1
|
Moon S, Lee M, Lee JS, Lee J, Oh TJ, Jang MJ, Yoon YS, Han Y, Kwon W, Jang JY, Jung HS. Association Between Hypotension During Pancreatectomy and Development of Postoperative Diabetes. J Clin Endocrinol Metab 2025; 110:e249-e256. [PMID: 38589985 PMCID: PMC11747704 DOI: 10.1210/clinem/dgae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
CONTEXT With advancements in long-term survival after pancreatectomy, postpancreatectomy diabetes has become a concern, and the risk factors are not yet established. Pancreatic islets are susceptible to ischemic damage, though there is a lack of clinical evidence regarding glycemic deterioration. OBJECTIVE To investigate association between hypotension during pancreatectomy and development of postpancreatectomy diabetes. DESIGN In this retrospective, longitudinal cohort study, we enrolled patients without diabetes who underwent distal pancreatectomy or pancreaticoduodenectomy between January 2005 and December 2018 from 2 referral hospitals in Korea. MAIN OUTCOME MEASURES Intraoperative hypotension (IOH) was defined as a 20% or greater reduction in systolic blood pressure. The primary and secondary outcomes were incident diabetes and postoperative Homeostatic Model Assessment (HOMA) indices. RESULTS We enrolled 1129 patients (average age, 59 years; 49% men; 35% distal pancreatectomy). IOH occurred in 83% (median duration, 25 minutes; interquartile range, 5-65). During a median follow-up of 3.9 years, diabetes developed in 284 patients (25%). The cumulative incidence of diabetes was proportional to increases in the duration and depth of IOH (P < .001). For the median duration in IOH compared with a reference time of 0 minutes, the hazard ratio was 1.48 (95% CI, 1.14-1.92). The effect of IOH was pronounced with distal pancreatectomy. Furthermore, the duration of IOH was inversely correlated with 1-year HOMA β-cell function (P < .002), but not with HOMA insulin resistance. CONCLUSION These results support the hypothesis that IOH during pancreatectomy may elevate risk of diabetes by inducing β-cell insufficiency.
Collapse
Affiliation(s)
- Seoil Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Mirang Lee
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jooyeop Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Tae Jung Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Myoung-jin Jang
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul 03080, Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Youngmin Han
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Wooil Kwon
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Hye Seung Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
2
|
Langlois A, Pinget M, Kessler L, Bouzakri K. Islet Transplantation: Current Limitations and Challenges for Successful Outcomes. Cells 2024; 13:1783. [PMID: 39513890 PMCID: PMC11544954 DOI: 10.3390/cells13211783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Islet transplantation is a promising approach for treating patients with unstable T1DM. However, it is confronted with numerous obstacles throughout the various stages of the transplantation procedure. Significant progress has been made over the last 25 years in understanding the mechanisms behind the loss of functional islet mass and in developing protective strategies. Nevertheless, at present, two to three pancreases are still needed to treat a single patient, which limits the maximal number of patients who can benefit from islet transplantation. Thus, this publication provides an overview of recent scientific findings on the various issues affecting islet transplantation. Specifically, we will focus on the understanding of the mechanisms involved and the strategies developed to alleviate these problems from the isolation stage to the post-transplantation phase. Finally, we hope that this review will highlight new avenues of action, enabling us to propose pancreatic islet transplantation to a maximum number of patients with T1DM.
Collapse
Affiliation(s)
- Allan Langlois
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Michel Pinget
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| | - Laurence Kessler
- Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, 67200 Strasbourg, France;
- Inserm UMR 1260, Nanomédicine Regenerative, University of Strasbourg, 67085 Strasbourg, France
| | - Karim Bouzakri
- UR «Diabète et Thérapeutiques», Centre Européen d’Étude du Diabète, Université de Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France; (A.L.); (M.P.)
| |
Collapse
|
3
|
Cai X, Cao J, Wang L, Zou J, Li R, Sun P, Ding X, Zhang B, Liu Z, Pei X, Yang J, Zhan Y, Liu N, Liu T, Liang R, Gao J, Wang S. Liraglutide Protects Pancreatic Islet From Ischemic Injury by Reducing Oxidative Stress and Activating Akt Signaling During Cold Preservation to Improve Islet Transplantation Outcomes. Transplantation 2024; 108:e156-e169. [PMID: 38578708 DOI: 10.1097/tp.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Islet transplantation is a promising therapy for patients with type 1 diabetes. However, ischemic injury to the donor islets during cold preservation leads to reduced islet quality and compromises transplant outcome. Several studies imply that liraglutide, a glucagon-like peptide-1 receptor agonist, has a positive effect on promoting islet survival, but its impact on islet cold-ischemic injury remains unexplored. Therefore, the aim of this study was to investigate whether liraglutide can improve islet transplantation efficacy by inhibiting cold-ischemic injury and to explore the underlying mechanisms. METHODS Liraglutide was applied in a mouse pancreas preservation model and a human islets cold-preservation model, and islet viability, function, oxidative stress levels were evaluated. Furthermore, islet transplantation was performed in a syngeneic mouse model and a human-to-nude mouse islet xenotransplantation model. RESULTS The supplementation of liraglutide in preservation solution improved islet viability, function, and reduced cell apoptosis. Liraglutide inhibited the oxidative stress of cold-preserved pancreas or islets through upregulating the antioxidant enzyme glutathione levels, inhibiting reactive oxygen species accumulation, and maintaining the mitochondrial membrane integrity, which is associated with the activation of Akt signaling. Furthermore, the addition of liraglutide during cold preservation of donor pancreas or donor islets significantly improved the subsequent transplant outcomes in both syngeneic mouse islet transplantation model and human-to-nude mouse islet xenotransplantation model. CONCLUSIONS Liraglutide protects islets from cold ischemia-related oxidative stress during preservation and hence improved islet transplantation outcomes, and this protective effect of liraglutide in islets is associated with the activation of Akt signaling.
