAC is a result of little or no symptoms in its early stage of development and a lack of specific biomarkers that may be utilized in routine examinations in the clinic. Although healthcare professionals understand the importance of early detection of PDAC, the research on the subject has lagged and no significant changes in the death toll of PDAC patients has been observed. This review is focused on understanding potential biomarkers that may increase the early diagnosis of PDAC patients at its surgically resectable stage. Here, we summarize the currently available biomarkers used in the clinic as well as those being developed with the hope of providing insight into the future of liquid biomarkers to be used in routine examinations for the early diagnosis of PDAC.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
23
|
Sellahewa R, Moghaddam SM, Lundy J, Jenkins BJ, Croagh D. Circulating Tumor DNA Is an Accurate Diagnostic Tool and Strong Prognostic Marker in Pancreatic Cancer. Pancreas 2023; 52:e188-e195. [PMID: 37751379 DOI: 10.1097/mpa.0000000000002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The objectives of the study are to investigate the sensitivity and specificity of circulating tumor DNA (ctDNA) for the diagnosis of pancreatic cancer and to assess the utility of ctDNA as a prognostic marker in this disease. METHODS Cell-free DNA was extracted from plasma of patients who underwent endoscopic ultrasound fine-needle aspiration or surgical resections for pancreatic cancer. The cell-free DNA was then analyzed using droplet digital polymerase chain reaction for KRAS G12/13 mutations. Eighty-one patients with pancreatic cancer and 30 patients with benign pancreatic disease were analyzed. RESULTS ctDNA KRAS G12/13 mutations were detected in 63% of all patients with pancreatic cancer and in 76% of those patients who also had KRAS G12/13 mutations detected in the pancreatic primary. Specificity and tissue concordance were both 100%. Circulating tumor DNA corresponded with tumor size and stage, and high ctDNA was associated with significantly worse prognosis on both univariate and multivariate testing. CONCLUSION Our study shows that ctDNA is an accurate diagnostic tool and strong prognostic marker in patients with pancreatic cancer. The continued investigation of ctDNA will enable its implementation in clinical practice to optimize the care and survival outcomes of patients with pancreatic cancer.
Collapse
|
24
|
Akagündüz B, Guven DC, Ozer M, Okten IN, Atag E, Unek İT, Tatli AM, Karaoglu A. Tailoring adjuvant chemotherapy by circulating tumor DNA (ctDNA) in older patients with stage II-III colon cancer. J Geriatr Oncol 2023; 14:101367. [PMID: 36038467 DOI: 10.1016/j.jgo.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Baran Akagündüz
- Department of Medical Oncology, Erzincan Binali Yıldrıım University Medical School, Erzincan, Turkey.
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Medical School, Istanbul, Turkey
| | - Muhammet Ozer
- Department of Internal Medicine, Capital Health Regional Medical Center, Trenton, NJ, USA.
| | - Ilker Nihat Okten
- Department of Medical Oncology, Gaziantep Ersin Arslan State Hospital, Gaziantep, Turkey
| | - Elif Atag
- Department of Medical Oncology, Haydarpaşa Numune Research Hospital, Istanbul, Turkey
| | - İlkay Tugba Unek
- Department of Medical Oncology, Dokuzeylül University Medical School, 34000 Istanbul, Turkey
| | - Ali Murat Tatli
- Department of Medical Oncology, Akdeniz University Medical School, 07010 Antalya, Turkey
| | - Aziz Karaoglu
- Department of Medical Oncology, Dokuzeylül University Medical School, 34000 Istanbul, Turkey
| |
Collapse
|
25
|
Nitschke C, Markmann B, Walter P, Badbaran A, Tölle M, Kropidlowski J, Belloum Y, Goetz MR, Bardenhagen J, Stern L, Tintelnot J, Schönlein M, Sinn M, van der Leest P, Simon R, Heumann A, Izbicki JR, Pantel K, Wikman H, Uzunoglu FG. Peripheral and Portal Venous KRAS ctDNA Detection as Independent Prognostic Markers of Early Tumor Recurrence in Pancreatic Ductal Adenocarcinoma. Clin Chem 2023; 69:295-307. [PMID: 36644936 DOI: 10.1093/clinchem/hvac214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND KRAS circulating tumor DNA (ctDNA) has shown biomarker potential for pancreatic ductal adenocarcinoma (PDAC) but has not been applied in clinical routine yet. We aim to improve clinical applicability of ctDNA detection in PDAC and to study the impact of blood-draw site and time point on the detectability and prognostic role of KRAS mutations. METHODS 221 blood samples from 108 PDAC patients (65 curative, 43 palliative) were analyzed. Baseline peripheral and tumor-draining portal venous (PV), postoperative, and follow-up blood were analyzed and correlated with prognosis. RESULTS Significantly higher KRAS mutant detection rates and copy numbers were observed in palliative compared to curative patients baseline blood (58.1% vs 24.6%; P = 0.002; and P < 0.001). Significantly higher KRAS mutant copies were found in PV blood compared to baseline (P < 0.05) samples. KRAS detection in pre- and postoperative and PV blood were significantly associated with shorter recurrence-free survival (all P < 0.015) and identified as independent prognostic markers. KRAS ctDNA status was also an independent unfavorable prognostic factor for shorter overall survival in both palliative and curative cohorts (hazard ratio [HR] 4.9, P = 0.011; HR 6.9, P = 0.008). CONCLUSIONS KRAS ctDNA detection is an independent adverse prognostic marker in curative and palliative PDAC patients-at all sites of blood draw and a strong follow-up marker. The most substantial prognostic impact was seen for PV blood, which could be an effective novel tool for identifying prognostic borderline patients-guiding future decision-making on neoadjuvant treatment despite anatomical resectability. In addition, higher PV mutant copy numbers contribute to an improved technical feasibility.
