1
|
Wang W, Qi Z, Yan C, Zhou Z, Wang J. A Cold-Induced LEA3 Protein, DohD, Confers Cryoprotective Protection Against Low-Temperature Stress in Deinococcus radiodurans. Int J Mol Sci 2025; 26:3511. [PMID: 40332004 DOI: 10.3390/ijms26083511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Deinococcus radiodurans is a remarkably unique microorganism, exhibiting extraordinary tolerance to extreme conditions such as ionizing radiation, ultraviolet light, and desiccation. However, the response mechanisms of D. radiodurans under low-temperature stress remain largely unexplored and have yet to be fully elucidated. The DohD protein is a hydrophilic member of the late embryogenesis abundant 3 (LEA3) family of D. radiodurans, playing a pivotal role in abiotic stress adaptation. Bioinformatics analysis revealed that DohD contains tandem repeats and disordered domains, with a remarkably high α-helix content (91.41%). Furthermore, DohD exhibits extremely low homology with other proteins, highlighting its uniqueness to D. radiodurans. Under low-temperature stress (15 °C), the expression of dohD was significantly upregulated (5-fold), regulated by a dual mechanism involving positive control by DrRRA and negative regulation by Csp. Circular dichroism spectroscopy unveiled temperature-dependent structural plasticity: as the temperature increased from 0 °C to 50° C, the α-helix content decreased from 23.5% to 18.7%, while the antiparallel β-sheet content increased from 31.3% to 50.8%. This suggests an α-helix to β-sheet interconversion mechanism as a strategy for thermal adaptation. Additionally, deletion of dohD impaired the tolerance of D. radiodurans to cold, desiccation, oxidative, and high-salt stresses, accompanied by the reduced activities of antioxidant enzymes (SOD, CAT, POD) and the downregulation of related gene expression. This study elucidates the multifunctional role of DohD in stress resistance through structural dynamics, transcriptional regulation, and redox homeostasis, providing valuable insights into the adaptation mechanisms of extremophiles.
Collapse
Affiliation(s)
- Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunxia Yan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhengfu Zhou
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Liu J, Sun X, Wu Y, Lv Z, Zhou N, Bian C, Sun S. Hypoxia induces ferroptotic cell death mediated by activation of the inner mitochondrial membrane fission protein MTP18/Drp1 in invertebrates. J Biol Chem 2025; 301:108326. [PMID: 39971157 PMCID: PMC11957787 DOI: 10.1016/j.jbc.2025.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Hypoxia and ischemia damage sensitive organelles such as mitochondria, and mitochondrial dysfunction contributes to metabolic disorders in crustaceans under hypoxia. The mechanisms associated with ferroptosis in hypoxic disorders have not been determined in crustaceans. In particular, the early molecular events of mitochondrial dynamics in crustaceans require clarification. In this study, two evolutionarily conserved mitochondrial fission proteins, Drp1 and MTP18, were identified in oriental river prawn (Macrobrachium nipponense). In vitro, ferroptosis-mediated impairment of mitochondrial membrane potential was induced by hypoxia in oriental river prawn hemocytes. In hypoxia-induced hemocytes, activation of Drp1 by increased phosphorylation at S616 was identified. Drp1 mitochondrial translocation also increased, and mitochondrial fusion-related protein expression decreased in vivo. Altered mitochondrial fission-fusion dynamics have been linked to mitochondrial dysfunction, inducing a classic ferroptosis mechanism. Marf overexpression or Drp1 knockdown protected against mitochondrial dysfunction and ferroptotic cell death in vitro. Furthermore, hypoxia-induced mitochondrial fission was verified to be driven by Drp1/MTP18 interaction. Under hypoxia, MTP18 transcription was increased by the binding of activated HIF-1α to hypoxia response elements in its promoter. Conjointly, MTP18 knockdown resulted in less apoptosis and decreased prawn mortality in gill tissue in vitro, suggesting that adaptation to hypoxia involves a vital function by MTP18. In conclusion, we uncovered a conserved role of mitochondrial fission in hypoxia-induced ferroptotic cell death. Therefore, we suggest that specific modulation of MTP18/DRP1-mediated mitochondrial dynamics might be a potential therapeutic strategy in hypoxic stress-induced tissue injury in invertebrates.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Xichao Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Yijie Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Zhimin Lv
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Na Zhou