Collapse
Affiliation(s)
- Xiangheng Cai
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Le Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jiaqi Zou
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Li
- Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Peng Sun
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xuejie Ding
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Boya Zhang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zewen Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xirui Pei
- First Clinical Department, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jiuxia Yang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Tengli Liu
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Shusen Wang
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Hau HM, Jahn N, Vlachos C, Eichler T, Lederer A, Geisler A, Scheuermann U, Seehofer D, Köppen S, Laudi S, Sucher R, Rademacher S. Does Timepoint of Surgical Procedure Affect the Outcome in Simultaneous Pancreas-Kidney Transplantation? A Retrospective Single-Center Analysis over 20 Years. J Clin Med 2024; 13:3688. [PMID: 38999254 PMCID: PMC11242423 DOI: 10.3390/jcm13133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Sleep deprivation and disturbances in circadian rhythms may hinder surgical performance and decision-making capabilities. Solid organ transplantations, which are technically demanding and often begin at uncertain times, frequently during nighttime hours, are particularly susceptible to these effects. This study aimed to assess how transplant operations conducted during daytime versus nighttime influence both patient and graft outcomes and function. Methods: simultaneous pancreas-kidney transplants (SPKTs) conducted at the University Hospital of Leipzig from 1998 to 2018 were reviewed retrospectively. The transplants were categorized based on whether they began during daytime hours (8 a.m. to 6 p.m.) or nighttime hours (6 p.m. to 8 a.m.). We analyzed the demographics of both donors and recipients, as well as primary outcomes, which included surgical complications, patient survival, and graft longevity. Results: In this research involving 105 patients, 43 SPKTs, accounting for 41%, took place in the daytime, while 62 transplants (59%) occurred at night. The characteristics of both donors and recipients were similar across the two groups. Further, the rate of (surgical) pancreas graft-related complications and reoperations (daytime 39.5% versus nighttime 33.9%; p = 0.552) were also not statistically significant between both groups. In this study, the five-year survival rate for patients was comparable for both daytime and nighttime surgeries, with 85.2% for daytime and 86% for nighttime procedures (p = 0.816). Similarly, the survival rates for pancreas grafts were 75% for daytime and 77% for nighttime operations (p = 0.912), and for kidney grafts, 76% during the day compared to 80% at night (p = 0.740), indicating no significant statistical difference between the two time periods. In a multivariable model, recipient BMI > 30 kg/m2, donor age, donor BMI, and cold ischemia time > 15 h were independent predictors for increased risk of (surgical) pancreas graft-related complications, whereas the timepoint of SPKT (daytime versus nighttime) did not have an impact. Conclusions: The findings from our retrospective analysis at a big single German transplant center indicate that SPKT is a reliable procedure, regardless of the start time. Additionally, our data revealed that patients undergoing nighttime transplants have no greater risk of surgical complications or inferior results concerning long-term survival of the patient and graft. However, due to the small number of cases evaluated, further studies are required to confirm these results.
Collapse
Affiliation(s)
- Hans Michael Hau
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, 8010 Graz, Austria
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Nora Jahn
- Department for Anesthesiology and Intensive Care Medicine, Medical University of Graz, 8010 Graz, Austria
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Christos Vlachos
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Tim Eichler
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, 8010 Graz, Austria
| | - Andri Lederer
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, 8010 Graz, Austria
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Antonia Geisler
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, 8010 Graz, Austria
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Uwe Scheuermann
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Sylvia Köppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Sven Laudi
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Robert Sucher
- Department of General-, Visceral- and Transplant Surgery, Medical University of Graz, 8010 Graz, Austria
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Sebastian Rademacher
- Department of Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Saravanan PB, Kalivarathan J, McClintock K, Mohammed S, Burch E, Morecock C, Liu J, Khan A, Levy MF, Kanak MA. Inflammatory and hypoxic stress-induced islet exosomes released during isolation are associated with poor transplant outcomes in islet autotransplantation. Am J Transplant 2024; 24:967-982. [PMID: 38364959 DOI: 10.1016/j.ajt.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteins including ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA.
