1
|
Zhang M, Li X, Wang X, Jiang S, Zhang J, Sun M, Zhou Z, Zhang J, Li M, Lv Y, Qi E, Tian Z, Zhu H, Zhang X, Zhao X, Xu C, Lübberstedt T, Zhang X, Yang X, Zhou C, Liu H. Modulation of lignin and anthocyanin homeostasis by GTP cyclohydrolase1 in maize. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40154978 DOI: 10.1111/pbi.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Maize is a key biomass resource with wide agricultural applications. Anthocyanins, potent antioxidants, offer health benefits like reducing oxidative stress. The biosynthesis of anthocyanins competes with that of lignin for shared metabolic precursors, which can lead to trade-offs in plant growth and feed quality. Higher lignin content can decrease silage digestibility, posing challenges for livestock feed. The maize brown midrib 6 (bm6) mutant, known for reduced lignin, has an unclear genetic basis. Here, we identify ZmGCH1 as the candidate gene for bm6 through fine mapping. Mutations in ZmGCH1 shift precursors from lignin to anthocyanin biosynthesis. Furthermore, we show that ZmGCH1 interacts with ZmPEBP15 to modulate chalcone synthase activity, thereby stabilizing the allocation of precursors between lignin and anthocyanin pathways. To evaluate the practical implications of our findings, we introduced the bm6 mutation into Zhengdan958 and Xianyu335. In vitro rumen digestion assays confirmed that the introduction of the bm6 mutation significantly improved silage digestibility. This discovery not only holds great potential for enhancing silage digestibility but also provides a broader strategy for optimizing maize production to better meet the increasing demands of both the food and livestock feed.
Collapse
Affiliation(s)
- Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaohan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingfei Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zixian Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jinxiao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanxiao Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Enlong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziang Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongjie Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hongjun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| |
Collapse
|
2
|
Tian Y, Gao Y, Turumtay H, Turumtay EA, Chai YN, Choudhary H, Park JH, Wu CY, De Ben CM, Dalton J, Louie KB, Harwood T, Chin D, Vuu KM, Bowen BP, Shih PM, Baidoo EEK, Northen TR, Simmons BA, Hutmacher R, Atim J, Putnam DH, Scown CD, Mortimer JC, Scheller HV, Eudes A. Engineered reduction of S-adenosylmethionine alters lignin in sorghum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:128. [PMID: 39407217 PMCID: PMC11481400 DOI: 10.1186/s13068-024-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue. For example, previous work showed that heterologous expression of a coliphage S-adenosylmethionine hydrolase (AdoMetase) was an effective approach to reduce lignin in the model plant Arabidopsis. The efficacy of this engineering strategy remains to be evaluated in bioenergy crops. RESULTS We studied the impact of expressing AdoMetase on lignin synthesis in sorghum (Sorghum bicolor L. Moench). Lignin content, monomer composition, and size, as well as biomass saccharification efficiency were determined in transgenic sorghum lines. The transcriptome and metabolome were analyzed in stems at three developmental stages. Plant growth and biomass composition was further evaluated under field conditions. Results evidenced that lignin was reduced by 18% in the best transgenic line, presumably due to reduced activity of the S-adenosylmethionine-dependent O-methyltransferases involved in lignin synthesis. The modified sorghum features altered lignin monomer composition and increased lignin molecular weights. The degree of methylation of glucuronic acid on xylan was reduced. These changes enabled a ~20% increase in glucose yield after biomass pretreatment and saccharification compared to wild type. RNA-seq and untargeted metabolomic analyses evidenced some pleiotropic effects associated with AdoMetase expression. The transgenic sorghum showed developmental delay and reduced biomass yields at harvest, especially under field growing conditions. CONCLUSIONS The expression of AdoMetase represents an effective lignin engineering approach in sorghum. However, considering that this strategy potentially impacts multiple S-adenosylmethionine-dependent methyltransferases, adequate promoters for fine-tuning AdoMetase expression will be needed to mitigate yield penalty.
Collapse
Affiliation(s)
- Yang Tian
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
| | - Yu Gao
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
| | - Halbay Turumtay
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Department of Energy System Engineering, Karadeniz Technical University, 61830, Trabzon, Turkey
| | - Emine Akyuz Turumtay
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Yen Ning Chai
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Joon-Hyun Park
- Forage Genetics International, West Salem, WI, 54669, USA
| | - Chuan-Yin Wu
- Forage Genetics International, West Salem, WI, 54669, USA
| | - Christopher M De Ben
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Jutta Dalton
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Harwood
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dylan Chin
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Rausser College of Natural Resources, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Khanh M Vuu
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick M Shih
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Hutmacher
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- University of California, Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Jackie Atim
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- University of California, Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Daniel H Putnam
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - Corinne D Scown
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Energy & Biosciences Institute, University of California-Berkeley, Berkeley, CA, 94720, USA
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 978R4468, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
4
|
Umezawa T. Metabolic engineering of Oryza sativa for lignin augmentation and structural simplification. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:89-101. [PMID: 39463768 PMCID: PMC11500570 DOI: 10.5511/plantbiotechnology.24.0131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 10/29/2024]
Abstract
The sustainable production and utilization of lignocellulose biomass are indispensable for establishing sustainable societies. Trees and large-sized grasses are the major sources of lignocellulose biomass, while large-sized grasses greatly surpass trees in terms of lignocellulose biomass productivity. With an overall aim to improve lignocellulose usability, it is important to increase the lignin content and simplify lignin structures in biomass plants via lignin metabolic engineering. Rice (Oryza sativa) is not only a representative and important grass crop, but also is a model for large-sized grasses in biotechnology. This review outlines progress in lignin metabolic engineering in grasses, mainly rice, including characterization of the lignocellulose properties, the augmentation of lignin content and the simplification of lignin structures. These findings have broad applicability for the metabolic engineering of lignin in large-sized grass biomass plants.
Collapse
Affiliation(s)
- Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University
| |
Collapse
|
5
|
Yoshioka K, Kim H, Lu F, De Ridder N, Vanholme R, Kajita S, Boerjan W, Ralph J. Hydroxycinnamaldehyde-derived benzofuran components in lignins. PLANT PHYSIOLOGY 2024; 194:1370-1382. [PMID: 37773018 DOI: 10.1093/plphys/kiad514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Lignin is an abundant polymer in plant secondary cell walls. Prototypical lignins derive from the polymerization of monolignols (hydroxycinnamyl alcohols), mainly coniferyl and sinapyl alcohol, via combinatorial radical coupling reactions and primarily via the endwise coupling of a monomer with the phenolic end of the growing polymer. Hydroxycinnamaldehyde units have long been recognized as minor components of lignins. In plants deficient in cinnamyl alcohol dehydrogenase, the last enzyme in the monolignol biosynthesis pathway that reduces hydroxycinnamaldehydes to monolignols, chain-incorporated aldehyde unit levels are elevated. The nature and relative levels of aldehyde components in lignins can be determined from their distinct and dispersed correlations in 2D 1H-13C-correlated nuclear magnetic resonance (NMR) spectra. We recently became aware of aldehyde NMR peaks, well resolved from others, that had been overlooked. NMR of isolated low-molecular-weight oligomers from biomimetic radical coupling reactions involving coniferaldehyde revealed that the correlation peaks belonged to hydroxycinnamaldehyde-derived benzofuran moieties. Coniferaldehyde 8-5-coupling initially produces the expected phenylcoumaran structures, but the derived phenolic radicals undergo preferential disproportionation rather than radical coupling to extend the growing polymer. As a result, the hydroxycinnamaldehyde-derived phenylcoumaran units are difficult to detect in lignins, but the benzofurans are now readily observed by their distinct and dispersed correlations in the aldehyde region of NMR spectra from any lignin or monolignol dehydrogenation polymer. Hydroxycinnamaldehydes that are coupled to coniferaldehyde can be distinguished from those coupled with a generic guaiacyl end-unit. These benzofuran peaks may now be annotated and reported and their structural ramifications further studied.
Collapse
Affiliation(s)
- Koichi Yoshioka
- The US Department of Energy's Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53726, USA
- The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Hoon Kim
- The US Department of Energy's Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53726, USA
- The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Fachuang Lu
- The US Department of Energy's Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53726, USA
- The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - John Ralph
- The US Department of Energy's Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53726, USA
- The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
6
|
Kolkman JM, Moreta DE, Repka A, Bradbury P, Nelson RJ. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. THE PLANT GENOME 2023; 16:e20278. [PMID: 36533711 DOI: 10.1002/tpg2.20278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 05/10/2023]
Abstract
Brown midrib (BMR) maize (Zea mays L.) harbors mutations that result in lower lignin levels and higher feed digestibility, making it a desirable silage market class for ruminant nutrition. Northern leaf blight (NLB) epidemics in upstate New York highlighted the disease susceptibility of commercially grown BMR maize hybrids. We found the bm1, bm2, bm3, and bm4 mutants in a W64A genetic background to be more susceptible to foliar fungal (NLB, gray leaf spot [GLS], and anthracnose leaf blight [ALB]) and bacterial (Stewart's wilt) diseases. The bm1, bm2, and bm3 mutants showed enhanced susceptibility to anthracnose stalk rot (ASR), and the bm1 and bm3 mutants were more susceptible to Gibberella ear rot (GER). Colocalization of quantitative trait loci (QTL) and correlations between stalk strength and disease traits in recombinant inbred line families suggest possible pleiotropies. The role of lignin in plant defense was explored using high-resolution, genome-wide association analysis for resistance to NLB in the Goodman diversity panel. Association analysis identified 100 single and clustered single-nucleotide polymorphism (SNP) associations for resistance to NLB but did not implicate natural functional variation at bm1-bm5. Strong associations implicated a suite of diverse candidate genes including lignin-related genes such as a β-glucosidase gene cluster, hct11, knox1, knox2, zim36, lbd35, CASP-like protein 8, and xat3. The candidate genes are targets for breeding quantitative resistance to NLB in maize for use in silage and nonsilage purposes.