Collapse
Affiliation(s)
- Christine Nitschke
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Mildred Scheel Cancer Career Center, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Benedikt Markmann
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philipp Walter
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anita Badbaran
- Clinic for Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marie Tölle
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jolanthe Kropidlowski
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Yassine Belloum
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Mara R Goetz
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Bardenhagen
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Louisa Stern
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Joseph Tintelnot
- II. Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Martin Schönlein
- II. Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marianne Sinn
- II. Medical Clinic and Polyclinic (Oncology), University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Paul van der Leest
- Department of Pathology, University Medical Center, University of Groningen, Groningen 9700 RB, Netherlands
| | - Ronald Simon
- Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
26
|
Choi WJ, Ivanics T, Gravely A, Gallinger S, Sapisochin G, O'Kane GM. Optimizing Circulating Tumour DNA Use in the Perioperative Setting for Intrahepatic Cholangiocarcinoma: Diagnosis, Screening, Minimal Residual Disease Detection and Treatment Response Monitoring. Ann Surg Oncol 2023; 30:3849-3863. [PMID: 36808320 DOI: 10.1245/s10434-023-13126-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
In this review, we present the current evidence and future perspectives on the use of circulating tumour DNA (ctDNA) in the diagnosis, management and understanding the prognosis of patients with intrahepatic cholangiocarcinoma (iCCA) undergoing surgery. Liquid biopsies or ctDNA maybe utilized to: (1) determine the molecular profile of the tumour and therefore guide the selection of molecular targeted therapy in the neoadjuvant setting, (2) form a surveillance tool for the detection of minimal residual disease or cancer recurrence after surgery, and (3) diagnose and screen for early iCCA detection in high-risk populations. The potential for ctDNA can be tumour-informed or -uninformed depending on the goals of its use. Future studies will require ctDNA extraction technique validations, with standardizations of both the platforms and the timing of ctDNA collections.
Collapse
Affiliation(s)
- Woo Jin Choi
- HBP and Multi Organ Transplant Program, Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Tommy Ivanics
- Department of Surgery, Henry Ford Hospital, Detroit, MI, USA.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Annabel Gravely
- HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Steven Gallinger
- HBP and Multi Organ Transplant Program, Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada.,HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Gonzalo Sapisochin
- HBP and Multi Organ Transplant Program, Division of General Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada. .,HPB Surgical Oncology, University Health Network, Toronto, Ontario, Canada.
| | - Grainne M O'Kane
- Department of Medical Oncology, Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Cheng H, Yang J, Fu X, Mao L, Chu X, Lu C, Li G, Qiu Y, He W. Folate receptor-positive circulating tumor cells predict survival and recurrence patterns in patients undergoing resection for pancreatic cancer. Front Oncol 2022; 12:1012609. [PMID: 36313690 PMCID: PMC9606765 DOI: 10.3389/fonc.2022.1012609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To evaluate the prognostic impact of folate receptor (FR)-positive circulating tumor cells (FR+ CTCs) for patients with pancreatic cancer (PC). Background Risk stratification before surgery for PC patients remains challenging as there are no reliable prognostic markers currently. FR+ CTCs, detected by ligand-targeted polymerase chain reaction (LT-PCR), have shown excellent diagnostic value for PC in our previous study and prognostic value in a variety of cancer types. Methods Peripheral blood samples from 44 consecutive patients diagnosed with PC were analyzed for FR+ CTCs. 25 patients underwent tumor resection and were assigned to the surgical group. 19 patients failed to undergo radical resection because of local advance or distant metastasis and were assigned to the non-surgical group. The impact of CTCs on relapse and survival were explored. Results For the prognostic stratification, the optimal cut-off value of CTCs analyzed by receiver operating characteristic (ROC) curve was 14.49 folate units (FU)/3 ml. High CTC levels (> 14.49 FU/3 ml) were detected in 52.0% (13/25) of the patients in the surgical group and 63.2% (12/19) in the non-surgical group. In the surgical group, median disease-free survival (DFS) for patients with high CTC levels versus low CTC levels (< 14.49 FU/3 ml) was 8.0 versus 26.0 months (P = 0.008). In multivariable analysis, CTCs were an independent risk factor for DFS (HR: 4.589, P = 0.012). Concerning the recurrence patterns, patients with high CTC levels showed a significantly frequent rate of distant and early recurrence (P = 0.017 and P = 0.011). CTC levels remained an independent predictor for both distant (OR: 8.375, P = 0.014) and early recurrence (OR: 8.412, P = 0.013) confirmed by multivariable logistic regression. However, CTCs did not predict survival in the non-surgical group (P = 0.220). Conclusion FR+ CTCs in resected PC patients could predict impaired survival and recurrence patterns after surgery. Preoperative CTC levels detected by LT-PCR may help guide treatment strategies and further studies in a larger cohort are warranted.
