1
|
Sailo BL, Chauhan S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Goel A, Sethi G, Kunnumakkara AB. Therapeutic potential of tocotrienols as chemosensitizers in cancer therapy. Phytother Res 2025; 39:1694-1720. [PMID: 38353331 DOI: 10.1002/ptr.8131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 04/23/2025]
Abstract
Chemoresistance is the adaptation of cancer cells against therapeutic agents. When exhibited by cancer cells, chemoresistance helps them to avoid apoptosis, cause relapse, and metastasize, making it challenging for chemotherapeutic agents to treat cancer. Various strategies like dosage modification of drugs, nanoparticle-based delivery of chemotherapeutics, antibody-drug conjugates, and so on are being used to target and reverse chemoresistance, one among such is combination therapy. It uses the combination of two or more therapeutic agents to reverse multidrug resistance and improve the effects of chemotherapy. Phytochemicals are known to exhibit chemosensitizing properties and are found to be effective against various cancers. Tocotrienols (T3) and tocopherols (T) are natural bioactive analogs of vitamin E, which exhibit important medicinal value and potential curative properties apart from serving as an antioxidant and nutrient supplement. Notably, T3 exhibits a variety of pharmacological activities like anticancer, anti-inflammatory, antiproliferative, and so on. The chemosensitizing property of tocotrienol is exhibited by modulating several signaling pathways and molecular targets involved in cancer cell survival, proliferation, invasion, migration, and metastasis like NF-κB, STATs, Akt/mTOR, Bax/Bcl-2, Wnt/β-catenin, and many more. T3 sensitizes cancer cells to chemotherapeutic drugs including cisplatin, doxorubicin, and paclitaxel increasing drug concentration and cytotoxicity. Discussed herewith are the chemosensitizing properties of tocotrienols on various cancer cell types when combined with various drugs and biological molecules.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, California, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
2
|
Smail SW. Targeting Neuroinflammation and Apoptosis: Cardamonin's Cognitive Benefits in Alzheimer's 5XFAD Mice. Neurochem Res 2024; 50:57. [PMID: 39673650 DOI: 10.1007/s11064-024-04308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to evaluate the cognitive-enhancing and neuroprotective effects of cardamonin in the 5XFAD transgenic mouse model of Alzheimer's disease (AD). We treated six-month-old female 5XFAD mice with cardamonin at 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cognitive function was assessed using the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests. ELISA, western blot, and PCR analyses evaluated amyloid-beta (Aβ) levels, neuroinflammation markers, and apoptosis-related factor expression. All animals survived without toxicity. Cardamonin treatment significantly improved spatial learning and memory retention in MWM and NOR tests, with the 20 mg/kg dose showing the most pronounced effects. Additionally, cardamonin reduced soluble and insoluble Aβ levels in the frontal cortex and hippocampus. The treatment also significantly decreased neuroinflammatory markers, with IL-1β, IL-6, and TNF-α levels dropping substantially at higher doses. Cardamom treatment also normalizes cleaved caspase 3, GFAP, Iba-1, PSD-95, and synaptophysin, which aids in restoring synaptic integrity. Furthermore, cardamonin led to a marked reduction in apoptosis-related gene expression, indicating its potential to mitigate neurodegeneration. Cardamonin demonstrates significant cognitive-enhancing and neuroprotective properties in the 5XFAD mouse model, suggesting its potential as a therapeutic agent for AD. These findings support further investigation into cardamonin's mechanisms and applicability in treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
3
|
Chen C, Chen B, Lin Y, He Q, Yang J, Xiao J, Pan Z, Li S, Li M, Wang F, Zhang H, Wang X, Zeng J, Chi W, Meng K, Wang H, Chen P. Cardamonin attenuates iron overload-induced osteoblast oxidative stress through the HIF-1α/ROS pathway. Int Immunopharmacol 2024; 142:112893. [PMID: 39217878 DOI: 10.1016/j.intimp.2024.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoporosis(OP) is a bone disease under research. Iron overload is a significant risk factor. Iron balance is crucial for bone metabolism and biochemical processes. When there is an excess of iron in the body, it tends to produce reactive oxygen species (ROS) which can cause oxidative damage to cells. The flavonoid compound, Cardamonin (CAR), possesses potent anti-inflammatory and anti-iron overload properties that can be beneficial in mitigating the risk of OP. PURPOSE This study investigates the potential therapeutic interventions and underlying mechanisms of CAR for treating OP in individuals with iron overload. METHODS The model of iron-overloaded mice was established by intraperitoneally injecting iron dextran(ID) into the mice. OP severity was evaluated with micro-CT and Hematoxylin-Eosin (HE) staining in vivo. In vitro, the iron-overloaded osteoblast model was induced by ferric ammonium citrate. Cell counting kit 8 assay to evaluate cell viability, Annexin V-FITC/PI assay to detect cell apoptosis. A range of cellular markers were detected, including the variation in mitochondrial membrane potential (MMP), levels of malondialdehyde (MDA), ROS, and lipid hydroperoxide (LPO). RESULTS CAR can reverse bone loss in iron overload-induced OP mouse models in vivo. CAR attenuates the impairment of iron overload on the activity and apoptosis of MC3T3-E1 cells as well as the accumulation of ROS and LPO activation via HIF-1α/ROS pathways. CONCLUSION CAR downregulating HIF-1α pathways prevents inhibition of iron overload-induced osteoblasts dysfunctional by attenuating ROS accumulation, reducing oxidative stress, promotes bone formation, and alleviates OP.