Collapse
Affiliation(s)
- Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Danilo E Moreta
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ace Repka
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Rebecca J Nelson
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Esposito S, Taranto F, Vitale P, Ficco DBM, Colecchia SA, Stevanato P, De Vita P. Unlocking the molecular basis of wheat straw composition and morphological traits through multi-locus GWAS. BMC PLANT BIOLOGY 2022; 22:519. [PMID: 36344939 PMCID: PMC9641881 DOI: 10.1186/s12870-022-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition. RESULTS Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H2-dependent PCR; rhAMP). CONCLUSIONS The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.
Collapse
Affiliation(s)
- Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, (CNR-IBBR), 70126 Bari, Italy
| | - Paolo Vitale
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, 71122 Foggia, Italy
| | - Donatella Bianca Maria Ficco
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Salvatore Antonio Colecchia
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Padova, Legnaro Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122 Foggia, Italy
| |
Collapse
|
8
|
Landoni M, Cassani E, Ghidoli M, Colombo F, Sangiorgio S, Papa G, Adani F, Pilu R. Brachytic2 mutation is able to counteract the main pleiotropic effects of brown midrib3 mutant in maize. Sci Rep 2022; 12:2446. [PMID: 35165340 PMCID: PMC8844417 DOI: 10.1038/s41598-022-06428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Maize is the basis of nutrition of domesticated herbivores and one of the most promising energy crops. The presence of lignin in the cell wall, tightly associated to carbohydrates, prevents the physical access of enzymes such as cellulase, limiting the carbohydrate degradability and consequently the energy value. To increase the utilization of the biomass cellulose content, the challenge of breeding programs is to lower or modify the lignin components. In maize several mutations are able to modify the lignin content and in particular the mutation in brown midrib3 (bm3) gene appeared as one of the most promising in breeding programs. Unfortunately this mutation has several negative pleiotropic effects on various important agronomic traits such as stay green, lodging and susceptibility to several infections.The maize Brachyitic 2 (br2) gene encodes for a putative protein involved in polar movement of auxins. br2 mutant plants are characterized by shortening of lower stalk internodes, unusual stalk strength and tolerance to wind lodging, darker leaves persisting longer in the active green state in comparison to wild type plants, suggesting a possible utilization of br2 plants to counteract the negative effects of the bm3 mutation. In this work, we report the generation and a preliminary characterization of the double mutant bm3 br2, suggesting the potential use of this new genetic material to increase biomass cellulose utilization.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Elena Cassani
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Martina Ghidoli
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Federico Colombo
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Stefano Sangiorgio
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Gabriella Papa
- DiSAA, Gruppo Ricicla, Biomass and Bioenergy Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Fabrizio Adani
- DiSAA, Gruppo Ricicla, Biomass and Bioenergy Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Roberto Pilu
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy. .,Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
9
|
Sorghum Brown Midrib19 ( Bmr19) Gene Links Lignin Biosynthesis to Folate Metabolism. Genes (Basel) 2021; 12:genes12050660. [PMID: 33924915 PMCID: PMC8146451 DOI: 10.3390/genes12050660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/02/2022] Open
Abstract
Genetic analysis of brown midrib sorghum (Sorghum bicolor) mutant lines assembled in our program has previously shown that the mutations fall into four allelic groups, bmr2, bmr6, bmr12 or bmr19. Causal genes for allelic groups bmr2, bmr6 and bmr12, have since been identified. In this report, we provide evidence for the nature of the bmr19 mutation. This was accomplished by introgressing each of the four bmr alleles into nine different genetic backgrounds. Polymorphisms from four resequenced bulks of sorghum introgression lines containing either mutation, relative to those of a resequenced bulk of the nine normal midrib recurrent parent lines, were used to locate their respective causal mutations. The analysis confirmed the previously reported causal mutations for bmr2 and bmr6 but failed in the case of bmr12-bulk due to a mixture of mutant alleles at the locus among members of that mutant bulk. In the bmr19-bulk, a common G → A mutation was found among all members in Sobic.001G535500. This gene encodes a putative folylpolyglutamate synthase with high homology to maize Bm4. The brown midrib phenotype co-segregated with this point mutation in two separate F2 populations. Furthermore, an additional variant allele at this locus obtained from a TILLING population also showed a brown midrib phenotype, confirming this locus as Bmr19.
Collapse
|
10
|
Liu X, Van Acker R, Voorend W, Pallidis A, Goeminne G, Pollier J, Morreel K, Kim H, Muylle H, Bosio M, Ralph J, Vanholme R, Boerjan W. Rewired phenolic metabolism and improved saccharification efficiency of a Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2) mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1240-1257. [PMID: 33258151 DOI: 10.1111/tpj.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass is an abundant byproduct from cereal crops that can potentially be valorized as a feedstock to produce biomaterials. Zea mays CINNAMYL ALCOHOL DEHYDROGENASE 2 (ZmCAD2) is involved in lignification, and is a promising target to improve the cellulose-to-glucose conversion of maize stover. Here, we analyzed a field-grown zmcad2 Mutator transposon insertional mutant. Zmcad2 mutant plants had an 18% lower Klason lignin content, whereas their cellulose content was similar to that of control lines. The lignin in zmcad2 mutants contained increased levels of hydroxycinnamaldehydes, i.e. the substrates of ZmCAD2, ferulic acid and tricin. Ferulates decorating hemicelluloses were not altered. Phenolic profiling further revealed that hydroxycinnamaldehydes are partly converted into (dihydro)ferulic acid and sinapic acid and their derivatives in zmcad2 mutants. Syringyl lactic acid hexoside, a metabolic sink in CAD-deficient dicot trees, appeared not to be a sink in zmcad2 maize. The enzymatic cellulose-to-glucose conversion efficiency was determined after 10 different thermochemical pre-treatments. Zmcad2 yielded significantly higher conversions compared with controls for almost every pre-treatment. However, the relative increase in glucose yields after alkaline pre-treatment was not higher than the relative increase when no pre-treatment was applied, suggesting that the positive effect of the incorporation of hydroxycinnamaldehydes was leveled off by the negative effect of reduced p-coumarate levels in the cell wall. Taken together, our results reveal how phenolic metabolism is affected in CAD-deficient maize, and further support mutating CAD genes in cereal crops as a promising strategy to improve lignocellulosic biomass for sugar-platform biorefineries.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wannes Voorend
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas Pallidis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Hilde Muylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
11
|
Coomey JH, Sibout R, Hazen SP. Grass secondary cell walls, Brachypodium distachyon as a model for discovery. THE NEW PHYTOLOGIST 2020; 227:1649-1667. [PMID: 32285456 DOI: 10.1111/nph.16603] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
A key aspect of plant growth is the synthesis and deposition of cell walls. In specific tissues and cell types including xylem and fibre, a thick secondary wall comprised of cellulose, hemicellulose and lignin is deposited. Secondary cell walls provide a physical barrier that protects plants from pathogens, promotes tolerance to abiotic stresses and fortifies cells to withstand the forces associated with water transport and the physical weight of plant structures. Grasses have numerous cell wall features that are distinct from eudicots and other plants. Study of the model species Brachypodium distachyon as well as other grasses has revealed numerous features of the grass cell wall. These include the characterisation of xylosyl and arabinosyltransferases, a mixed-linkage glucan synthase and hydroxycinnamate acyltransferases. Perhaps the most fertile area for discovery has been the formation of lignins, including the identification of novel substrates and enzyme activities towards the synthesis of monolignols. Other enzymes function as polymerising agents or transferases that modify lignins and facilitate interactions with polysaccharides. The regulatory aspects of cell wall biosynthesis are largely overlapping with those of eudicots, but salient differences among species have been resolved that begin to identify the determinants that define grass cell walls.
