1
|
Chasák J, Janicki I, Brulíková L. The Liebeskind-Srogl cross-coupling reaction towards the synthesis of biologically active compounds. Eur J Med Chem 2025; 290:117526. [PMID: 40184777 DOI: 10.1016/j.ejmech.2025.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
In this review, we emphasize the significance of the Liebeskind-Srogl cross-coupling reaction, a palladium-catalyzed process involving the reaction between a thioester and a boronic acid. This reaction has emerged as a fundamental technique in synthetic methodologies aimed at the development of biologically active compounds. The Liebeskind-Srogl cross-coupling method has become an essential approach in chemistry, facilitating the diversification of complex structures that would be significantly more challenging to synthesize through alternative approaches. In this review, we aim to outline the numerous possibilities for preparing a wide range of derivatives, each with notable biological potential.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Ignacy Janicki
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Rangaraj S, Agarwal A, Banerjee S. Bird's Eye View on Mycobacterium tuberculosis-HIV Coinfection: Understanding the Molecular Synergism, Challenges, and New Approaches to Therapeutics. ACS Infect Dis 2025. [PMID: 40229972 DOI: 10.1021/acsinfecdis.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the most common secondary infection in the Human Immunodeficiency Virus (HIV) infected population, accounting for more than one-fourth of deaths in people living with HIV (PLWH). Reciprocally, HIV infection increases the susceptibility to primary TB or reactivation of latent TB by several folds. The synergistic interactions between M.tb and HIV not only potentiate their deleterious impact but also complicate the clinical management of both the diseases. M.tb-HIV coinfected patients have a high risk of failure of accurate diagnosis, treatment inefficiency for both TB and HIV, concurrent nontuberculous mycobacterial infections, other comorbidities such as diabetes mellitus, severe cytotoxicity due to drug overburden, and immune reconstitution inflammatory syndrome (IRIS). The need of the hour is to understand M.tb-HIV coinfection biology and their collective impact on the host immunocompetence and to think of out-of-the-box treatment perspectives, including host-directed therapy under the rising view of homeostatic medicines. This review aims to highlight the molecular players, both from the pathogens and host, that facilitate the synergistic interactions and host-associated proteins/enzymes regulating immunometabolism, underlining potential targets for designing and screening chemical inhibitors to reduce the burden of both pathogens concomitantly during M.tb-HIV coinfection. To appreciate the necessity of revisiting therapeutic approaches and research priorities, we provide a glimpse of anti-TB and antiretroviral drug-drug interactions, project the gaps in our understanding of coinfection biology, and also enlist some key research initiatives that will help us deal with the synergistic epidemic of M.tb-HIV coinfection.
Collapse
Affiliation(s)
- Siranjeevi Rangaraj
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
3
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Aekwattanaphol N, Das SC, Khadka P, Nakpheng T, Ali Khumaini Mudhar Bintang M, Srichana T. Development of a proliposomal pretomanid dry powder inhaler as a novel alternative approach for combating pulmonary tuberculosis. Int J Pharm 2024; 664:124608. [PMID: 39163929 DOI: 10.1016/j.ijpharm.2024.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) continue as public health concerns. Inhaled drug therapy for TB has substantial benefits in combating the causal agent of TB (Mycobacterium tuberculosis). Pretomanid is a promising candidate in an optional combined regimen for XDR-TB. Pretomanid has demonstrated high potency against M. tuberculosis in both the active and latent phases. Conventional spray drying was used to formulate pretomanid as dry powder inhalers (DPIs) for deep lung delivery using a proliposomal system with a trehalose coarse excipient to enhance the drug solubility. Co-spray drying with L-leucine protected hygroscopic trehalose in formulations and improved powder aerosolization. Higher amounts of L-leucine (40-50 % w/w) resulted in the formation of mesoporous particles with high percentages of drug content and entrapment efficiency. The aerosolized powders demonstrated both geometric and median aerodynamic diameters < 5 µm with > 90 % emitted dose and > 50 % fine particle fraction. Upon reconstitution in simulated physiological fluid, the proliposomes completely converted to liposomes, exhibiting suitable particle sizes (130-300 nm) with stable colloids and improving drug solubility, leading to higher drug dissolution compared to the drug alone. Inhalable pretomanid showed higher antimycobacterial activity than pretomanid alone. The formulations were safe for all broncho-epithelial cell lines and alveolar macrophages, thus indicating their potential suitability for DPIs targeting pulmonary TB.