Collapse
Affiliation(s)
- Chuyi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Bohao Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yuewei Lin
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi He
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junzheng Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiacong Xiao
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhaofeng Pan
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Shaocong Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Miao Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Fanchen Wang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Hua Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Xintian Wang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Jiaxu Zeng
- 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Weijin Chi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; 1st School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Kai Meng
- Department of Orthopaedics Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China.
| | - Peng Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou 510405, PR China; Xinjiang Production and Construction Corps 13th Division Red Star Hospital, Hami 839000, PR China; The Affiliated Redstar Hospital of Shihezi University School of Medicine, 832000, PR China.
| |
Collapse
|
4
|
Chowdhary S, Preeti, Shekhar, Gupta N, Kumar R, Kumar V. Advances in chalcone-based anticancer therapy: mechanisms, preclinical advances, and future perspectives. Expert Opin Drug Discov 2024; 19:1417-1437. [PMID: 39621431 DOI: 10.1080/17460441.2024.2436908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Cancer remains a leading cause of death worldwide with traditional treatments like chemotherapy, and radiotherapy becoming less effective due to multidrug resistance (MDR). This highlights the necessity for novel chemotherapeutics like chalcone-based compounds, which demonstrate broad anti-cancer properties and target multiple pathways. These compounds hold promise for improving cancer treatment outcomes compared to existing therapies. AREAS COVERED This review provides a comprehensive synopsis of the recent literature (2018-2024) for anti-proliferative/anti-cancer activity of chalcones. It includes the identification of potential targets, their mechanisms of action, and possible modes of binding. Additionally, chalcone derivatives in preclinical trials are also discussed. EXPERT OPINION Chalcones mark a significant stride in anticancer therapies due to their multifaceted approach in targeting various cellular pathways. Their ability to simultaneously target multiple pathways enables them to overcome drug resistance as compared to traditional therapies. With well-defined mechanisms of action, these compounds can serve as lead molecules for designing new, more promising treatments. Continued progress in synthesis and structural optimization, along with promising results from preclinical trials, offers hope for the development of more potent molecules, heralding a new era in cancer therapeutics.
Collapse
Affiliation(s)
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Nikita Gupta
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
5
|
Sarı U, Zaman F, Özdemir İ, Öztürk Ş, Tuncer MC. Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway. Biomedicines 2024; 12:2632. [PMID: 39595196 PMCID: PMC11591794 DOI: 10.3390/biomedicines12112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Cervical cancer is a type of cancer that originates from the endometrium and is more common in developed countries and its incidence is increasing day by day in developing countries. The most commonly prescribed chemotherapeutic drugs limit their use due to serious side effects and the development of drug resistance. For this reason, interest in new active ingredients obtained from natural products is increasing. This study aimed to reveal the apoptotic and antiproliferative effects of gallic acid and doxorubicin combination therapy against the HeLa cell line. METHODS We investigated the anti-cancer effects of doxorubicin and gallic acid in the human HeLa cervical cell line by using the MTT test, Nucblue staining for the identification of apoptotic cells due to nuclear condensation using fluorescent substance, and apoptotic markers P53 and Bax for the RT-PCR test. RESULTS The highest cytotoxic effect obtained in the study, the highest increase in apoptotic induction, and a significant difference in P53/Bax levels were seen in the gallic acid/doxorubicin combination. Additionally, it was determined that gallic acid exhibited an effective cytotoxic effect on HeLa and HaCat cells within 48 and 72 h of application. CONCLUSIONS The obtained findings show that the gallic acid/doxorubicin combination applied to HeLa cells may be an alternative treatment against both the cytotoxic effect size and the side effects of the chemotherapy agent.