Collapse
Affiliation(s)
- Joshua H Coomey
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Richard Sibout
- Biopolymères Interactions Assemblages, INRAE, UR BIA, F-44316, Nantes, France
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
12
|
Ferreira SS, Simões MS, Carvalho GG, de Lima LGA, Svartman RMDA, Cesarino I. The lignin toolbox of the model grass Setaria viridis. PLANT MOLECULAR BIOLOGY 2019; 101:235-255. [PMID: 31254267 DOI: 10.1007/s11103-019-00897-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/25/2019] [Indexed: 05/21/2023]
Abstract
The core set of biosynthetic genes potentially involved in developmental lignification was identified in the model C4 grass Setaria viridis. Lignin has been recognized as a major recalcitrant factor negatively affecting the processing of plant biomass into bioproducts. However, the efficient manipulation of lignin deposition in order to generate optimized crops for the biorefinery requires a fundamental knowledge of several aspects of lignin metabolism, including regulation, biosynthesis and polymerization. The current availability of an annotated genome for the model grass Setaria viridis allows the genome-wide characterization of genes involved in the metabolic pathway leading to the production of monolignols, the main building blocks of lignin. Here we performed a comprehensive study of monolignol biosynthetic genes as an initial step into the characterization of lignin metabolism in S. viridis. A total of 56 genes encoding bona fide enzymes catalyzing the consecutive ten steps of the monolignol biosynthetic pathway were identified in the S. viridis genome. A combination of comparative phylogenetic studies, high-throughput expression analysis and quantitative RT-PCR analysis was further employed to identify the family members potentially involved in developmental lignification. Accordingly, 14 genes clustered with genes from closely related species with a known function in lignification and showed an expression pattern that correlates with lignin deposition. These genes were considered the "core lignin toolbox" responsible for the constitutive, developmental lignification in S. viridis. These results provide the basis for further understanding lignin deposition in C4 grasses and will ultimately allow the validation of biotechnological strategies to produce crops with enhanced processing properties.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | - Gabriel Garon Carvalho
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | - Leydson Gabriel Alves de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil
| | | | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-900, Brazil.
| |
Collapse
|
13
|
Yuan W, Jiang T, Du K, Chen H, Cao Y, Xie J, Li M, Carr JP, Wu B, Fan Z, Zhou T. Maize phenylalanine ammonia-lyases contribute to resistance to Sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. MOLECULAR PLANT PATHOLOGY 2019; 20:1365-1378. [PMID: 31487111 PMCID: PMC6792131 DOI: 10.1111/mpp.12817] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia-lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA-responsive pathogenesis-related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription-coupled quantitative PCR and RNA-Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up-regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV-infected ZmPAL-silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA-mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV-induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tong Jiang
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Kaitong Du
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Hui Chen
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yanyong Cao
- Cereal Crops InstituteHenan Academy of Agricultural ScienceZhengzhou450002China
| | - Jipeng Xie
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Mengfei Li
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Boming Wu
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zaifeng Fan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tao Zhou
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
14
|
Belyy VA, Karmanov AP, Kocheva LS, Nekrasova PS, Kaneva MV, Lobov AN, Spirikhin LV. Comparative study of chemical and topological structure of macromolecules of lignins of birch (Betula verrucosa) and apple (Malus domestica) wood. Int J Biol Macromol 2019; 128:40-48. [DOI: 10.1016/j.ijbiomac.2019.01.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/31/2022]
|
15
|
Virlouvet L, El Hage F, Griveau Y, Jacquemot MP, Gineau E, Baldy A, Legay S, Horlow C, Combes V, Bauland C, Palafre C, Falque M, Moreau L, Coursol S, Méchin V, Reymond M. Water Deficit-Responsive QTLs for Cell Wall Degradability and Composition in Maize at Silage Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:488. [PMID: 31105719 PMCID: PMC6494970 DOI: 10.3389/fpls.2019.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and β-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.
Collapse
Affiliation(s)
- Laëtitia Virlouvet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fadi El Hage
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Yves Griveau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marie-Pierre Jacquemot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Emilie Gineau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aurélie Baldy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvain Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Christine Horlow
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Combes
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Bauland
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Palafre
- Unité Expérimentale du Maïs, INRA, Saint-Martin-de-Hinx, France
| | - Matthieu Falque
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurence Moreau
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Coursol
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Méchin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Matthieu Reymond
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
16
|
Daly P, McClellan C, Maluk M, Oakey H, Lapierre C, Waugh R, Stephens J, Marshall D, Barakate A, Tsuji Y, Goeminne G, Vanholme R, Boerjan W, Ralph J, Halpin C. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:594-607. [PMID: 30133138 PMCID: PMC6381794 DOI: 10.1111/pbi.13001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/18/2018] [Indexed: 05/12/2023]
Abstract
Caffeic acid O-methyltransferase (COMT), the lignin biosynthesis gene modified in many brown-midrib high-digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl-to-guaiacyl ratio was reduced by ~50%, the 5-hydroxyguaiacyl (5-OH-G) unit incorporated into lignin at 10--15-fold higher levels than normal, and the amount of p-coumaric acid ester-linked to cell walls was reduced by ~50%. No brown-midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown-midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.
Collapse
Affiliation(s)
- Paul Daly
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Present address:
Fungal PhysiologyWesterdijk Fungal Biodiversity Institute and Fungal Molecular PhysiologyUtrecht UniversityUtrechtThe Netherlands
| | - Christopher McClellan
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Marta Maluk
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Helena Oakey
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Faculty of SciencesSchool of Agriculture, Food and WineUniversity of AdelaideAdelaideAustralia
| | - Catherine Lapierre
- UMR1318 INRA‐AgroParistechIJPBUniversite Paris‐SaclayVersailles CedexFrance
| | - Robbie Waugh
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
| | | | - David Marshall
- Information and Computational SciencesJames Hutton InstituteDundeeUK
| | - Abdellah Barakate
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Yukiko Tsuji
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Geert Goeminne
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - John Ralph
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Claire Halpin
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| |
Collapse
|
17
|
de Vries L, Vanholme R, Van Acker R, De Meester B, Sundin L, Boerjan W. Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:257. [PMID: 30250509 PMCID: PMC6146604 DOI: 10.1186/s13068-018-1257-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lignocellulosic biomass, such as wood and straw, is an interesting feedstock for the production of fermentable sugars. However, mainly due to the presence of lignin, this type of biomass is recalcitrant to saccharification. In Arabidopsis, lignocellulosic biomass with a lower lignin content or with lignin with an increased fraction of guaiacyl (G) and 5-hydroxyguaiacyl (5H) units shows an increased saccharification efficiency. Here, we stacked these two traits and studied the effect on the saccharification efficiency and biomass yield, by combining either transaldolase (tra2), cinnamate 4-hydroxylase (c4h-3), or 4-coumarate:CoA ligase (4cl1-1) with caffeic acid O-methyltransferase (comt-1 or comt-4) mutants. RESULTS The three double mutants (tra2 comt-1, c4h-3 comt-4, and 4cl1-1 comt-4) had a decreased lignin amount and an increase in G and 5H units in the lignin polymer compared to wild-type (WT) plants. The tra2 comt-1 double mutant had a better saccharification efficiency compared to the parental lines when an acid or alkaline pretreatment was used. For the double mutants, c4h-3 comt-4 and 4cl1-1 comt-4, the saccharification efficiency was significantly higher compared to WT and its parental lines, independent of the pretreatment used. When no pretreatment was used, the saccharification efficiency increased even synergistically for these mutants. CONCLUSION Our results show that saccharification efficiency can be improved by combining two different mutant lignin traits, leading to plants with an even higher saccharification efficiency, without having a yield reduction of the primary inflorescence stem. This approach can help improve saccharification efficiency in bio-energy crops.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Lisa Sundin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
| |
Collapse
|
18
|
Bewg WP, Coleman HD. Cell wall composition and lignin biosynthetic gene expression along a developmental gradient in an Australian sugarcane cultivar. PeerJ 2017; 5:e4141. [PMID: 29230370 PMCID: PMC5721908 DOI: 10.7717/peerj.4141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Sugarcane bagasse is an abundant source of lignocellulosic material for bioethanol production. Utilisation of bagasse for biofuel production would be environmentally and economically beneficial, but the recalcitrance of lignin continues to provide a challenge. Further understanding of lignin production in specific cultivars will provide a basis for modification of genomes for the production of phenotypes with improved processing characteristics. Here we evaluated the expression profile of lignin biosynthetic genes and the cell wall composition along a developmental gradient in KQ228 sugarcane. The expression levels of nine lignin biosynthesis genes were quantified in five stem sections of increasing maturity and in root tissue. Two distinct expression patterns were seen. The first saw highest gene expression in the youngest tissue, with expression decreasing as tissue matured. The second pattern saw little to no change in transcription levels across the developmental gradient. Cell wall compositional analysis of the stem sections showed total lignin content to be significantly higher in more mature tissue than in the youngest section assessed. There were no changes in structural carbohydrates across developmental sections. These gene expression and cell wall compositional patterns can be used, along with other work in grasses, to inform biotechnological approaches to crop improvement for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- William P Bewg
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Heather D Coleman
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
| |
Collapse
|
19
|
Raffrenato E, Fievisohn R, Cotanch KW, Grant RJ, Chase LE, Van Amburgh ME. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J Dairy Sci 2017; 100:8119-8131. [PMID: 28780096 DOI: 10.3168/jds.2016-12364] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 06/05/2017] [Indexed: 11/19/2022]
Abstract
The objective of this study was to correlate in vitro and in vivo neutral detergent fiber (NDF) digestibility (NDFD) with the chemical composition of forages and specific chemical linkages, primarily ester- and ether-linked para-coumaric (pCA) and ferulic acids (FA) in forages fed to dairy cattle. The content of acid detergent lignin (ADL) and its relationship with NDF does not fully explain the observed variability in NDFD. The ferulic and p-coumaric acid linkages between ADL and cell wall polysaccharides, rather than the amount of ADL, might be a better predictor of NDFD. Twenty-three forages, including conventional and brown midrib corn silages and grasses at various stages of maturity were incubated in vitro for measurement of 24-h and 96-h NDFD. Undigested and digested residues were analyzed for NDF, acid detergent fiber (ADF), ADL, and Klason lignin (KL); ester- and ether-linked pCA and FA were determined in these fractions. To determine whether in vitro observations of ester- and ether-linked pCA and FA and digestibility were similar to in vivo observations, 3 corn silages selected for digestibility were fed to 6 ruminally fistulated cows for 3 wk in 3 iso-NDF diets. Intact samples and NDF and ADF residues of diet, rumen, and feces were analyzed for ester- and ether-linked pCA and FA. From the in vitro study, the phenolic acid content (total pCA and FA) was highest for corn silages, and overall the content of ester- and ether-linked pCA and FA in both NDF and ADF residues were correlated with NDF digestibility parameters, reflecting the competitive effect of these linkages on digestibility. Also, Klason lignin and ADL were negatively correlated with ether-linked ferulic acid on an NDF basis. Overall, esterified FA and esterified pCA were negatively correlated with all of the measured fiber fractions on both a dry matter and an NDF basis. The lignin content of the plant residues and chemical linkages explained most of the variation in both rate and extent of NDF digestion but not uniformly among forages, ranging from 56 to 99%. The results from the in vivo study were similar to the in vitro data, demonstrating the highest total-tract aNDF digestibility (70%; NDF analysis conducted with α-amylase and sodium sulfite) for cows fed the corn silage with the lowest ester- and ether-linked pCA content in the NDF fraction. In this study, digestibility of forage fiber was influenced by the linkages among lignin and the carbohydrate moieties, which vary by hybrid and species and most likely vary by the agronomic conditions under which the plant was grown.