Collapse
Affiliation(s)
- Hao Cheng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xu Fu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Mao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenglin Lu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Li
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yudong Qiu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yudong Qiu, ; Wei He,
| | - Wei He
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yudong Qiu, ; Wei He,
| |
Collapse
|
28
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
29
|
Lam RCT, Johnson D, Lam G, Li MLY, Wong JWL, Lam WKJ, Chan KCA, Ma B. Clinical applications of circulating tumor-derived DNA in the management of gastrointestinal cancers - current evidence and future directions. Front Oncol 2022; 12:970242. [PMID: 36248993 PMCID: PMC9556664 DOI: 10.3389/fonc.2022.970242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in Next Generation Sequencing (NGS) technologies have enabled the accurate detection and quantification of circulating tumor-derived (ct)DNA in most gastrointestinal (GI) cancers. The prognostic and predictive utility of ctDNA in patiets with different stages of colorectal (CRC), gastro-esophageal (GEC) and pancreaticobiliary cancers (PBC) are currently under active investigation. The most mature clinical data to date are derived from studies in the prognostic utility of personalized ctDNA-based NGS assays in the detection of minimal residual disease (MRD) and early recurrence after surgery in CRC and other GI cancers. These findings are being validated in several prospective studies which are designed to test if ctDNA could outperform conventional approaches in guiding adjuvant chemotherapy, and in post-operative surveillance in some GI cancers. Several adaptive studies using ctDNA as a screening platform are also being used to identify patients with actionable genomic alterations for clinical trials of targeted therapies. In the palliative setting, ctDNA monitoring during treatment has shown promise in the detection and tracking of clonal variants associated with acquired resistance to targeted therapies and immune-checkpoint inhibitors (ICI). Moreover, ctDNA may help to guide the therapeutic re-challenge of targeted therapies in patients who have prior exposure to such treatment. This review will examine the most updated research findings on ctDNA as a biomarker in CRC, GEC and PBCs. It aims to provide insights into how the unique strengths of this biomarker could be optimally leveraged in improving the management of these GI cancers.
Collapse
Affiliation(s)
- Rachel C. T. Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David Johnson
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y. K Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gigi Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Michelle L. Y. Li
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joyce W. L. Wong
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - W. K. Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - K. C. Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brigette Ma
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y. K Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Comandatore A, Balsano R, Immordino B, Arguedas D, Capula M, Baglio SR, Garajovà I, Malapelle U, Morelli L, Giovannetti E. "Depart from evil, and do good": Turning Axl from uncontrolled tumorigenic gene to biomarker for early detection of pancreatic cancer. Crit Rev Oncol Hematol 2022; 173:103659. [PMID: 35398264 DOI: 10.1016/j.critrevonc.2022.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Attempts to achieve early diagnosis are crucial to improve the outcome of patients with pancreatic ductal adenocarcinoma (PDAC). Here we present a critical evaluation of a recent study unraveling the potential of circulating AXL as a novel blood marker for early detection of PDAC and differential diagnosis from chronic pancreatitis (CP).
Collapse
Affiliation(s)
- Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands; General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Rita Balsano
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands; Medical Oncology Unit, University Hospital of Parma, 43100 , Italy
| | - Benoit Immordino
- Fondazione Pisana per La Scienza, 56017 San Giuliano, Pisa, Italy
| | - Davinia Arguedas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands; Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Mjriam Capula
- Fondazione Pisana per La Scienza, 56017 San Giuliano, Pisa, Italy
| | - Serena R Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands
| | - Ingrid Garajovà
- Medical Oncology Unit, University Hospital of Parma, 43100 , Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, 56017 San Giuliano, Pisa, Italy.
| |
Collapse
|