| | - Jagan Kalivarathan
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Kaeden McClintock
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA
| | | | - Elijah Burch
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Christiane Morecock
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Aamir Khan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Marlon F Levy
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| |
Collapse
|
6
|
Martín-Carro B, Donate-Correa J, Fernández-Villabrille S, Martín-Vírgala J, Panizo S, Carrillo-López N, Martínez-Arias L, Navarro-González JF, Naves-Díaz M, Fernández-Martín JL, Alonso-Montes C, Cannata-Andía JB. Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. Int J Mol Sci 2023; 24:10309. [PMID: 37373455 PMCID: PMC10299511 DOI: 10.3390/ijms241210309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Preclinical biomedical models are a fundamental tool to improve the knowledge and management of diseases, particularly in diabetes mellitus (DM) since, currently, the pathophysiological and molecular mechanisms involved in its development are not fully clarified, and there is no treatment to cure DM. This review will focus on the features, advantages and limitations of some of the most used DM models in rats, such as the spontaneous models: Bio-Breeding Diabetes-Prone (BB-DP) and LEW.1AR1-iddm, as representative models of type 1 DM (DM-1); the Zucker diabetic fatty (ZDF) and Goto-kakizaki (GK) rats, as representative models of type 2 DM (DM-2); and other models induced by surgical, dietary and pharmacological-alloxan and streptozotocin-procedures. Given the variety of DM models in rats, as well as the non-uniformity in the protocols and the absence of all the manifestation of the long-term multifactorial complications of DM in humans, the researchers must choose the one that best suits the final objectives of the study. These circumstances, added to the fact that most of the experimental research in the literature is focused on the study of the early phase of DM, makes it necessary to develop long-term studies closer to DM in humans. In this review, a recently published rat DM model induced by streptozotocin injection with chronic exogenous administration of insulin to reduce hyperglycaemia has also been included in an attempt to mimic the chronic phase of DM in humans.
Collapse
Affiliation(s)
- Beatriz Martín-Carro
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Donate-Correa
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julia Martín-Vírgala
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Nephrology Service, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
7
|
Kervella D, Mesnard B, Prudhomme T, Bruneau S, Masset C, Cantarovich D, Blancho G, Branchereau J. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci 2023; 24:ijms24054636. [PMID: 36902067 PMCID: PMC10003374 DOI: 10.3390/ijms24054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.
Collapse
Affiliation(s)
- Delphine Kervella
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
- Correspondence:
| | - Benoît Mesnard
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| | - Thomas Prudhomme
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Sarah Bruneau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Christophe Masset
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Diego Cantarovich
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Julien Branchereau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| |
Collapse
|
8
|
Submilligram Level of Beetle Antifreeze Proteins Minimize Cold-Induced Cell Swelling and Promote Cell Survival. Biomolecules 2022; 12:biom12111584. [PMID: 36358934 PMCID: PMC9687565 DOI: 10.3390/biom12111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic β-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary β-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation.
Collapse
|
9
|
Wakabayashi T, Kaneko M, Nakai T, Horie M, Fujimoto H, Takahashi M, Tanoue S, Ito A. Nanowarming of vitrified pancreatic islets as a cryopreservation technology for transplantation. Bioeng Transl Med 2022. [DOI: 10.1002/btm2.10416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Taisei Wakabayashi
- Department of Chemical Systems Engineering, School of Engineering Nagoya University Nagoya Japan
| | - Masahiro Kaneko
- Department of Chemical Systems Engineering, School of Engineering Nagoya University Nagoya Japan
| | - Tomoki Nakai
- Department of Chemical Systems Engineering, School of Engineering Nagoya University Nagoya Japan
| | - Masanobu Horie
- Radioisotope Research Center, Agency of Health, Safety and Environment Kyoto University Kyoto Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment Kyoto University Kyoto Japan
| | | | - Shota Tanoue
- Technical Department Dai‐Ichi High Frequency Co., Ltd Kawasaki Japan
| | - Akira Ito
- Department of Chemical Systems Engineering, School of Engineering Nagoya University Nagoya Japan
| |
Collapse
|
10
|
Analysis of Volatile Anesthetic-Induced Organ Protection in Simultaneous Pancreas-Kidney Transplantation. J Clin Med 2022; 11:jcm11123385. [PMID: 35743457 PMCID: PMC9225086 DOI: 10.3390/jcm11123385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Despite recent advances in surgical procedures and immunosuppressive regimes, early pancreatic graft dysfunction, mainly specified as ischemia-reperfusion injury (IRI)-Remains a common cause of pancreas graft failure with potentially worse outcomes in simultaneous pancreas-kidney transplantation (SPKT). Anesthetic conditioning is a widely described strategy to attenuate IRI and facilitate graft protection. Here, we investigate the effects of different volatile anesthetics (VAs) on early IRI-associated posttransplant clinical outcomes as well as graft function and outcome in SPKT recipients. METHODS Medical data of 105 patients undergoing SPKT between 1998-2018 were retrospectively analyzed and stratified according to the used VAs. The primary study endpoint was the association and effect of VAs on pancreas allograft failure following