Collapse
Affiliation(s)
- E Raffrenato
- Department of Animal Science, Cornell University, Ithaca, NY 14853; Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa 7600
| | - R Fievisohn
- William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - K W Cotanch
- William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - R J Grant
- William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - L E Chase
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - M E Van Amburgh
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
20
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew Chem Int Ed Engl 2016; 55:8164-215. [PMID: 27311348 PMCID: PMC6680216 DOI: 10.1002/anie.201510351] [Citation(s) in RCA: 823] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/28/2016] [Indexed: 12/23/2022]
Abstract
Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
Collapse
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Matthew T Clough
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, and Department of Biochemistry, University of Wisconsin, Madison, WI, 53726, USA.
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM. Wege zur Verwertung von Lignin: Fortschritte in der Biotechnik, der Bioraffination und der Katalyse. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510351] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Rinaldi
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ Großbritannien
| | - Robin Jastrzebski
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Matthew T. Clough
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - John Ralph
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, and Department of Biochemistry University of Wisconsin Madison WI 53726 USA
| | - Marco Kennema
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht Niederlande
| |
Collapse
|
22
|
Santiago R, Malvar RA, Barros-Rios J, Samayoa LF, Butrón A. Hydroxycinnamate Synthesis and Association with Mediterranean Corn Borer Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:539-51. [PMID: 26690311 DOI: 10.1021/acs.jafc.5b04862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Previous results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130. We aimed to co-localize genomic regions involved in hydroxycinnamate synthesis and resistance to MCB and to highlight the particular route for each hydroxycinnamate component in relation to the better known phenylpropanoid pathway. Seven quantitative trait loci (QTLs) for p-coumarate, two QTLs for ferulate, and seven QTLs for total diferulates explained 81.7, 26.9, and 57.8% of the genotypic variance, respectively. In relation to borer resistance, alleles for increased hydroxycinnamate content (affecting one or more hydroxycinnamate compounds) could be associated with favorable effects on stem resistance to MCB, particularly the putative role of p-coumarate in borer resistance.
Collapse
Affiliation(s)
- Rogelio Santiago
- Agrobiologı́a Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la Misión Biológica de Galicia (CSIC); Departamento Biologı́a Vegetal y Ciencias del Suelo, Facultad de Biologı́a, Universidad de Vigo , Campus As Lagoas Marcosende, 36310 Vigo, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC) , Apartado 28, 36080 Pontevedra, Spain
| | - Jaime Barros-Rios
- Department of Biological Sciences, University of North Texas , 1155 Union Circle #305220, Denton, Texas 76203, United States
| | | | - Ana Butrón
- Misión Biológica de Galicia (CSIC) , Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
23
|
Chateigner-Boutin AL, Ordaz-Ortiz JJ, Alvarado C, Bouchet B, Durand S, Verhertbruggen Y, Barrière Y, Saulnier L. Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation. FRONTIERS IN PLANT SCIENCE 2016; 7:1476. [PMID: 27746801 PMCID: PMC5043055 DOI: 10.3389/fpls.2016.01476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/16/2016] [Indexed: 05/19/2023]
Abstract
Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance. Many steps leading to the formation of grass xylans and their cross-linkages remain elusive. One explanation might originate from the fact that many studies were performed on lignified stem tissues. Pathways leading to lignins and feruloylated xylans share several steps, and lignin may impede the release and thus the quantification of ferulic acid. To overcome these difficulties, we used the pericarp of the maize B73 line as a model to study feruloylated xylan synthesis and crosslinking. Using Fourier-transform infra-red spectroscopy and biochemical analyses, we show that this tissue has a low lignin content and is composed of approximately 50% heteroxylans and approximately 5% ferulic acid. Our study shows that, to date, maize pericarp contains the highest level of ferulic acid reported in plant tissue. The detection of feruloylated xylans with a polyclonal antibody shows that the occurrence of these polysaccharides is developmentally regulated in maize grain. We used the genomic tools publicly available for the B73 line to study the expression of genes within families involved or suggested to be involved in the phenylpropanoid pathway, xylan formation, feruloylation and their oxidative crosslinking. Our analysis supports the hypothesis that the feruloylated moiety of xylans originated from feruloylCoA and is transferred by a member of the BAHD acyltransferase family. We propose candidate genes for functional characterization that could subsequently be targeted for grass crop breeding.
Collapse
Affiliation(s)
| | - José J. Ordaz-Ortiz
- BIA, INRANantes, France
- National Laboratory of Genomics for Biodiversity (Langebio-CINVESTAV), Mass Spectrometry and Metabolomics LabIrapuato, Mexico
| | | | | | | | | | | | | |
Collapse
|
24
|
Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD. RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:270. [PMID: 28031745 PMCID: PMC5168864 DOI: 10.1186/s13068-016-0683-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/06/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Sugarcane is a subtropical crop that produces large amounts of biomass annually. It is a key agricultural crop in many countries for the production of sugar and other products. Residual bagasse following sucrose extraction is currently underutilized and it has potential as a carbohydrate source for the production of biofuels. As with all lignocellulosic crops, lignin acts as a barrier to accessing the polysaccharides, and as such, is the focus of transgenic efforts. In this study, we used RNAi to individually reduce the expression of three key genes in the lignin biosynthetic pathway in sugarcane. These genes, caffeoyl-CoA O-methyltransferase (CCoAOMT), ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT), impact lignin content and/or composition. RESULTS For each RNAi construct, we selected three events for further analysis based on qRT-PCR results. For the CCoAOMT lines, there were no lines with a reduction in lignin content and only one line showed improved glucose release. For F5H, no lines had reduced lignin, but one line had a significant increase in glucose release. For COMT, one line had reduced lignin content, and this line and another released higher levels of glucose during enzymatic hydrolysis. Two of the lines with improved glucose release (F5H-2 and COMT-2) also had reduced S:G ratios. CONCLUSIONS Along with improvements in bagasse quality for the production of lignocellulosic-based fuels, there was only one line with reduction in juice sucrose extraction, and three lines with significantly improved sucrose production, providing evidence that the alteration of sugarcane for improved lignocellulosic ethanol production can be achieved without negatively impacting sugar production and perhaps even enhancing it.