Collapse
Affiliation(s)
- Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Prakash Khadka
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
5
|
Radu AF, Bungau SG, Corb Aron RA, Tarce AG, Bodog R, Bodog TM, Radu A. Deciphering the Intricate Interplay in the Framework of Antibiotic-Drug Interactions: A Narrative Review. Antibiotics (Basel) 2024; 13:938. [PMID: 39452205 PMCID: PMC11505481 DOI: 10.3390/antibiotics13100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Drug interactions are a significant and integral part of the concept of medication-related adverse events, whether referring to potential interactions or those currently observed in real-world conditions. The high global consumption of antibiotics and their pharmacokinetic and pharmacodynamic mechanisms make antibiotic-drug interactions a key element that requires continuous study due to their clinical relevance. In the present work, the current state of knowledge on antibiotic-drug interactions, which are less studied than other drug-drug interactions despite their frequent use in acute settings, has been consolidated and updated. The focus was on the interactions of the commonly used antibiotics in clinical practice, on the characteristics of the geriatric population susceptible to interactions, and on the impact of online drug interaction checkers. Additionally, strategies for optimizing the management of these interactions, including spacing out administrations, monitoring, or avoiding certain combinations, are suggested. Sustained research and careful monitoring are critical for improving antibiotic safety and efficacy, especially in susceptible populations, to enhance precision in managing antibiotic-drug interactions.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (R.B.); (T.M.B.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (R.B.); (T.M.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ruxandra Bodog
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (R.B.); (T.M.B.)
| | - Teodora Maria Bodog
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (R.B.); (T.M.B.)
| | - Ada Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (A.-F.R.); (R.B.); (T.M.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
6
|
Banoo S, Yadav Y, Tyagi R, Manna A, Sagar R. Recent efforts in the development of glycoconjugate vaccine and available treatment for tuberculosis. Bioorg Chem 2024; 150:107610. [PMID: 38991488 DOI: 10.1016/j.bioorg.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.
Collapse
Affiliation(s)
- Sajida Banoo
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arunava Manna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Ahmad Khosravi N, Sirous M, Khosravi A, Saki M. A Narrative Review of Bedaquiline and Delamanid: New Arsenals Against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. J Clin Lab Anal 2024; 38:e25091. [PMID: 39431709 PMCID: PMC11492330 DOI: 10.1002/jcla.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The treatment of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is a formidable challenge. Treatment of MDR- and XDR-TB using bedaquiline (BDQ) and delamanid (DLM), two newly introduced medications, is steadily increasing. This narrative review aimed to present a concise overview of the existing information regarding BDQ and DLM, and elucidate their antimicrobial characteristics, resistance mechanisms, synergism with other drugs, and side effects. METHODS To collect the required information about the antimicrobial properties, a search for scientific evidence from the Scopus, PubMed, and Embase databases was performed, and all recently published articles up to May 2024 were considered. RESULTS BDQ had potent antimicrobial effects on various types of nontuberculous mycobacteria (NTM), including rapid-growing and slow-growing species, and MDR/XDR Mycobacterium tuberculosis. The mechanisms of BDQ resistance in M. tuberculosis primarily involve mutations in three genes: atpE, mmpR (Rv0678) and pepQ. BDQ may have synergistic effects when combined with DLM, pyrazinamide, and pretomanid/linezolid. BDQ has a low incidence of side effects. The use of BDQ may prolong the QTc interval. Similarly, DLM showed potent antimicrobial effects on NTM and MDR/XDR M. tuberculosis. The main resistance mechanisms to DLM are induced by mutations in fbiA, fbiB, fbiC, fgd1, and ddn genes. The DLM had synergistic effects with BDQ and moxifloxacin. The DLM also has few side effects in some patients including QTc prolongation. CONCLUSION BDQ and DLM are suitable antibiotics with few side effects for the treatment of MDR/XDR-TB. These antibiotics have synergistic effects when combined with other antituberculosis drugs.
Collapse
Affiliation(s)
- Nazanin Ahmad Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mehrandokht Sirous
- Department of Microbiology and Parasitology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
8
|
Bark CM, Boom WH, Furin JJ. More Tailored Approaches to Tuberculosis Treatment and Prevention. Annu Rev Med 2024; 75:177-188. [PMID: 37983385 DOI: 10.1146/annurev-med-100622-024848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recent advances in the treatment of tuberculosis (TB) have led to improvements unprecedented in our lifetime. Decades of research in developing new drugs, especially for multidrug-resistant TB, have created not only multiple new antituberculous agents but also a new approach to development and treatment, with a focus on maximizing the benefit to the individual patient. Prevention of TB disease has also been improved and recognized as a critical component of global TB control. While the momentum is positive, it will take continued investment at all levels, especially training of new dedicated TB researchers and advocates around the world, to maintain this progress.
Collapse
Affiliation(s)
- Charles M Bark
- Division of Infectious Diseases, MetroHealth Medical Center, Cleveland, Ohio, USA;
| | - W Henry Boom
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jennifer J Furin
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Rodríguez-Fernández P, Botella L, Cavet JS, Domínguez J, Gutierrez MG, Suckling CJ, Scott FJ, Tabernero L. MptpB Inhibitor Improves the Action of Antibiotics against Mycobacterium tuberculosis and Nontuberculous Mycobacterium avium Infections. ACS Infect Dis 2024; 10:170-183. [PMID: 38085851 PMCID: PMC10788870 DOI: 10.1021/acsinfecdis.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Treatment of Mycobacterium tuberculosis and Mycobacterium avium infections requires multiple drugs for long time periods. Mycobacterium protein-tyrosine-phosphatase B (MptpB) is a key M. tuberculosis virulence factor that subverts host antimicrobial activity to promote intracellular survival. Inhibition of MptpB reduces the infection burden in vivo and offers new opportunities to improve current treatments. Here, we demonstrate that M. avium produces an MptpB orthologue and that the MptpB inhibitor C13 reduces the M. avium infection burden in macrophages. Combining C13 with the antibiotics rifampicin or bedaquiline showed an additive effect, reducing intracellular infection of both M. tuberculosis and M. avium by 50%, compared to monotreatment with antibiotics alone. This additive effect was not observed with pretomanid. Combining C13 with the minor groove-binding compounds S-MGB-362 and S-MGB-363 also reduced the M. tuberculosis intracellular burden. Similar additive effects of C13 and antibiotics were confirmed in vivo using Galleria mellonella infections. We demonstrate that the reduced mycobacterial burden in macrophages observed with C13 treatments is due to the increased trafficking to lysosomes.