SPKT; secondary endpoint analyses included "IRI- associated posttransplant clinical outcome" as well as long-term graft function and outcome. Additionally, peak serum levels of C-reactive protein (CRP) and lipase during the first 72 h after SPKT were determined and used as further markers for "pancreatic IRI" and graft injury. Typical clinicopathological characteristics and postoperative outcomes such as early graft outcome and long-term function were analyzed. RESULTS Of the 105 included patients in this study three VAs were used: isoflurane (n = 58 patients; 55%), sevoflurane (n = 22 patients; 21%), and desflurane (n = 25 patients, 24%). Donor and recipient characteristics were comparable between both groups. Early graft loss within 3 months (24% versus 5% versus 8%, p = 0.04) as well as IRI-associated postoperative clinical complications (pancreatitis: 21% versus 5% versus 5%, p = 0.04; vascular thrombosis: 13% versus 0% versus 5%; p = 0.09) occurred more frequently in the Isoflurane group compared with the sevoflurane and desflurane groups. Anesthesia with sevoflurane resulted in the lowest serum peak levels of lipase and CRP during the first 3 days after transplantation, followed by desflurane and isoflurane (p = 0.039 and p = 0.001, respectively). There was no difference with regard to 10-year pancreas graft survival as well as endocrine/metabolic function among all three VA groups. Multivariate analysis revealed the choice of VAs as an independent prognostic factor for graft failure three months after SPKT (HR 0.38, 95%CI: 0.17-0.84; p = 0.029). CONCLUSIONS In our study, sevoflurane and desflurane were associated with significantly increased early graft survival as well as decreased IRI-associated post-transplant clinical outcomes when compared with the isoflurane group and should be the focus of future clinical studies evaluating the positive effects of different VA agents in patients receiving SPKT.
Collapse
|
11
|
Correlation of Different Serum Biomarkers with Prediction of Early Pancreatic Graft Dysfunction Following Simultaneous Pancreas and Kidney Transplantation. J Clin Med 2022; 11:jcm11092563. [PMID: 35566689 PMCID: PMC9103915 DOI: 10.3390/jcm11092563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Despite recent advances and refinements in perioperative management of simultaneous pancreas−kidney transplantation (SPKT) early pancreatic graft dysfunction (ePGD) remains a critical problem with serious impairment of early and long-term graft function and outcome. Hence, we evaluated a panel of classical blood serum markers for their value in predicting early graft dysfunction in patients undergoing SPKT. Methods: From a prospectively collected database medical data of 105 patients undergoing SPKT between 1998 and 2018 at our center were retrospectively analyzed. The primary study outcome was the detection of occurrence of early pancreatic graft dysfunction (ePGD), the secondary study outcome was early renal graft dysfunction (eRGD) as well as all other outcome parameters associated with the graft function. In this context, ePGD was defined as pancreas graft-related complications including graft pancreatitis, pancreatic abscess/peritonitis, delayed graft function, graft thrombosis, bleeding, rejection and the consecutive need for re-laparotomy due to graft-related complications within 3 months. With regard to analyzing ePGD, serum levels of white blood cell count (WBC), C-reactive protein (CRP), procalcitonin (PCT), pancreatic lipase as well as neutrophil−lymphocyte ratio (NLR) and platelet−lymphocyte ratio (PLR) were measured preoperatively and at postoperative days (POD) 1, 2, 3 and 5. Further, peak serum levels of CRP and lipase during the first 72 h were evaluated. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for ePGD and eRGD. Cut-off levels were calculated with the Youden index. Significant diagnostic biochemical cut-offs as well as other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 105 patients included, 43 patients (41%) and 28 patients (27%) developed ePGD and eRGD following SPKT, respectively. The mean WBC, PCT, NLR, PLR, CRP and lipase levels were significantly higher on most PODs in the ePGD group compared to the non-ePGD group. ROC analysis indicated that peak lipase (AUC: 0.82) and peak CRP levels (AUC: 0.89) were highly predictive for ePGD after SPKT. The combination of both achieved the highest AUC (0.92; p < 0.01) in predicting ePGD. Concerning eRGD, predictive accuracy of all analyzed serological markers was moderate (all AUC < 0.8). Additionally, multivariable analysis identified previous dialysis/no preemptive transplantation (OR 2.4 (95% CI: 1.41−4.01), p = 0.021), donor age (OR 1.07 (95% CI: 1.03−1.14), p < 0.010), donor body mass index (OR 1.32 (95% CI: 1.01−1.072), p = 0.04), donors cerebrovascular cause of death (OR 7.8 (95% CI: 2.21−26.9), p < 0.010), donor length of ICU stay (OR 1.27 (95% CI: 1.08−1.49), p < 0.010), as well as CIT pancreas (OR 1.07 (95% CI: 1.03−1.14), p < 0.010) as clinical relevant prognostic predictors for ePGD. Further, a peak of lipase (OR 1.04 (95% CI: 1.02−1.07), p < 0.010), peak of CRP levels (OR 1.12 (95% CI: 1.02−1.23), p < 0.010), pancreatic serum lipase concentration on POD 2 > 150 IU/L (OR 2.9 (95% CI: 1.2−7.13), p = 0.021) and CRP levels of ≥ 180 ng/mL on POD 2 (OR 3.6 (95% CI: 1.54−8.34), p < 0.01) and CRP levels > 150 ng/mL on POD 3 (OR 4.5 (95% CI: 1.7−11.4), p < 0.01) were revealed as independent biochemical predictive variables for ePGD after transplantation. Conclusions: In the current study, the combination of peak lipase and CRP levels were highly effective in predicting early pancreatic graft dysfunction development following SPKT. In contrast, for early renal graft dysfunction the predictive value of this parameter was less sensitive. Intensified monitoring of these parameters may be helpful for identifying patients at a higher risk of pancreatic ischemia reperfusion injury and various IRI- associated postoperative complications leading to ePGD and thus deteriorated outcome.