Collapse
Affiliation(s)
- William P Bewg
- Queensland University of Technology, Brisbane, QLD 4000 Australia
| | | | - Wu Lan
- Department of Biological Systems Engineering, University of Wisconsin, Madison, WI USA ; US Department of Energy, Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726 USA
| | - John Ralph
- US Department of Energy, Great Lakes Bioenergy Research Center (GLBRC), Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726 USA ; Department of Biochemistry, University of Wisconsin, Madison, WI 53726 USA
| | | |
Collapse
|
25
|
Ho-Yue-Kuang S, Alvarado C, Antelme S, Bouchet B, Cézard L, Le Bris P, Legée F, Maia-Grondard A, Yoshinaga A, Saulnier L, Guillon F, Sibout R, Lapierre C, Chateigner-Boutin AL. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:227-37. [PMID: 26433202 PMCID: PMC4682429 DOI: 10.1093/jxb/erv446] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cereal crop by-products are a promising source of renewable raw material for the production of biofuel from lignocellulose. However, their enzymatic conversion to fermentable sugars is detrimentally affected by lignins. Here the characterization of the Brachypodium Bd5139 mutant provided with a single nucleotide mutation in the caffeic acid O-methyltransferase BdCOMT6 gene is reported. This BdCOMT6-deficient mutant displayed a moderately altered lignification in mature stems. The lignin-related BdCOMT6 gene was also found to be expressed in grains, and the alterations of Bd5139 grain lignins were found to mirror nicely those evidenced in stem lignins. The Bd5139 grains displayed similar size and composition to the control. Complementation experiments carried out by introducing the mutated gene into the AtCOMT1-deficient Arabidopsis mutant demonstrated that the mutated BdCOMT6 protein was still functional. Such a moderate down-regulation of lignin-related COMT enzyme reduced the straw recalcitrance to saccharification, without compromising the vegetative or reproductive development of the plant.
Collapse
Affiliation(s)
- Séverine Ho-Yue-Kuang
- INRA-UR1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France INRA-UMR1318, Institut Jean-Pierre Bourgin, F-78026 Versailles, France
| | - Camille Alvarado
- INRA-UR1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| | - Sébastien Antelme
- INRA-UMR1318, Institut Jean-Pierre Bourgin, F-78026 Versailles, France
| | - Brigitte Bouchet
- INRA-UR1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| | - Laurent Cézard
- INRA-UMR1318, Institut Jean-Pierre Bourgin, F-78026 Versailles, France
| | - Philippe Le Bris
- INRA-UMR1318, Institut Jean-Pierre Bourgin, F-78026 Versailles, France
| | - Frédéric Legée
- INRA-UMR1318, Institut Jean-Pierre Bourgin, F-78026 Versailles, France
| | | | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Luc Saulnier
- INRA-UR1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| | - Fabienne Guillon
- INRA-UR1268 Biopolymères, Interactions, Assemblages, F-44316 Nantes, France
| | - Richard Sibout
- INRA-UMR1318, Institut Jean-Pierre Bourgin, F-78026 Versailles, France
| | | | | |
Collapse
|
26
|
Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R. LACCASE5 is required for lignification of the Brachypodium distachyon Culm. PLANT PHYSIOLOGY 2015; 168:192-204. [PMID: 25755252 PMCID: PMC4424014 DOI: 10.1104/pp.114.255489] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
The oxidation of monolignols is a required step for lignin polymerization and deposition in cell walls. In dicots, both peroxidases and laccases are known to participate in this process. Here, we provide evidence that laccases are also involved in the lignification of Brachypodium distachyon, a model plant for temperate grasses. Transcript quantification data as well as in situ and immunolocalization experiments demonstrated that at least two laccases (LACCASE5 and LACCASE6) are present in lignifying tissues. A mutant with a misspliced LACCASE5 messenger RNA was identified in a targeting-induced local lesion in genome mutant collection. This mutant shows 10% decreased Klason lignin content and modification of the syringyl-to-guaiacyl units ratio. The amount of ferulic acid units ester linked to the mutant cell walls is increased by 40% when compared with control plants, while the amount of ferulic acid units ether linked to lignins is decreased. In addition, the mutant shows a higher saccharification efficiency. These results provide clear evidence that laccases are required for B. distachyon lignification and are promising targets to alleviate the recalcitrance of grass lignocelluloses.
Collapse
Affiliation(s)
- Yin Wang
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Oumaya Bouchabke-Coussa
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Philippe Lebris
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Sébastien Antelme
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Camille Soulhat
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Emilie Gineau
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Marion Dalmais
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Abdelafid Bendahmane
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Halima Morin
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Grégory Mouille
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Frédéric Legée
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Laurent Cézard
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Catherine Lapierre
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| | - Richard Sibout
- Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France (Y.W., O.B.-C., P.L., S.A., C.S., E.G., H.M., G.M., F.L., L.C., C.L., R.S.); andUnité de Recherche en Génomique Végétale, Université d'Evry Val d'Essonne, Institut National de la Recherche Agronomique, 91057 Evry cedex, France (M.D., A.B.)
| |
Collapse
|
27
|
Li L, Hill-Skinner S, Liu S, Beuchle D, Tang HM, Yeh CT, Nettleton D, Schnable PS. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:493-504. [PMID: 25495051 PMCID: PMC4329605 DOI: 10.1111/tpj.12745] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 05/02/2023]
Abstract
Mutations in the brown midrib4 (bm4) gene affect the accumulation and composition of lignin in maize. Fine-mapping analysis of bm4 narrowed the candidate region to an approximately 105 kb interval on chromosome 9 containing six genes. Only one of these six genes, GRMZM2G393334, showed decreased expression in mutants. At least four of 10 Mu-induced bm4 mutant alleles contain a Mu insertion in the GRMZM2G393334 gene. Based on these results, we concluded that GRMZM2G393334 is the bm4 gene. GRMZM2G393334 encodes a putative folylpolyglutamate synthase (FPGS), which functions in one-carbon (C1) metabolism to polyglutamylate substrates of folate-dependent enzymes. Yeast complementation experiments demonstrated that expression of the maize bm4 gene in FPGS-deficient met7 yeast is able to rescue the yeast mutant phenotype, thus demonstrating that bm4 encodes a functional FPGS. Consistent with earlier studies, bm4 mutants exhibit a modest decrease in lignin concentration and an overall increase in the S:G lignin ratio relative to wild-type. Orthologs of bm4 include at least one paralogous gene in maize and various homologs in other grasses and dicots. Discovery of the gene underlying the bm4 maize phenotype illustrates a role for FPGS in lignin biosynthesis.
Collapse
Affiliation(s)
- Li Li
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- College of Agronomy, Northwest Agriculture and Forestry University#3, Taicheng road, Yangling, Shaanxi, 712100, China
| | - Sarah Hill-Skinner
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Danielle Beuchle
- Department of Genetics, Development and Cell Biology, Iowa State University1210 Molecular Biology Building, Ames, IA 50011-3260, USA
| | - Ho Man Tang
- Department of Genetics, Development and Cell Biology, Iowa State University1210 Molecular Biology Building, Ames, IA 50011-3260, USA
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Dan Nettleton
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Department of Statistics, Iowa State University2115 Snedecor, Ames, IA, 50011, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Department of Genetics, Development and Cell Biology, Iowa State University1210 Molecular Biology Building, Ames, IA 50011-3260, USA
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- *
For correspondence (e-mail )
| |
Collapse
|
28
|
Méchin V, Laluc A, Legée F, Cézard L, Denoue D, Barrière Y, Lapierre C. Impact of the brown-midrib bm5 mutation on maize lignins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5102-7. [PMID: 24823698 DOI: 10.1021/jf5019998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We have investigated the impact of the brown-midrib bm5 mutation on lignins and on p-coumaric acid and ferulic acid ester-linked to maize (Zea mays L.) cell walls. Lignified stalks or plant aerial parts (without ears) collected at grain maturity were studied in three genetic backgrounds. Relative to the control, bm5 mutants displayed lower levels of lignins and of p-coumarate esters but increased levels of ferulate esters. Thioacidolysis revealed that bm5 lignins display an increased frequency of free-phenolic guaiacyl units. More importantly, thioacidolysis provided unusual amounts of 1,2,2-trithioethyl ethylguaiacol, a marker compound diagnostic for the incorporation of free ferulic acid into lignins by bis 8-O-4 cross-coupling. As the resulting acetal bonding pattern is a chemically labile branch point introduced in maize lignins by the bm5 mutation, this alteration is prone to facilitate the delignification pretreatments used in the cellulose-to-ethanol process.
