1
|
Silva ARS, Copetti JB, Monteiro AC, Gotardo M, de Oliveira JD, Macagnan MH, Cardoso EM, Ogliari K. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF DROPLET VITRIFICATION PROCESS: A THERMOFLUIDIC ANALYSIS FOR CRYOPRESERVATION. Cryobiology 2024; 117:105156. [PMID: 39490886 DOI: 10.1016/j.cryobiol.2024.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
One of the biggest challenges in studying vitrification protocols for small volumes of biological materials, especially the microdroplet vitrification protocol, is measuring the solidification rate, requiring equipment with a high level of technology, making it practically impossible to measure the degree of crystallization. An alternative is using mathematical models applied in computer simulations (CFD), helping to improve and develop new vitrification protocols. This study investigates the vitrification process utilizing the microdroplet method through experimental and numerical analysis. Droplets of mineralized water are deposited onto a copper substrate, temperature data is collected, and images of the process are taken with a high-speed camera. Numerical simulations are performed using ANSYS Fluent® software to analyze temperature and solidification behavior. Droplet contact angle measurements are also conducted to determine boundary conditions for numerical simulations. Mesh refinement is conducted using the Grid Convergence Index method, ensuring accuracy in computational results. The simulations employ a solidification model, considering phase enthalpy and thermal properties of the droplet, environment, and substrate. Results show good agreement between numerical and experimental data regarding solidification dynamics and temperature profiles. Furthermore, the study examines the influence of cooling surface geometry on the vitrification process. The contact area between the droplet and the surface increases by machining a cavity on the copper substrate, leading to enhanced cooling rates and reduced stabilization time. This research provides insights into optimizing vitrification processes, contributing to advancements in cryopreservation and material science applications.
Collapse
Affiliation(s)
- Alisson R S Silva
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil.
| | - Jacqueline B Copetti
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - André C Monteiro
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - Marcelo Gotardo
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - Jeferson D de Oliveira
- USP - University of São Paulo, Polytechnic School, SISEA - Renewable and Alternative Energy Systems Laboratory, São Paulo-SP, Brazil
| | - Mario H Macagnan
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - Elaine M Cardoso
- UNESP - São Paulo State University, School of Engineering, São João da Boa Vista-SP, Brazil
| | - Karolyn Ogliari
- HemoCord - Umbilical Cord Blood Bank, Unisinos Technology Park, São Leopoldo-RS, Brazil
| |
Collapse
|
2
|
Altmaier S, Le Harzic R, Stracke F, Speicher AM, Uhl D, Ehrlich J, Gerlach T, Schmidt K, Lemmer K, Lautenschläger F, Böse H, Neubauer JC, Zimmermann H, Meiser I. Cytoskeleton adaptation to stretchable surface relaxation improves adherent cryopreservation of human mesenchymal stem cells. Cryobiology 2024; 117:104958. [PMID: 39243925 DOI: 10.1016/j.cryobiol.2024.104958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Adherent cell systems are usually dissociated before being cryopreserved, as standard protocols are established for cells in suspension. The application of standard procedures to more complex systems, sensitive to dissociation, such as adherent monolayers, especially comprising mature cell types or tissues remains unsatisfactory. Uncontrolled cell detachment due to intracellular tensile stress, membrane ruptures and damages of adhesion proteins are common during freezing and thawing of cell monolayers. However, many therapeutically relevant cell systems grow adherently to develop their native morphology and functionality, but lose their integrity after dissociation. The hypothesis is that cells on stretchable substrates have a more adaptable cytoskeleton and membrane, reducing cryopreservation-induced stress. Our studies investigate the influence of stretchable surfaces on the cryopreservation of adherent cells to avoid harmful dissociation and expedite post-thawing cultivation of functional cells. A stretching apparatus for defined radial stretching, consisting of silicone vessels and films with specific surface textures for cell culture, was developed. Adherent human umbilical cord mesenchymal stem cells (hUC-MSCs) were cultivated on a stretched silicone film within the vessel, forming a monolayer that was compressed by relaxation, while remaining attached to the relaxed film. Compressed hUC-MSCs, which were cryopreserved adherently showed higher viability and less detachment after thawing compared to control cells without compression. Within three to seven days post-thawing, the hUC-MSCs recovered, and the monolayer reformed. These experiments support the hypothesis that cryopreservation success of adherent cell systems is enhanced by improved adaptability of the cytoskeleton and cell membrane, opening up new approaches in cryobiotechnology.
Collapse
Affiliation(s)
- Saskia Altmaier
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123, Saarbrücken, Germany; Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Ronan Le Harzic
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Frank Stracke
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Anna Martina Speicher
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Detlev Uhl
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Johannes Ehrlich
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Thomas Gerlach
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Katharina Schmidt
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Katja Lemmer
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | | | - Holger Böse
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Julia C Neubauer
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Heiko Zimmermann
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123, Saarbrücken, Germany; Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany; Facultad de Ciencias del Mar, Universidad Católica del Norte, 1780000, Coquimbo, Chile
| | - Ina Meiser
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany.
| |
Collapse
|
3
|
Alasmar S, Huang J, Chopra K, Baumann E, Aylsworth A, Hewitt M, Sandhu JK, Tauskela JS, Ben RN, Jezierski A. Improved Cryopreservation of Human Induced Pluripotent Stem Cell (iPSC) and iPSC-derived Neurons Using Ice-Recrystallization Inhibitors. Stem Cells 2023; 41:1006-1021. [PMID: 37622655 PMCID: PMC10631806 DOI: 10.1093/stmcls/sxad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.
Collapse
Affiliation(s)
- Salma Alasmar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Karishma Chopra
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Amy Aylsworth
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| | - Joseph S Tauskela
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, , Faculty of Medicine, Ottawa, ON, Canada
| |
Collapse
|
4
|
Cui M, Zhan T, Yang J, Dang H, Yang G, Han H, Liu L, Xu Y. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomater Sci Eng 2023; 9:1151-1163. [PMID: 36744931 DOI: 10.1021/acsbiomaterials.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryopreservation is currently a key step in translational medicine that could provide new ideas for clinical applications in reproductive medicine, regenerative medicine, and cell therapy. With the advantages of a low concentration of cryoprotectant, fast cooling rate, and easy operation, droplet-based printing for vitrification has received wide attention in the field of cryopreservation. This review summarizes the droplet generation, vitrification, and warming method. Droplet generation techniques such as inkjet printing, microvalve printing, and acoustic printing have been applied in the field of cryopreservation. Droplet vitrification includes direct contact with liquid nitrogen vitrification and droplet solid surface vitrification. The limitations of droplet vitrification (liquid nitrogen contamination, droplet evaporation, gas film inhibition of heat transfer, frosting) and solutions are discussed. Furthermore, a comparison of the external physical field warming method with the conventional water bath method revealed that better applications can be achieved in automated rapid warming of microdroplets. The combination of droplet vitrification technology and external physical field warming technology is expected to enable high-throughput and automated cryopreservation, which has a promising future in biomedicine and regenerative medicine.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Jiamin Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
5
|
Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells 2022; 11:cells11131984. [PMID: 35805069 PMCID: PMC9265327 DOI: 10.3390/cells11131984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Collapse
Affiliation(s)
- Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofre
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-035-288
| |
Collapse
|