Collapse
Affiliation(s)
- Umut Sarı
- Department of Gynecology and Obstetrics, Umut Sarı Clinic, 34371 Istanbul, Turkey;
| | - Fuat Zaman
- Department of Obstetrics and Gynecology, Diyarlife Hospital, 21100 Diyarbakır, Turkey;
| | - İlhan Özdemir
- Private Buhara Hospital, Gynecology and Obstetrics Clinic IVF Center, 25070 Erzurum, Turkey;
| | - Şamil Öztürk
- Vocational School of Health Care Services, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey;
| | - Mehmet Cudi Tuncer
- Department of Anatomy, Faculty of Medicine, Dicle University, 21200 Diyarbakir, Turkey
| |
Collapse
|
6
|
Yang T, Wu P, Jiang L, Chen R, Jin Q, Ye G. Cardamonin Attenuates Myocardial Ischemia/Reperfusion-Induced Ferroptosis Through Promoting STAT3 Signaling. J Inflamm Res 2024; 17:8861-8879. [PMID: 39569022 PMCID: PMC11577436 DOI: 10.2147/jir.s486412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Objective Ferroptosis is intricately associated with the pathophysiology processes of myocardial ischemia. Cardamonin (CAR) has been shown to provide significant protection against tissue damage due to multiple ischemia/reperfusion. This study aimed to examine the cardioprotective properties of CAR in myocardial ischemia/reperfusion injury (MIRI) and provide insights into the possible mechanisms involved. Methods An MIRI mice model was conducted by coronary artery ligation, and the effects of CAR on myocardial tissue damage were evaluated by infarct size assessment, echocardiography, and H&E staining. The extent of ferroptosis was detected by examining the levels of ferroptosis-related proteins and lipid reactive oxygen species (ROS). The function pathway of CAR was analyzed by network pharmacology and verified using Western blotting. In addition, we induced hypoxia/reoxygenation (H/R) in cardiomyocytes to detect SLC7A11 expression, ROS level, mitochondrial iron content, and oxidative stress marker levels. The target protein of CAR was identified by Western blotting and molecular docking. We then evaluated the regulatory role of STAT3 on MIRI-induced ferroptosis by silencing STAT3. Results In our study, CAR demonstrated a reduction in myocardial histopathological damage and mitigation of ferroptosis in MIRI mice. Through network pharmacology analysis and Western blotting, our findings indicated that CAR modulates the AGE-RAGE signaling pathway, particularly impacting STAT3. Meanwhile, in vitro experiments revealed that advanced-glycation end products (AGEs) exacerbated H/R-induced ferroptosis, whereas CAR alleviated this ferroptosis in the presence of both AGEs and H/R. CAR was observed to enhance STAT3 expression in H/R+AGRs-treated cardiomyocytes. Molecular docking results demonstrated favorable binding interactions between CAR and STAT3. Our study confirmed that CAR mitigated MIRI-induced myocardial injury and ferroptosis through targeting STAT3 in mice. Conclusion In conclusion, CAR inhibited ferroptosis by activating the STAT3 signaling, thereby mitigating MIRI.