Collapse
Affiliation(s)
- Valérie Méchin
- INRA, Institut Jean-Pierre Bourgin (IJPB), UMR1318, Saclay Plant Sciences, Route de St-Cyr, 78000 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen Y, Blanco M, Ji Q, Frei UK, Lübberstedt T. Extensive genetic diversity and low linkage disequilibrium within the COMT locus in maize exotic populations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:69-80. [PMID: 24656337 DOI: 10.1016/j.plantsci.2014.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
The caffeic acid 3-O-methytransferase (COMT) gene is a prime candidate for cell wall digestibility improvement based on the characterization of brown midrib-3 mutants. We compared the genetic diversity and linkage disequilibrium at this locus between exotic populations sampled within the Germplasm Enhancement of Maize (GEM) project and 70 inbred lines. In total, we investigated 55 exotic COMT alleles and discovered more than 400 polymorphisms in a 2.2 kb region with pairwise nucleotide diversity (π) up to 0.017, much higher than reported π values of various genes in inbred lines. The ratio of non-synonymous to synonymous SNPs was 3:1 in exotic populations, and significantly higher than the 1:1 ratio for inbred lines. Selection tests detected selection signature in this gene in both pools, but with different evolution patterns. The linkage disequilibrium decay in exotic populations was at least four times more rapid than for inbred lines with r²>0.1 persisting only up to 100 bp. In conclusion, the alleles sampled in the GEM Project offer a valuable genetic resource to broaden genetic variation for the COMT gene, and likely other genes, in inbred background. Moreover, the low linkage disequilibrium makes this material suitable for high resolution association analyses.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Michael Blanco
- USDA-ARS, Plant Introduction Research Unit, Ames, IA 50011, USA
| | - Qing Ji
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
30
|
Tang HM, Liu S, Hill-Skinner S, Wu W, Reed D, Yeh CT, Nettleton D, Schnable PS. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:380-92. [PMID: 24286468 PMCID: PMC4282534 DOI: 10.1111/tpj.12394] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/31/2013] [Accepted: 11/20/2013] [Indexed: 05/02/2023]
Abstract
The midribs of maize brown midrib (bm) mutants exhibit a reddish-brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down-regulated in bm2 mutant plants. Analyses of multiple Mu-induced bm2-Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a functional MTHFR. Quantitative RT-PCR analyses demonstrated that the bm2 mutants accumulate substantially reduced levels of bm2 transcript. Alteration of MTHFR function is expected to influence accumulation of the methyl donor S-adenosyl-L-methionine (SAM). Because SAM is consumed by two methyltransferases in the lignin pathway (Ye et al., ), the finding that bm2 encodes a functional MTHFR is consistent with its lignin phenotype. Consistent with this functional assignment of bm2, the expression patterns of genes in a variety of SAM-dependent or -related pathways, including lignin biosynthesis, are altered in the bm2 mutant. Biochemical assays confirmed that bm2 mutants accumulate reduced levels of lignin with altered composition compared to wild-type. Hence, this study demonstrates a role for MTHFR in lignin biosynthesis.
Collapse
Affiliation(s)
- Ho Man Tang
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, 50011, USA
- †Center for Cell Dynamics, Department of Biological Chemistry, Johns Hopkins University School of MedicineBaltimore, MD, 21205, USA
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- *For correspondence (e-mails (SL) or (PSS))
| | - Sarah Hill-Skinner
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Wei Wu
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- §Pioneer Hi-Bred International Inc.Johnston, IA, 50131, USA
| | - Danielle Reed
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, 50011, USA
- §Pioneer Hi-Bred International Inc.Johnston, IA, 50131, USA
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
| | - Dan Nettleton
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Department of Statistics, Iowa State University2115 Snedecor, Ames, IA, 50011, USA
| | - Patrick S Schnable
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, 50011, USA
- Department of Agronomy, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- Center for Plant Genomics, Iowa State University2035 Roy J. Carver Co-Lab, Ames, IA, 50011-3650, USA
- *For correspondence (e-mails (SL) or (PSS))
| |
Collapse
|
31
|
Chazal R, Robert P, Durand S, Devaux MF, Saulnier L, Lapierre C, Guillon F. Investigating lignin key features in maize lignocelluloses using infrared spectroscopy. APPLIED SPECTROSCOPY 2014; 68:1342-7. [PMID: 25358069 DOI: 10.1366/14-07472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lignins and their cross-linking to hemicelluloses detrimentally affect the cellulose-to-ethanol conversion of grass lignocelluloses. Screening appropriate grass cell walls and their compositional changes during the various steps of the process calls for a high-throughput analytical technique. Such a performance can be fulfilled by Fourier transform mid-infrared (FT-MIR) spectroscopy. In the present paper, a set of maize cell walls from mature stems were selected, including brown midrib samples. Lignin fractions were isolated by mild acidolysis to obtain a set of purified maize lignin standards. The lignin content and the percentage of lignin-derived p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) thioacidolysis monomers were determined. In addition, the composition of cell wall polysaccharides, as well as the amount of ester-linked p-coumaric (CA) and ferulic (FA) acids, was measured by wet chemistry. Partial least square (PLS) analyses were applied to infrared and chemical data of cell walls. The resulting models showed a good predictive ability with regard to the lignin content, to the frequency of S (or G) thioacidolysis monomers, and to the level of ester-linked CA of maize cell walls. The loading plots and regression coefficients revealed relevant infrared absorption bands.
Collapse
Affiliation(s)
- Richard Chazal
- National Institute of Agronomic Research, UR1268 Biopolymers, Interactions, Assemblages, Nantes, 44316 France
| | | | | | | | | | | | | |
Collapse
|
32
|
Martin AP, Palmer WM, Byrt CS, Furbank RT, Grof CPL. A holistic high-throughput screening framework for biofuel feedstock assessment that characterises variations in soluble sugars and cell wall composition in Sorghum bicolor. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:186. [PMID: 24365407 PMCID: PMC3892131 DOI: 10.1186/1754-6834-6-186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/10/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total fermentable sugar yields including stalk biomass, soluble sugar concentrations, and cell wall saccharification efficiency. RESULTS A mathematical method for assessing whole S. bicolor stalks using the fourth internode from the base of the plant proved to be an effective high-throughput strategy for assessing stalk biomass, soluble sugar concentrations, and cell wall composition and allowed calculation of total stalk fermentable sugars. A high-throughput method for measuring soluble sucrose, glucose, and fructose using partial least squares (PLS) modelling of juice Fourier transform infrared (FTIR) spectra was developed. The PLS prediction was shown to be highly accurate with each sugar attaining a coefficient of determination (R2) of 0.99 with a root mean squared error of prediction (RMSEP) of 11.93, 5.52, and 3.23 mM for sucrose, glucose, and fructose, respectively, which constitutes an error of <4% in each case. The sugar PLS model correlated well with gas chromatography-mass spectrometry (GC-MS) and brix measures. Similarly, a high-throughput method for predicting enzymatic cell wall digestibility using PLS modelling of FTIR spectra obtained from S. bicolor bagasse was developed. The PLS prediction was shown to be accurate with an R2 of 0.94 and RMSEP of 0.64 μg.mgDW-1.h-1. CONCLUSIONS This methodology has been demonstrated as an efficient and effective way to screen large biofuel feedstock populations for biomass, soluble sugar concentrations, and cell wall digestibility simultaneously allowing a total fermentable yield calculation. It unifies and simplifies previous screening methodologies to produce a holistic assessment of biofuel feedstock potential.
Collapse
Affiliation(s)
- Antony P Martin
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
| | - William M Palmer
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
| | - Caitlin S Byrt
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
- Australian Research Council Centre of Excellence in Plant Cell Walls, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Robert T Furbank
- CSIRO Plant Industry, High Resolution Plant Phenomics Centre, GPO Box 1600, Canberra ACT 2601, Australia
| | - Christopher PL Grof
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
| |
Collapse
|
33
|
Petti C, Harman-Ware AE, Tateno M, Kushwaha R, Shearer A, Downie AB, Crocker M, DeBolt S. Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:146. [PMID: 24103129 PMCID: PMC3852544 DOI: 10.1186/1754-6834-6-146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/24/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Improving saccharification efficiency in bioenergy crop species remains an important challenge. Here, we report the characterization of a Sorghum (Sorghum bicolor L.) mutant, named REDforGREEN (RG), as a bioenergy feedstock. RESULTS It was found that RG displayed increased accumulation of lignin in leaves and depletion in the stems, antithetic to the trend observed in wild type. Consistent with these measurements, the RG leaf tissue displayed reduced saccharification efficiency whereas the stem saccharification efficiency increased relative to wild type. Reduced lignin was linked to improved saccharification in RG stems, but a chemical shift to greater S:G ratios in RG stem lignin was also observed. Similarities in cellulose content and structure by XRD-analysis support the correlation between increased saccharification properties and reduced lignin instead of changes in the cellulose composition and/or structure. CONCLUSION Antithetic lignin accumulation was observed in the RG mutant leaf-and stem-tissue, which resulted in greater saccharification efficiency in the RG stem and differential thermochemical product yield in high lignin leaves. Thus, the red leaf coloration of the RG mutant represents a potential marker for improved conversion of stem cellulose to fermentable sugars in the C4 grass Sorghum.