Collapse
Affiliation(s)
- Pablo Rodríguez-Fernández
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health
Science Centre, M13 9PT Manchester, U.K.
| | - Laure Botella
- Host
Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, NW1 1AT London, U.K.
| | - Jennifer S. Cavet
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health
Science Centre, M13 9PT Manchester, U.K.
- Lydia
Becker Institute for Immunology and Inflammation, University of Manchester, M13 9PT Manchester, U.K.
| | - Jose Domínguez
- Institut
d’Investigació Germans Trias i Pujol, CIBER Enfermedades
Respiratorias (CIBERES), Universitat Autònoma
de Barcelona, 08916 Barcelona, Spain
| | - Maximiliano G. Gutierrez
- Host
Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, NW1 1AT London, U.K.
| | - Colin J. Suckling
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, G1 1XL Glasgow, U.K.
| | - Fraser J. Scott
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, G1 1XL Glasgow, U.K.
| | - Lydia Tabernero
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health
Science Centre, M13 9PT Manchester, U.K.
- Lydia
Becker Institute for Immunology and Inflammation, University of Manchester, M13 9PT Manchester, U.K.
| |
Collapse
|
10
|
Mancuso G, Midiri A, De Gaetano S, Ponzo E, Biondo C. Tackling Drug-Resistant Tuberculosis: New Challenges from the Old Pathogen Mycobacterium tuberculosis. Microorganisms 2023; 11:2277. [PMID: 37764122 PMCID: PMC10537529 DOI: 10.3390/microorganisms11092277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics have played a crucial role in the reduction in the incidence of TB globally as evidenced by the fact that before the mid-20th century, the mortality rate within five years of the onset of the disease was 50%. The use of antibiotics has eliminated TB as a devastating disease, but the challenge of resistance to anti-TB drugs, which had already been described at the time of the introduction of streptomycin, has become a major global issue in disease management. Mismanagement of multidrug-resistant tuberculosis (MDR-TB) cases, resulting from intermittent drug use, prescription errors, and non-compliance of patients, has been identified as a critical risk factor for the development of extensively drug-resistant tuberculosis (XDR-TB). Antimicrobial resistance (AMR) in TB is a multi-factorial, complex problem of microbes evolving to escape antibiotics, the gradual decline in antibiotic development, and different economic and social conditions. In this review, we summarize recent advances in our understanding of how Mycobacterium tuberculosis evolves drug resistance. We also highlight the importance of developing shorter regimens that rapidly reach bacteria in diverse host environments, eradicating all mycobacterial populations and preventing the evolution of drug resistance. Lastly, we also emphasize that the current burden of this ancient disease is driven by a combination of complex interactions between mycobacterial and host factors, and that only a holistic approach that effectively addresses all the critical issues associated with drug resistance will limit the further spread of drug-resistant strains throughout the community.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycobacteriology Unit, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.D.G.); (E.P.)
| |
Collapse
|
11
|
Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics 2023; 15:pharmaceutics15020393. [PMID: 36839715 PMCID: PMC9964171 DOI: 10.3390/pharmaceutics15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is currently the second deadliest infectious disease. Existing antitubercular therapies are long, complex, and have severe side effects that result in low patient compliance. In this context, nanosized drug delivery systems (DDSs) have the potential to optimize the treatment's efficiency while reducing its toxicity. Hundreds of publications illustrate the growing interest in this field. In this review, the main challenges related to the use of drug nanocarriers to fight TB are overviewed. Relevant publications regarding DDSs for the treatment of TB are classified according to the encapsulated drugs, from first-line to second-line drugs. The physicochemical and biological properties of the investigated formulations are listed. DDSs could simultaneously (i) optimize the therapy's antibacterial effects; (ii) reduce the doses; (iii) reduce the posology; (iv) diminish the toxicity; and as a global result, (v) mitigate the emergence of resistant strains. Moreover, we highlight that host-directed therapy using nanoparticles (NPs) is a recent promising trend. Although the research on nanosized DDSs for TB treatment is expanding, clinical applications have yet to be developed. Most studies are only dedicated to the development of new formulations, without the in vivo proof of concept. In the near future, it is expected that NPs prepared by "green" scalable methods, with intrinsic antibacterial properties and capable of co-encapsulating synergistic drugs, may find applications to fight TB.
Collapse
|