Collapse
Affiliation(s)
- Tao Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, People's Republic of China
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China
| | - Luping Jiang
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China
| | - Ran Chen
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China
| | - Qiao Jin
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China
| | - Guohong Ye
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China
| |
Collapse
|
7
|
Karaosmanoğlu Ö, Kamalak Z, Özdemir İ, Öztürk Ş, Tuncer MC. Apoptotic effect of thymoquinone on OVCAR3 cells via the P53 and CASP3 activation. Acta Cir Bras 2024; 39:e399224. [PMID: 39536185 PMCID: PMC11548134 DOI: 10.1590/acb399224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The limitations in cancer treatment and the inadequacy of classical methods have made it necessary to discover therapeutics in cancer treatment. The cytotoxicity of thymoquinone, which has quite different properties in terms of biological activities, in ovarian cancer cells, and the changes in the expression levels of apoptotic genes (p53/caspase-3 (casp-3)) were investigated. METHODS In the study, thymoquinone (5, 50, 100, 250 and 500 µM and 24, 48, 72 hours) were applied to ovarian adenocarcinoma cancer cell line (OVCAR3), at different concentrations. Cytotoxic effect of thymoquinone on OVCAR-3 cells were analyzed by MTT method, and apoptotic and pro-apoptotic gene expression levels (p53, Casp-3) of thymoquinone in cancer cells were analyzed by quantitative real-time polymerase chain reaction. RESULTS Thymoquinone, whose effect has been revealed in many types of cancer, was shown to significantly reduce the viability of OVCAR3 cancer cells depending on the dose and time (p < 0.05). It was also determined that Casp-3 and p53 gene expressions increased in OVCAR3 cells. CONCLUSIONS Considering the in-vitro cytotoxic activity and apoptotic gene expressions of thymoquinone, an important treatment agent, since it is a promising agent for the future of cancer treatment, more comprehensive studies may pave the way for its clinical use.
Collapse
Affiliation(s)
| | - Zeynep Kamalak
- Ağrı İbrahim Çeçen University – Faculty of Medicine – Department of Gynecology and Obstetrics – Ağrı – Turkey
| | - İlhan Özdemir
- Atatürk University – Faculty of Medicine – Department of Gynecology and Obstetrics – Erzurum – Turkey
| | - Şamil Öztürk
- Çanakkale Onsekiz Mart University – Vocational School of Health Services – Çanakkale – Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Faculty of Medicine – Department of Anatomy – Diyarbakir – Turkey
| |
Collapse
|
8
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
9
|
The Degree of Hydroxylation of Phenolic Rings Determines the Ability of Flavonoids and Stilbenes to Inhibit Calcium-Mediated Membrane Fusion. Nutrients 2023; 15:nu15051121. [PMID: 36904120 PMCID: PMC10005302 DOI: 10.3390/nu15051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
This paper discusses the possibility of using plant polyphenols as viral fusion inhibitors with a lipid-mediated mechanism of action. The studied agents are promising candidates for the role of antiviral compounds due to their high lipophilicity, low toxicity, bioavailability, and relative cheapness. Fluorimetry of calcein release at the calcium-mediated fusion of liposomes, composed of a ternary mixture of dioleoyl phosphatidylcholine, dioleoyl phosphatidylglycerol, and cholesterol, in the presence of 4'-hydroxychalcone, cardamonin, isoliquiritigenin, phloretin, resveratrol, piceatannol, daidzein, biochanin A, genistein, genistin, liquiritigenin, naringenin, catechin, taxifolin, and honokiol, was performed. It was found that piceatannol significantly inhibited the calcium-induced fusion of negatively charged vesicles, while taxifolin and catechin showed medium and low antifusogenic activity, respectively. As a rule, polyphenols containing at least two OH-groups in both phenolic rings were able to inhibit the calcium-mediated fusion of liposomes. In addition, there was a correlation between the ability of the tested compounds to inhibit vesicle fusions and to perturb lipid packing. We suggest that the antifusogenic action of polyphenols was determined by the depth of immersion and the orientation of the molecules in the membrane.