Collapse
Affiliation(s)
- Carloalberto Petti
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - Anne E Harman-Ware
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
| | - Mizuki Tateno
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - Rekha Kushwaha
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - Andrew Shearer
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - A Bruce Downie
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - Mark Crocker
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
| | - Seth DeBolt
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
34
|
Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:709-16. [PMID: 23551338 DOI: 10.1111/pbi.12061] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 05/10/2023]
Abstract
The agronomic performance, cell wall characteristics and enzymatic saccharification efficiency of transgenic sugarcane plants with modified lignin were evaluated under replicated field conditions. Caffeic acid O-methyltransferase (COMT) was stably suppressed by RNAi in the field, resulting in transcript reduction of 80%-91%. Along with COMT suppression, total lignin content was reduced by 6%-12% in different transgenic lines. Suppression of COMT also altered lignin composition by reducing syringyl units and p-coumarate incorporation into lignin. Reduction in total lignin by 6% improved saccharification efficiency by 19%-23% with no significant difference in biomass yield, plant height, stalk diameter, tiller number, total structural carbohydrates or brix value when compared with nontransgenic tissue culture-derived or transgenic control plants. Lignin reduction of 8%-12% compromised biomass yield, but increased saccharification efficiency by 28%-32% compared with control plants. Biomass from transgenic sugarcane lines that have 6%-12% less lignin requires approximately one-third of the hydrolysis time or 3- to 4-fold less enzyme to release an equal or greater amount of fermentable sugar than nontransgenic plants. Reducing the recalcitrance of lignocellulosic biomass to saccharification by modifying lignin biosynthesis is expected to greatly benefit the economic competitiveness of sugarcane as a biofuel feedstock.
Collapse
Affiliation(s)
- Je Hyeong Jung
- Agronomy Department, University of Florida, IFAS, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
35
|
Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, Sarath G, Hazen SP. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol 2013; 13:61. [PMID: 23902793 PMCID: PMC3734214 DOI: 10.1186/1472-6750-13-61] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Lignin is a significant barrier in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired CAD or COMT activity have attracted considerable agronomic interest for their altered lignin composition and improved digestibility. Here, we identified and functionally characterized candidate genes encoding CAD and COMT enzymes in the grass model species Brachypodium distachyon with the aim of improving crops for efficient biofuel production. RESULTS We developed transgenic plants overexpressing artificial microRNA designed to silence BdCAD1 or BdCOMT4. Both transgenes caused altered flowering time and increased stem count and weight. Downregulation of BdCAD1 caused a leaf brown midrib phenotype, the first time this phenotype has been observed in a C3 plant. While acetyl bromide soluble lignin measurements were equivalent in BdCAD1 downregulated and control plants, histochemical staining and thioacidolysis indicated a decrease in lignin syringyl units and reduced syringyl/guaiacyl ratio in the transgenic plants. BdCOMT4 downregulated plants exhibited a reduction in total lignin content and decreased Maule staining of syringyl units in stem. Ethanol yield by microbial fermentation was enhanced in amiR-cad1-8 plants. CONCLUSION These results have elucidated two key genes in the lignin biosynthetic pathway in B. distachyon that, when perturbed, may result in greater stem biomass yield and bioconversion efficiency.
Collapse
Affiliation(s)
- Gina M Trabucco
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dominick A Matos
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Scott J Lee
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Aaron J Saathoff
- USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Henry D Priest
- The Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Todd C Mockler
- The Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Gautam Sarath
- USDA-ARS, Grain, Forage, and Bioenergy Research Unit, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts 221 Morrill Science Center III, Amherst, MA 01003, USA
| |
Collapse
|
36
|
Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Barrière Y. Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1151-65. [PMID: 23358861 DOI: 10.1007/s00122-013-2043-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/09/2013] [Indexed: 05/09/2023]
Abstract
Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely "ghost" QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.
Collapse
Affiliation(s)
- Audrey Courtial
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France
| | | | | | | | | | | |
Collapse
|
37
|
Bouvier d'Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cézard L, Legée F, Lebris P, Legay S, Whitehead C, McQueen-Mason SJ, Gomez LD, Jouanin L, Lapierre C, Sibout R. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:496-508. [PMID: 23078216 DOI: 10.1111/tpj.12053] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 05/17/2023]
Abstract
Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin-related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose-to-ethanol conversion process. Down-regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21-3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8-O-4- and 4-O-5-coupled sinapaldehyde units, as well as resistant inter-unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester-linked to cell walls was measured for the first time in a lignin-related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild-type BdCAD1 allele restored the wild-type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild-type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre-treated with alkaline easier without compromising plant growth.
Collapse
Affiliation(s)
- Madeleine Bouvier d'Yvoire
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, Route de St Cyr (RD10), 78026, Versailles, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yan L, Liu S, Zhao S, Kang Y, Wang D, Gu T, Xin Z, Xia G, Huang Y. Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants. PHYSIOLOGIA PLANTARUM 2012; 146:375-87. [PMID: 22578303 DOI: 10.1111/j.1399-3054.2012.01646.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sorghum, a species able to produce a high yield of biomass and tolerate both drought and poor soil fertility, is considered to be a potential bioenergy crop candidate. The reduced lignin content characteristic of brown midrib (bmr) mutants improves the efficiency of bioethanol conversion from biomass. Suppression subtractive hybridization combined with cDNA microarray profiling was performed to characterize differential gene expression in a set of 13 bmr mutants, which accumulate significantly less lignin than the wild-type plant BTx623. Among the 153 differentially expressed genes identified, 43 were upregulated and 110 downregulated in the mutants. A semi-quantitative RT-PCR analysis applied to 12 of these genes largely validated the microarray analysis data. The transcript abundance of genes encoding l-phenylalanine ammonia lyase and cinnamyl alcohol dehydrogenase was less in the mutants than in the wild type, consistent with the expectation that both enzymes are associated with lignin synthesis. However, the gene responsible for the lignin synthesis enzyme cinnamic acid 4-hydroxylase was upregulated in the mutants, indicating that the production of monolignol from l-phenylalanine may involve more than one pathway. The identity of the differentially expressed genes could be useful for breeding sorghum with improved efficiency of bioethanol conversion from lignocellulosic biomass.
Collapse
Affiliation(s)
- Li Yan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Feltus FA, Vandenbrink JP. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:80. [PMID: 23122416 PMCID: PMC3502489 DOI: 10.1186/1754-6834-5-80] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/05/2012] [Indexed: 05/19/2023]
Abstract
For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.
Collapse
Affiliation(s)
- Frank Alex Feltus
- Department of Genetics & Biochemistry, Clemson University, 105 Collings Street. BRC #302C, Clemson, SC, 29634, USA
| | - Joshua P Vandenbrink
- Department of Genetics & Biochemistry, Clemson University, 105 Collings Street. BRC #302C, Clemson, SC, 29634, USA
| |
Collapse
|
40
|
Bukh C, Nord-Larsen PH, Rasmussen SK. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6223-36. [PMID: 23028019 PMCID: PMC3481213 DOI: 10.1093/jxb/ers275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49 kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions.
Collapse
|
41
|
Chen W, VanOpdorp N, Fitzl D, Tewari J, Friedemann P, Greene T, Thompson S, Kumpatla S, Zheng P. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. PLANT MOLECULAR BIOLOGY 2012; 80:289-97. [PMID: 22847075 DOI: 10.1007/s11103-012-9948-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/21/2012] [Indexed: 05/13/2023]
Abstract
Maize brown midrib1 (bm1) mutant plants have reduced lignin content and offer significant advantages when used in silage and biofuel applications. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the conversion of hydroxycinnamyl aldehydes to monolignols, a key step in lignin biosynthesis. Maize CAD2 has been implicated as the underlying gene for bm1 phenotypes since bm1 plants have reduced CAD activity and lower CAD2 transcript level. Here, we describe a Dow AgroSciences maize bm1 mutant (bm1-das1) that contains a 3,444-bp transposon insertion in the first intron of CAD2 gene. As a result of chimeric RNA splicing, cad2 mRNA from bm1-das1 contains a 409-bp insert between its 1st and 2nd exons. This insertion creates a premature stop codon and is predicted to result in a truncated protein of 48 amino acids (AA), compared to 367 AA for the wild type (WT) CAD2. We have also sequenced cad2 from the reference allele bm1-ref in 515D bm1 stock and showed that it contains a two-nucleotide (AC) insertion in the 3rd exon, which is predicted to result in a truncated protein of 147 AA. The levels of cad2 mRNA in the midribs of bm1-das1 and bm1-ref are reduced by 91 and 86 % respectively, leading to reductions in total lignin contents by 24 and 30 %. Taken together, our data show that mutations in maize CAD2 are responsible for maize bm1 phenotypes. Based on specific changes in bm1-das1 and bm1-ref, high throughput TaqMan and KBioscience's allele specific PCR assays capable of differentiating mutant and WT alleles have been developed to accelerate bm1 molecular breeding.