Collapse
|
12
|
Development and Application of a Semi quantitative Scoring Method for Ultrastructural Assessment of Acute Stress in Pancreatic Islets. Transplant Direct 2021; 8:e1271. [PMID: 34934809 PMCID: PMC8683222 DOI: 10.1097/txd.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background. Pancreas and islet transplantation outcomes are negatively impacted by injury to the endocrine cells from acute stress during donor death, organ procurement, processing, and transplant procedures. Here, we report a novel electron microscopy scoring system, the Newcastle Pancreas Endocrine Stress Score (NPESS). Methods. NPESS was adapted and expanded from our previously validated method for scoring pancreatic exocrine acinar cells, yielding a 4-point scale (0–3) classifying ultrastructural pathology in endocrine cell nuclei, mitochondria, endoplasmic reticulum, cytoplasmic vacuolization, and secretory granule depletion, with a maximum additive score of 15. We applied NPESS in a cohort of deceased organ donors after brainstem (DBD) and circulatory (DCD) death with a wide range of cold ischemic times (3.6–35.9 h) including 3 donors with type 1 and 3 with type 2 diabetes to assess islets in situ (n = 30) in addition to pancreata (n = 3) pre- and postislet isolation. Results. In DBD pancreata, NPESS correlated with cold ischemic time (head: r = 0.55; P = 0.02) and mirrored exocrine score (r = 0.48; P = 0.01). When stratified by endocrine phenotype, cells with granules of heterogeneous morphology had higher scores than α, β, and δ cells (P < 0.0001). Cells of mixed endocrine-exocrine morphology were observed in association with increased NPESS (P = 0.02). Islet isolation was associated with improved NPESS (in situ: 8.39 ± 0.77 [Mean ± SD]; postisolation: 5.44 ± 0.31; P = 0.04). Conclusions. NPESS provides a robust method for semiquantitative scoring of subcellular ultrastructural changes in human pancreatic endocrine cells in situ and following islet isolation with utility for unbiased evaluation of acute stress in organ transplantation research.
Collapse
|
13
|
Kandeel F, El-Shahawy M, Singh G, Dafoe DC, Isenberg JS, Riggs AD. Towards a Rational Balanced Pancreatic and Islet Allocation Schema. Cell Transplant 2021; 30:9636897211057130. [PMID: 34757859 PMCID: PMC8586185 DOI: 10.1177/09636897211057130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Allocation of donated organs for transplantation is a complex process that considers numerous factors such as donor, organ and candidate characteristics and practical issues such as geography. Whole pancreas and isolated islet transplantation are lifesaving for certain individuals with diabetes. Herein, we suggest a revised allocation schema that matches donor characteristics with candidate medical condition while allowing for geographic considerations. It is hoped that adoption of this schema will shorten allocation time, decrease organ waste and optimize the parity between organ donor characteristics and candidate state of health.
Collapse
Affiliation(s)
- Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, CA, USA.,Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, USA
| | - Mohamed El-Shahawy
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, CA, USA.,Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, USA
| | - Gagandeep Singh
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Donald C Dafoe
- Department of Surgery, Division of Transplantation, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Jeffrey S Isenberg
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, USA
| | - Arthur D Riggs
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
14
|
Pan R, Lou J, Wei L. Significant effects of Ganoderma lucidum polysaccharide on lipid metabolism in diabetes may be associated with the activation of the FAM3C-HSF1-CAM signaling pathway. Exp Ther Med 2021; 22:820. [PMID: 34131443 DOI: 10.3892/etm.2021.10252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Diabetes is a threat to patient health worldwide. Type 2 diabetes (T2DM), one of the two main types of diabetes, is a long-term metabolic disease caused by heredity and environmental factors. It has been reported that Ganoderma lucidum polysaccharide (GLP) significantly decreased the concentration of blood glucose, promoted insulin secretion, improved glucose tolerance and regulated the concentration of blood lipids. In the present study, a T2DM model was established in db/db mice, following which T2DM mice were treated with GLP (100 and 400 mg/kg) for 8 weeks, with MET used as the positive control. The glycosylated hemoglobin (HbAlc) and fasting blood glucose (FBG) levels, and diabetes-associated clinical chemistry indexes were detected in the blood and serum of each mouse. Hematoxylin and eosin, and oil red O staining were performed on the livers of each mouse to evaluate the level of liver fat. The expression levels of family with sequence similarity 3 (FAM3C), heat shock factor 1 (HSF1), calmodulin (CaM), AKT and phosphorylated (p)-AKT were detected in the hepatocytes of T2DM mice using reverse transcription-quantitative PCR and western blotting. The results demonstrated that the unbalanced levels of HbAlc, FBG and diabetes-related index in T2DM mice were significantly improved by treatment with GLP. Lipid droplets in the hepatocytes of mice shrank in the GLP groups compared with the model control group. The expression levels of FAM3C, HSF1, CaM and p-AKT/AKT in the hepatocytes of T2DM mice were significantly increased following treatment with GLP. In conclusion, GLP exerted significant effects on lipid metabolism in diabetes, which may be associated with the activation of the FAM3C-HSF1-CaM signaling pathway.