Collapse
|
10
|
Izadi B, Joulaei H, Lankarani KB, Tabrizi R, Taherifard E, Sadeghpour A, Vali M, Akbari M. The effect of green cardamom on blood pressure and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized clinical trials. Phytother Res 2023; 37:679-688. [PMID: 36181264 DOI: 10.1002/ptr.7648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
Research shows that herbal spices, including seeds of Elettaria cardamomum, may exert beneficial effects on unhealthy metabolic status. This study is a systematic review of the effect of green cardamom in patients with metabolic syndrome and its related disorders. PubMed/Medline, Scopus, EMBASE, Web of Science, and Cochrane Library were searched to identify the relevant randomized clinical trials. The data were pooled using the random-effects model, and weighted mean difference (WMD) was considered as summary effect size. Of 625 clinical trials, eight reports with 595 patients (299 in intervention group and 296 in control group) were included. The findings indicated that green cardamom significantly decreased diastolic blood pressure (WMD: -0.91 mmHg, 95%CI; -1.19, -0.62), high-sensitivity C-reactive protein (WMD: -1.21 mg/L, 95%CI; -2.18, -0.24), interleukin 6 levels (WMD: -2.41 ng/L, 95%CI; -4.35, -0.47). However, cardamom supplementation did not significantly affect systolic blood pressure. This meta-analysis demonstrated that green cardamom could improve blood pressure control and exert antiinflammatory effects which could help patients with unhealthy metabolic profile better manage their health. Importantly, there were few eligible randomized trials with quite a low number of participants. Further prospective studies on larger sample sizes and longer duration of supplementation are warranted for its widespread use.
Collapse
Affiliation(s)
- Bahareh Izadi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Joulaei
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran
| | - Erfan Taherifard
- Shiraz School for Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sadeghpour
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
12
|
Barber K, Mendonca P, Soliman KFA. The Neuroprotective Effects and Therapeutic Potential of the Chalcone Cardamonin for Alzheimer's Disease. Brain Sci 2023; 13:145. [PMID: 36672126 PMCID: PMC9856590 DOI: 10.3390/brainsci13010145] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.
Collapse
Affiliation(s)
- Kimberly Barber
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
13
|
Tea Plant ( Camellia sinensis): A Current Update on Use in Diabetes, Obesity, and Cardiovascular Disease. Nutrients 2022; 15:nu15010037. [PMID: 36615695 PMCID: PMC9823498 DOI: 10.3390/nu15010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.
Collapse
|
14
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
15
|
Sajeev A, Hegde M, Girisa S, Devanarayanan TN, Alqahtani MS, Abbas M, Sil SK, Sethi G, Chen JT, Kunnumakkara AB. Oroxylin A: A Promising Flavonoid for Prevention and Treatment of Chronic Diseases. Biomolecules 2022; 12:1185. [PMID: 36139025 PMCID: PMC9496116 DOI: 10.3390/biom12091185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Thulasidharan Nair Devanarayanan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Center, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samir Kumar Sil
- Cell Physiology and Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar 799022, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
16
|
Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants (Basel) 2022; 11:antiox11061169. [PMID: 35740065 PMCID: PMC9219756 DOI: 10.3390/antiox11061169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.
Collapse
|
17
|
Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An Overview of the Pharmacological Activities of Scopoletin against Different Chronic Diseases. Pharmacol Res 2022; 179:106202. [DOI: 10.1016/j.phrs.2022.106202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
18
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
19
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
20
|
Karaca H, Kazancı S. The metal sensing applications of chalcones: The synthesis, characterization and theoretical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Cardamonin attenuates phorbol 12-myristate 13-acetate-induced pulmonary inflammation in alveolar macrophages. Food Chem Toxicol 2021; 159:112761. [PMID: 34890758 DOI: 10.1016/j.fct.2021.112761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 01/24/2023]
Abstract
Pulmonary inflammation involves complex immune responses in which alveolar macrophages release pro-inflammatory proteins and cytokines. Cardamonin is a spice component that exerts anti-inflammatory and anti-oxidative properties against pulmonary inflammation. Herein, the aim of this research is to investigate the effects of cardamonin on pulmonary inflammation and its mechanism. Pulmonary inflammation in mice was induced by intratracheal administration of PMA. PMA-stimulated acute fibrosis, pulmonary edema, and inflammatory responses were ameliorated by oral administration of cardamonin in vivo. In MH-S alveolar macrophages, PMA-induced pro-inflammatory responses, including iNOS, COX-2, MMP-9 and cytokines expressions were reduced by cardamonin. The anti-oxidative Nrf2/HO-1 axis was also provoked by cardamonin in MH-S alveolar macrophages. In addition, MMP-9 expression induced by PMA is also decreased by the down-stream metabolites of HO-1, indicating that HO-1 expression partially contributes to the anti-inflammatory effect exerted by cardamonin. In this study, cardamonin demonstrates anti-inflammatory and anti-oxidative effects on PMA-induced pulmonary inflammation and activating Nrf2/HO-1 axis in alveolar macrophages. Cardamonin also ameliorates pulmonary inflammation, rapid fibrosis in vivo, suggesting powerful health benefits.