Collapse
Affiliation(s)
- Wei Chen
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen Y, Liu H, Ali F, Scott MP, Ji Q, Frei UK, Lübberstedt T. Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1223-1235. [PMID: 22714805 DOI: 10.1007/s00122-012-1908-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Brown midrib mutants in maize are known to be associated with reduced lignin content and increased cell wall digestibility, which leads to better forage quality and higher efficiency of cellulosic biomass conversion into ethanol. Four well known brown midrib (bm) mutants, named bm1-4, were identified several decades ago. Additional recessive brown midrib mutants have been identified by allelism tests and designated as bm5 and bm6. In this study, we determined that bm6 increases cell wall digestibility and decreases plant height. bm6 was confirmed onto the short arm of chromosome 2 by a small mapping set with 181 plants from a F(2) segregating population, derived from crossing B73 and a bm6 mutant line. Subsequently, 960 brown midrib individuals were selected from the same but larger F(2) population for genetic and physical mapping. With newly developed markers in the target region, the bm6 gene was assigned to a 180 kb interval flanked by markers SSR_308337 and SSR_488638. In this region, ten gene models are predicted in the maize B73 sequence. Analysis of these ten genes as well as genes in the syntenic rice region revealed that four of them are promising candidate genes for bm6. Our study will facilitate isolation of the underlying gene of bm6 and advance our understanding of brown midrib gene functions.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Agronomy, Iowa State University, Ames, 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleau JP, Berenguer J, Puigdomènech P, Rigau J, Caparrós-Ruiz D. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. MOLECULAR PLANT 2012; 5:817-30. [PMID: 22147756 DOI: 10.1093/mp/ssr097] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.
Collapse
Affiliation(s)
- Silvia Fornalé
- Laboratori de Genetica Molecular Vegetal, Centre de Recerca en AgriGenomica (CRAG), Consorci CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li M, Foster C, Kelkar S, Pu Y, Holmes D, Ragauskas A, Saffron CM, Hodge DB. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:38. [PMID: 22672858 PMCID: PMC3443053 DOI: 10.1186/1754-6834-5-38] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/27/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. RESULTS We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88-95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. CONCLUSIONS It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of lignin structures and compositions could be linked to quantifiable changes in the composition of the cell wall and properties of the lignin including apparent content of the p-hydroxycinnamates while the limitations of S/G estimation in grasses is highlighted.
Collapse
Affiliation(s)
- Muyang Li
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA
| | - Cliff Foster
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA
| | - Shantanu Kelkar
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
| | - Yunqiao Pu
- DOE BioEnergy Science Center, Georgia Institute of Technology, Georgia, USA
| | - Daniel Holmes
- Department of Chemistry, Michigan State University, Michigan, USA
| | - Arthur Ragauskas
- DOE BioEnergy Science Center, Georgia Institute of Technology, Georgia, USA
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Georgia, USA
- Institute of Paper Science and Technology, Georgia Institute of Technology, Georgia, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
- Department of Forestry, Michigan State University, Michigan, USA
| | - David B Hodge
- Department of Biosystems and Agricultural Engineering, Michigan State University, Michigan, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, Michigan, USA
| |
Collapse
|
45
|
Truntzler M, Barrière Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1465-82. [PMID: 20658277 DOI: 10.1007/s00122-010-1402-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/05/2010] [Indexed: 05/17/2023]
Abstract
A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in "MetaQTL" software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ(2) tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.
Collapse
Affiliation(s)
- M Truntzler
- INRA, UMR de Genetique Vegetale INRA/Univ. Paris XI/CNRS/INA PG, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Palmer NA, Sattler SE, Saathoff AJ, Sarath G. A continuous, quantitative fluorescent assay for plant caffeic acid O-methyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5220-5226. [PMID: 20397733 DOI: 10.1021/jf904445q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plant caffeic acid O-methyltransferases (COMTs) use S-adenosylmethionine (ado-met), as a methyl donor to transmethylate their preferred (phenolic) substrates in vivo, and will generally utilize a range of phenolic compounds in vitro. Collazo et al. (Anal. Biochem. 2005, 342, 86-92) have published a discrete, end-point fluorescence assay to detect histone methyltransferases using S-adenosyl homocysteine hydrolase and adeonsine deaminase as coupling enzymes and a thiol-specific fluorophore, Thioglo1, as the detecting reagent. Using this previous assay as a guide, we have developed and validated a facile, sensitive and real-time fluorescence assay for characterizing plant COMTs and in the process simplified the original assay as well by obviating the need for adenosine deaminase in the assay, and simultaneously converting an end-point assay into a continuous one. Our assay has been used to kinetically characterize recombinant sorghum COMT (Bmr-12) a key enzyme involved in cell wall lignification, and analyze COMT activity in maturing tillers from switchgrass plants. Data indicated that the calculated K(m) and V(max) values for the recombinant sorghum COMT using different substrates in the fluorescent assay were similar to published values for COMT enzymes from other plant species. Native COMT activity was greatest in internodes at the top of a tiller and declined in the more basal internodes. This new assay should have broad applicability for characterizing COMTs and potentially other plant methlytransferases that utilize ado-met as a methyl donor.
Collapse
Affiliation(s)
- Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
47
|
Vermerris W, Sherman DM, McIntyre LM. Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2479-90. [PMID: 20410320 PMCID: PMC2877902 DOI: 10.1093/jxb/erq093] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise function. In order to gain a better understanding of the relationship between lignin subunit composition and the physico-chemical properties of lignified tissues, detailed analyses were performed of near-isogenic brown midrib2 (bm2), bm4, bm2-bm4, and bm1-bm2-bm4 mutants of maize. This investigation was motivated by the fact that the bm2-bm4 double mutant is substantially shorter, displays drought symptoms even when well watered, and will often not develop reproductive organs, whereas the phenotypes of the individual bm single mutants and double mutant combinations other than bm2-bm4 are only subtly different from the wild-type control. Detailed cell wall compositional analyses revealed midrib-specific reductions in Klason lignin content in the bm2, bm4, and bm2-bm4 mutants relative to the wild-type control, with reductions in both guaiacyl (G)- and syringyl (S)-residues. The cellulose content was not different, but the reduction in lignin content was compensated by an increase in hemicellulosic polysaccharides. Linear discriminant analysis performed on the compositional data indicated that the bm2 and bm4 mutations act independently of each other on common cell wall biosynthetic steps. After quantitative analysis of scanning electron micrographs of midrib sections, the variation in chemical composition of the cell walls was shown to be correlated with the thickness of the sclerenchyma cell walls, but not with xylem vessel surface area. The bm2-bm4 double mutant represents the limit of phenotypic plasticity in cell wall composition, as the bm1-bm2-bm4 and bm2-bm3-bm4 mutants did not develop into mature plants, unlike the triple mutants bm1-bm2-bm3 and bm1-bm3-bm4.
Collapse
Affiliation(s)
- Wilfred Vermerris
- University of Florida Genetics Institute, Agronomy Department, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
48
|
Chen Y, Zein I, Brenner EA, Andersen JR, Landbeck M, Ouzunova M, Lübberstedt T. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.). BMC PLANT BIOLOGY 2010; 10:12. [PMID: 20078869 PMCID: PMC2827421 DOI: 10.1186/1471-2229-10-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 01/15/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. RESULTS In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. CONCLUSION Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Imad Zein
- Department of Agronomy and Plant Breeding, Technical University of Munich, Am Hochanger 2, 85354 Freising-Weihenstephan, Germany
| | | | - Jeppe Reitan Andersen
- Department of Genetics and Biotechnology, University of Aarhus, Research Center Flakkebjerg, 4200 Slagelse, Denmark
| | | | | | | |
Collapse
|
49
|
Abstract
The development of sustainable, low-carbon, liquid fuels from cellulosic biomass will require advances in many areas of science and engineering. This review describes the major topics of enquiry concerning cellulosic biofuels with an emphasis on those areas of research and development that include research problems of interest to plant biologists.
Collapse
Affiliation(s)
- Andrew Carroll
- Department of Biology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
50
|
Ma QH. The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2763-71. [PMID: 19451187 PMCID: PMC2692018 DOI: 10.1093/jxb/erp132] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/09/2009] [Accepted: 04/04/2009] [Indexed: 05/17/2023]
Abstract
Stem lodging-resistance is an important phenotype in crop production. In the present study, the expression of the wheat COMT gene (TaCM) was determined in basal second internodes of lodging-resistant (H4564) and lodging-susceptible (C6001) cultivars at stem elongation, heading, and milky endosperm corresponding to Zadoks stages Z37, Z60, and Z75, respectively. The TaCM protein levels were analysed by protein gel blot and COMT enzyme activity was determined during the same stem developmental stages. TaCM mRNA levels were higher in H4546 from elongation to the milky stages and in C6001 the TaCM mRNA levels decreased markedly at the heading and milky stages. The TaCM protein levels and COMT activity were also higher in H4564 than that in C6001 at the heading and milky stages. These results corresponded to a higher lignin content measured by the Klason method and stem strength and a lower lodging index in H4564 than in C6001 at the heading and milky stages. Therefore, the TaCM mRNA levels, protein levels, and enzyme activity in developing wheat stems were associated with stem strength and lodging index in these two wheat cultivars. Southern analysis in a different population suggested that a TaCM locus was located in the distal region of chromosome 3BL, which has less investigated by QTL for lodging-resistant phenotype.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxin Cun, Xiangshan, Beijing 100093, China.
| |
Collapse
|