Collapse
Affiliation(s)
- Rui Pan
- Department of Nutrition, Yuxi People's Hospital of Kunming, Yuxi, Yunnan 653100, P.R. China
| | - Jian Lou
- Department of Nutrition, Yuxi People's Hospital of Kunming, Yuxi, Yunnan 653100, P.R. China
| | - Ling Wei
- Department of Clinical Nutrition, Second People's Hospital of Yunnan Province, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
15
|
Inoue H, Harada K, Narimatsu E, Uemura S, Aisaka W, Bunya N, Nomura K, Katayama Y. Pathophysiologic Mechanisms of Hypothermia-Induced Pancreatic Injury in a Rat Model of Body Surface Cooling. Pancreas 2021; 50:235-242. [PMID: 33565801 DOI: 10.1097/mpa.0000000000001738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The mechanisms underlying hypothermia-induced pancreatic injury are unclear. Thus, we investigated the pathophysiology of hypothermia-induced pancreatic injury. METHODS We created a normal circulatory model with body surface cooling in rats. We divided the rats into control (36°C-38°C), mild hypothermia (33°C-35°C), moderate hypothermia (30°C-32°C), and severe hypothermia (27°C-29°C) (n = 5 per group) groups. Then, we induced circulatory failure with a cooling model using high-dose inhalation anesthesia and divided the rats into control (36°C-38°C) and severe hypothermia (27°C-29°C) (n = 5 per group) groups. Serum samples were collected before the introduction of hypothermia. Serum and pancreatic tissue were collected after maintaining the target body temperature for 1 hour. RESULTS Hematoxylin and eosin staining of the pancreas revealed vacuoles and edema in the hypothermia group. Serum amylase (P = 0.056), lactic acid (P < 0.05), interleukin 1β (P < 0.05), interleukin 6 (P < 0.05), and tumor necrosis factor α (P = 0.13) levels were suppressed by hypothermia. The circulatory failure model exhibited pancreatic injury. CONCLUSIONS Hypothermia induced bilateral effects on the pancreas. Morphologically, hypothermia induced pancreatic injury based on characteristic pathology typified by vacuoles. Serologically, hypothermia induced protective effects on the pancreas by suppressing amylase and inflammatory cytokine levels.
Collapse
Affiliation(s)
| | | | | | | | - Wakiko Aisaka
- Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | |
Collapse
|
16
|
Atoa SM, Mangus RS, Graham RC, Kroepfl EA, Powelson JA, Fridell JA. Effect of volatile anesthetics on early and delayed outcomes in pancreas transplantation. Clin Transplant 2021; 35:e14153. [PMID: 33185894 DOI: 10.1111/ctr.14153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a common cause of allograft dysfunction and patient morbidity in solid organ transplantation. This study compares the effect of different inhaled anesthetics on early IRI and clinical outcomes in pancreas allograft recipients. METHODS Data were extracted retrospectively for pancreas transplants at a single center over a 15-year period. Early postoperative pancreatic amylase and lipase levels were used as a marker for graft injury. Clinical outcomes measured included length of hospital stay, readmission, and graft survival. RESULTS There were 625 pancreas transplants included in the analysis with 3 primary inhaled anesthetics: sevoflurane (53%), desflurane (35%), and isoflurane (12%). In the first 30 days post-transplant, peak amylase was lowest for sevoflurane (147) followed by desflurane (159) and isoflurane (229) (p = .03). Peak lipase levels followed the same trend (peak values 118, 131, and 135, respectively; p = .02). Early graft loss, length of hospital stay, and readmission within 3 months were similar among all three anesthetic groups. There was no difference in 10-year graft survival by Cox regression. CONCLUSIONS Sevoflurane and desflurane are associated with lower peak amylase and lipase levels postoperatively in pancreas transplantation. Short- and long-term clinical outcomes were equivalent for the three agents.