Collapse
|
22
|
Rana V, Parama D, Khatoon E, Girisa S, Sethi G, Kunnumakkara AB. Reiterating the Emergence of Noncoding RNAs as Regulators of the Critical Hallmarks of Gall Bladder Cancer. Biomolecules 2021; 11:biom11121847. [PMID: 34944491 PMCID: PMC8699045 DOI: 10.3390/biom11121847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 01/17/2023] Open
Abstract
Gall bladder cancer (GBC) is a rare and one of the most aggressive types of malignancies, often associated with a poor prognosis and survival. It is a highly metastatic cancer and is often not diagnosed at the initial stages, which contributes to a poor survival rate of patients. The poor diagnosis and chemoresistance associated with the disease limit the scope of the currently available surgical and nonsurgical treatment modalities. Thus, there is a need to explore novel therapeutic targets and biomarkers that will help relieve the severity of the disease and lead to advanced therapeutic strategies. Accumulating evidence has correlated the atypical expression of various noncoding RNAs (ncRNAs), including circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and small nucleolar RNAs (snoRNA) with the increased cell proliferation, epithelial-mesenchymal transition (EMT), invasion, migration, metastasis, chemoresistance, and decreased apoptosis in GBC. Numerous reports have indicated that the dysregulated expression of ncRNAs is associated with poor prognosis and lower disease-free and overall survival in GBC patients. These reports suggest that ncRNAs might be considered novel diagnostic and prognostic markers for the management of GBC. The present review recapitulates the association of various ncRNAs in the initiation and progression of GBC and the development of novel therapeutic strategies by exploring their functional and regulatory role.
Collapse
Affiliation(s)
- Varsha Rana
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Dey Parama
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Elina Khatoon
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Sosmitha Girisa
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (V.R.); (D.P.); (E.K.); (S.G.)
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
23
|
Devi Daimary U, Girisa S, Parama D, Verma E, Kumar A, Kunnumakkara AB. Embelin: A novel XIAP inhibitor for the prevention and treatment of chronic diseases. J Biochem Mol Toxicol 2021; 36:e22950. [PMID: 34842329 DOI: 10.1002/jbt.22950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Chronic diseases are a serious health concern worldwide, especially in the elderly population. Most chronic diseases like cancer, cardiovascular ailments, neurodegenerative disorders, and autoimmune diseases are caused due to the abnormal functioning of multiple signaling pathways that give rise to critical anomalies in the body. Although a lot of advanced therapies are available, these have failed to entirely cure the disease due to their less efficacy. Apart from this, they have been shown to manifest disturbing side effects which hamper the patient's quality of life to the extreme. Since the last few decades, extensive studies have been done on natural herbs due to their excellent medicinal benefits. Components present in natural herbs target multiple signaling pathways involved in diseases and therefore hold high potential in the prevention and treatment of various chronic diseases. Embelin, a benzoquinone, is one such agent isolated from Embelia ribes, which has shown excellent biological activities toward several chronic ailments by upregulating a number of antioxidant enzymes (e.g., SOD, CAT, GSH, etc.), inhibiting anti-apoptotic genes (e.g., TRAIL, XIAP, survivin, etc.), modulating transcription factors (e.g., NF-κB, STAT3, etc.) blocking inflammatory biomarkers (e.g., NO, IL-1β, IL-6, TNF-α, etc.), monitoring cell cycle synchronizing genes (e.g., p53, cyclins, CDKs, etc.), and so forth. Several preclinical studies have confirmed its excellent therapeutic activities against malicious diseases like cancer, obesity, heart diseases, Alzheimer's, and so forth. This review presents an overview of embelin, its therapeutic prospective, and the molecular targets in different chronic diseases.