Collapse
Affiliation(s)
- Sam M Atoa
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard S Mangus
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan C Graham
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A Kroepfl
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John A Powelson
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonathan A Fridell
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
18
|
Saravanan PB, Vasu S, Yoshimatsu G, Darden CM, Wang X, Gu J, Lawrence MC, Naziruddin B. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia 2019; 62:1901-1914. [PMID: 31372667 DOI: 10.1007/s00125-019-4950-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic islets produce non-coding microRNAs (miRNAs) that regulate islet cell function and survival. Our earlier investigations revealed that human islets undergo significant damage due to various types of stresses following transplantation and release miRNAs. Here, we sought to identify and validate exosomal miRNAs (exo-miRNAs) produced by human islets under conditions of cellular stress, preceding loss of cell function and death. We also aimed to identify islet stress signalling pathways targeted by exo-miRNAs to elucidate potential regulatory roles in islet cell stress. METHODS Human islets were subjected to proinflammatory cytokine and hypoxic cell stress and miRNA from exosomes was isolated for RNA sequencing and analysis. Stress-induced exo-miRNAs were evaluated for kinetics of expression and release by intact islets for up to 48 h exposure to cytokines and hypoxia. A subset of stress-induced exo-miRNAs were assessed for recovery and detection as biomarkers of islet cell stress in a diabetic nude mouse xenotransplant model and in patients undergoing total pancreatectomy with islet auto-transplantation (TPIAT). Genes and signalling pathways targeted by stress-induced exo-miRNAs were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and direct interactions of miRNAs with downstream signalling targets were validated in human islet cells using the miRNA Tests for Read Analysis and Prediction (MirTrap) system. RESULTS Global exo-miRNA sequencing revealed that 879 miRNA species were released from human islets and 190 islet exo-miRNAs were differentially expressed in response to proinflammatory cytokines, hypoxia or both. Release of exo-miRNAs hsa-miR-29b-3p and hsa-miR-216a-5p was detected within 6 h of exposure to cytokines and hypoxia. The remaining subset of stress-induced exo-miRNAs, including hsa-miR-148a-3p and islet cell damage marker hsa-miR-375, showed delayed release at 24-48 h, correlating with apoptosis and cell death. Stress and damage exo-miRNAs were significantly elevated in the circulation in human-to-mouse xenotransplant models and in human transplant recipients. Elevated blood exo-miRNAs negatively correlated with post-transplant islet function based on comparisons of stress and damage exo-miRNA indices with Secretory Unit of Islet Transplant Objects (SUITO) indices. KEGG analysis and further validation of exo-miRNA targets by MirTrap analysis revealed significant enrichment of islet mRNAs involved in phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase signalling pathways. CONCLUSIONS/INTERPRETATION The study identifies exo-miRNAs differentially expressed and released by islets in response to damage and stress. These exo-miRNAs could serve as potential biomarkers for assessing islet damage and predicting outcomes in islet transplantation. Notably, exo-miRNAs 29b-3p and 216a-5p could be detected in islets prior to damage-released miRNAs and indicators of cellular apoptosis and death. Thus, these stress-induced exo-miRNAs may have potential diagnostic value for detecting early islet stress prior to progressive loss of islet cell mass and function. Further investigations are warranted to investigate the utility of these exo-miRNAs as early indicators of islet cell stress during prediabetic conditions.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Division of Transplantation, Department of Surgery, Virginia Commonwealth University, Medical Center, Richmond, VA, USA
| | - Srividya Vasu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Gumpei Yoshimatsu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Carly M Darden
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Xuan Wang
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Jinghua Gu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Michael C Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA.
| | - Bashoo Naziruddin
- Islet Cell Laboratory, Baylor Simmons Transplant Institute, 3410 Worth Street, Suite 950, Dallas, TX, 75246, USA.
| |
Collapse
|
19
|
Optimizing Temperature and Oxygen Supports Long-term Culture of Human Islets. Transplantation 2019; 103:299-306. [PMID: 29781952 DOI: 10.1097/tp.0000000000002280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Islet transplantation is a promising treatment for type-1 diabetes; however, donor shortage is a concern. Even when a pancreas is available, low islet yield limits the success of transplantation. Islet culture enables pooling of multiple low-yield isolations into an effective islet mass, but isolated islets rapidly deteriorate under conventional culture conditions. Oxygen (O2) depletion in the islet core, which leads to central necrosis and volume loss, is one of the major reasons for this deterioration. METHODS To promote long-term culture of human islets in PIM-R medium (used for islet research), we adjusted temperature (12°C, 22°C, and 37°C) and O2 concentration (21% and 50%). We simulated the O2 distribution in islets based on islet O2 consumption rate and dissolved O2 in the medium. We determined the optimal conditions for O2 distribution and volume maintenance in a 2-week culture and assessed viability and insulin secretion compared to noncultured islets. In vivo islet engraftment was assessed by transplantation into diabetic nonobese diabetic-severe combined immunodeficiency mouse kidneys. We validated our results using CMRL 1066 medium (used for clinical islet transplantation). RESULTS Simulation revealed that 12°C of 50% O2 PIM-R culture supplied O2 effectively into the islet core. This condition maintained islet volume at greater than 90% for 2 weeks. There were no significant differences in viability and function in vitro or diabetic reversal rate in vivo between 2-week cultured and noncultured islets. Similar results were obtained using CMRL 1066. CONCLUSIONS By optimizing temperature and O2 concentration, we cultured human islets for 2 weeks with minimal loss of volume and function.