Collapse
Affiliation(s)
- Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
24
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
25
|
Kumar A, Harsha C, Parama D, Girisa S, Daimary UD, Mao X, Kunnumakkara AB. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases. Phytother Res 2021; 35:6768-6801. [PMID: 34498308 DOI: 10.1002/ptr.7264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/16/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
26
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
27
|
Girisa S, Henamayee S, Parama D, Rana V, Dutta U, Kunnumakkara AB. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. MOLECULAR BIOMEDICINE 2021; 2:21. [PMID: 35006466 PMCID: PMC8607382 DOI: 10.1186/s43556-021-00035-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the lethal diseases that arise due to the molecular alterations in the cell. One of those alterations associated with cancer corresponds to differential expression of Farnesoid X receptor (FXR), a nuclear receptor regulating bile, cholesterol homeostasis, lipid, and glucose metabolism. FXR is known to regulate several diseases, including cancer and cardiovascular diseases, the two highly reported causes of mortality globally. Recent studies have shown the association of FXR overexpression with cancer development and progression in different types of cancers of breast, lung, pancreas, and oesophagus. It has also been associated with tissue-specific and cell-specific roles in various cancers. It has been shown to modulate several cell-signalling pathways such as EGFR/ERK, NF-κB, p38/MAPK, PI3K/AKT, Wnt/β-catenin, and JAK/STAT along with their targets such as caspases, MMPs, cyclins; tumour suppressor proteins like p53, C/EBPβ, and p-Rb; various cytokines; EMT markers; and many more. Therefore, FXR has high potential as novel biomarkers for the diagnosis, prognosis, and therapy of cancer. Thus, the present review focuses on the diverse role of FXR in different cancers and its agonists and antagonists.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahu Henamayee
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Dey Parama
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Varsha Rana
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam, 781001, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
28
|
Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73:1016-1044. [PMID: 34170599 DOI: 10.1002/iub.2522] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Queen Saikia
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
29
|
Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin Modulates Neuropathic Pain through the Possible Involvement of Serotonergic 5-HT1A Receptor Pathway in CCI-Induced Neuropathic Pain Mice Model. Molecules 2021; 26:3677. [PMID: 34208700 PMCID: PMC8234694 DOI: 10.3390/molecules26123677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardamonin, a naturally occurring chalcone isolated from Alpinia species has shown to possess strong anti-inflammatory and anti-nociceptive activities. Previous studies have demonstrated that cardamonin exerts antihyperalgesic and antiallodynic properties in chronic constriction injury (CCI)-induced neuropathic pain animal model. However, the mechanisms underlying cardamonin's effect have yet to be fully understood. The present study aims to investigate the involvement of the serotonergic system in cardamonin induced antihyperalgesic and antiallodynic effects in CCI-induced neuropathic pain mice model. The neuropathic pain symptoms in the CCI mice model were assessed using Hargreaves Plantar test and von-Frey filament test on day 14 post-surgery. Central depletion of serotonin along the descending serotonergic pathway was done using ρ-chlorophenylalanine (PCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis for four consecutive days before cardamonin treatment, and was found to reverse the antihyperalgesic and antiallodynic effect produced by cardamonin. Pretreatment of the mice with several 5-HT receptor subtypes antagonists: methiothepin (5-HT1/6/77 receptor antagonist, 0.1 mg/kg), WAY 100635 (5-HT1A receptor antagonist, 1 mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5 mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3 mg/kg), and ondansetron (5-HT3 receptor antagonist, 0.5 mg/kg) were shown to abolish the effect of cardamonin induced antihyperalgesic and antiallodynic effects. Further evaluation of the 5-HT1A receptor subtype protein expressions reveals that cardamonin significantly upregulated its expression in the brainstem and spinal cord. Our results suggest that the serotonergic pathway is essential for cardamonin to exert its antineuropathic effect in CCI mice through the involvement of the 5-HT1A receptor subtype in the central nervous system.
Collapse
Affiliation(s)
- Nur Khalisah Kaswan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Noor Aishah Binti Mohammed Izham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Tengku Azam Shah Tengku Mohamad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
| | - Enoch Kumar Perimal
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.K.K.); (N.A.B.M.I.); (T.A.S.T.M.); (M.R.S.)
- Centre of Excellence for Nanoscale BioPhotonics, Australian Research Council, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
30
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|