Collapse
|
20
|
Saravanan PB, Kanak MA, Chang CA, Darden C, Yoshimatsu G, Lawrence MC, Naziruddin B. Islet damage during isolation as assessed by miRNAs and the correlation of miRNA levels with posttransplantation outcome in islet autotransplantation. Am J Transplant 2018; 18:982-989. [PMID: 29210193 DOI: 10.1111/ajt.14615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023]
Abstract
High-quality pancreatic islets are essential for better posttransplantation endocrine function in total pancreatectomy with islet autotransplantation (TPIAT), yet stress during the isolation process affects quality and yield. We analyzed islet-enriched microRNAs (miRNAs) -375 and -200c released during isolation to assess damage and correlated the data with posttransplantation endocrine function. The absolute concentration of miR-375, miR-200c, and C-peptide was measured in various islet isolation steps, including digestion, dilution, recombination, purification, and bagging, in 12 cases of TPIAT. Posttransplantation glycemic control was monitored through C-peptide, hemoglobin A1c , insulin requirement, and SUITO index. The amount of miR-375 released was significantly higher during enzymatic digestion followed by the islet bagging (P < .001). Mir-200c mirrored these changes, albeit at lower concentrations. In contrast, the C-peptide amount was significantly higher in the purification and bagging steps (P < .001). Lower amounts of miR-375 were associated with a lower 6-month insulin requirement (P = .01) and lower hemoglobin A1c (P = .04). Measurement of the absolute quantity of miRNA-375 and -200c released during islet isolation is a useful tool to assess islet damage. The quantity of released miRNA is indicative of posttransplantation endocrine function in TPIAT patients.
Collapse
Affiliation(s)
| | - Mazhar A Kanak
- Transplantation Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Charles A Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Carly Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Gumpei Yoshimatsu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Michael C Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Choinski K, Rocca JP, Torabi J, Lorenzen K, Yongue C, Herbert ME, Block T, Chokechanachaisakul A, Kamal L, Kinkhabwala M, Graham JA. The Pancreas Can Take the Cold: Lower Waitlist Times Through Importation. Transplant Proc 2017; 49:2305-2309. [PMID: 29198666 DOI: 10.1016/j.transproceed.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Our center has used a strategy of pancreas importation owing to long regional waitlist times. Here we assess the clinical outcomes and financial considerations of this strategy. METHODS This was a retrospective observational cohort study of patients who received a pancreas transplant at Montefiore Medical Center (MMC) from 2014 to 2017 (n = 28). Clinical parameters, including hemoglobin A1c and complications, were analyzed. The cohort was compared with United Network for Organ Sharing (UNOS) Region 9 with the use of the UNOS/Organ Procurement and Transplantation Network database. Cost analysis of length of stay (LOS), standard acquisition (SAC) fees, and transportation was performed with the use of internal financial data. RESULTS Pancreas importation resulted in significantly shorter simultaneous pancreas kidney transplant waitlist times compared with Region 9: 518 days vs 1001 days (P = .038). In addition, postoperative complications and 1-year HbA1c did not differ between groups: local 6.30% vs import 6.17% (P = .87). Patients receiving local pancreata stayed an average of 9.2 days compared with 11 days for the import group (P = .36). As such, pancreas importation was associated with higher mean charges ($445,968) compared with local pancreas recipients ($325,470). CONCLUSIONS Long waitlist times in Region 9 have encouraged our center's adoption of pancreas importation to address the needs of our patient population. This practice has resulted in a reduction of waitlist times by an average of 483 days. Understandably, centers have long been wary of importation owing to perceived risk in clinical outcomes. In our single-center experience, we have demonstrated equivalent postoperative glucose control and graft survival. Importantly, there does appear to be increased costs associated with importation, which are mainly driven by LOS. Curiously, importation from regions with lower SAC fees has the potential to offset costs related to transportation expenses. Notwithstanding these findings, pancreas importation does have the potential to lessen the financial societal burden through reduction in waitlist times.
Collapse
Affiliation(s)
- K Choinski
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York
| | - J P Rocca
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York
| | - J Torabi
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York
| | - K Lorenzen
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York
| | - C Yongue
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - M E Herbert
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York
| | - T Block
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York
| | - A Chokechanachaisakul
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York
| | - L Kamal
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York
| | - M Kinkhabwala
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York
| | - J A Graham
- Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York; Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
22
|
|
23
|
Komatsu H, Barriga A, Medrano L, Omori K, Kandeel F, Mullen Y. Oxygenated thawing and rewarming alleviate rewarming injury of cryopreserved pancreatic islets. Biochem Biophys Res Commun 2017; 486:817-823. [PMID: 28351620 DOI: 10.1016/j.bbrc.2017.03.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND/AIMS Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. METHODS Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. RESULTS Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism and better function among the conditions examined. CONCLUSION Oxygenated thawing/rewarming alleviated islet volume loss, with the help of oxygenated culture.
Collapse
Affiliation(s)
- Hirotake Komatsu
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| | - Alyssa Barriga
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Leonard Medrano
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Keiko Omori
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Fouad Kandeel
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yoko Mullen
- Division of Developmental and Translational Diabetes and Endocrinology Research, Department of Diabetes and Metabolic Researches, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|