- School of Pharmacy and State Key Laboratory for Quality Research of Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource,Macau University of Science and Technology, Taipa, Macau, China
| | - Chao Bian
- College of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Zhou L, Ullah F, Zou J, Zeng X. Molecular and Physiological Responses of Plants that Enhance Cold Tolerance. Int J Mol Sci 2025; 26:1157. [PMID: 39940925 PMCID: PMC11818088 DOI: 10.3390/ijms26031157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Low-temperature stress, including chilling and freezing injuries, significantly impacts plant growth in tropical and temperate regions. Plants respond to cold stress by activating mechanisms that enhance freezing tolerance, such as regulating photosynthesis, metabolism, and protein pathways and producing osmotic regulators and antioxidants. Membrane stability is crucial, with cold-resistant plants exhibiting higher lipid unsaturation to maintain fluidity and normal metabolism. Low temperatures disrupt reactive oxygen species (ROS) metabolism, leading to oxidative damage, which is mitigated by antioxidant defenses. Hormonal regulation, involving ABA, auxin, gibberellins, and others, further supports cold adaptation. Plants also manage osmotic balance by accumulating osmotic regulators like proline and sugars. Through complex regulatory pathways, including the ICE1-CBF-COR cascade, plants optimize gene expression to survive cold stress, ensuring adaptability to freezing conditions. This study reviews the recent advancements in genetic engineering technologies aimed at enhancing the cold resistance of agricultural crops. The goal is to provide insights for further improving plant cold tolerance and developing new cold-tolerant varieties.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Fazal Ullah
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China;
| | - Jixin Zou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
4
|
Hidrobo MS, Höring M, Brunner S, Liebisch G, Schweizer S, Klingenspor M, Schreiber R, Zechner R, Burkhardt R, Ecker J. Cold-induced phosphatidylethanolamine synthesis in liver and brown adipose tissue of mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159562. [PMID: 39214167 DOI: 10.1016/j.bbalip.2024.159562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Increasing energy expenditure in brown adipose (BAT) tissue by cold-induced lipolysis is discussed as a potential strategy to counteract imbalanced lipid homeostasis caused through unhealthy lifestyle and cardiometabolic disease. Yet, it is largely unclear how liberated fatty acids (FA) are metabolized. We investigated the liver and BAT lipidome of mice housed for 1 week at thermoneutrality, 23 °C and 4 °C using quantitative mass spectrometry-based lipidomics. Housing at temperatures below thermoneutrality triggered the generation of phosphatidylethanolamine (PE) in both tissues. Particularly, the concentrations of PE containing polyunsaturated fatty acids (PUFA) in their acyl chains like PE 18:0_20:4 were increased at cold. Investigation of the plasma's FA profile using gas chromatography coupled to mass spectrometry revealed a negative correlation of PUFA with unsaturated PE in liver and BAT indicating a flux of FA from the circulation into these tissues. Beta-adrenergic stimulation elevated intracellular levels of PE 38:4 and PE 40:6 in beige wildtype adipocytes, but not in adipose triglyceride lipase (ATGL)-deficient cells. These results imply an induction of PE synthesis in liver, BAT and thermogenic adipocytes after activation of the beta-adrenergic signaling cascade.
Collapse
Affiliation(s)
- Maria Soledad Hidrobo
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sarah Brunner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sabine Schweizer
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/2, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/2, 8010 Graz, Austria
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
5
|
Liu X, Wang FY, Chi S, Liu T, Yang HL, Zhong RJ, Li XY, Gao J. Mitochondria-targeting peptide SS-31 attenuates ferroptosis via inhibition of the p38 MAPK signaling pathway in the hippocampus of epileptic rats. Brain Res 2024; 1836:148882. [PMID: 38521160 DOI: 10.1016/j.brainres.2024.148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Ferroptosis is a newly identified form of non-apoptotic regulated cell death (RCD) andplaysanimportantrole in epileptogenesis. The p38 mitogen-activated protein kinase (p38 MAPK) pathway has been confirmed to be involved in ferroptosis. The mitochondria-targeting antioxidant Elamipretide (SS-31) can reduce the generation of lipid peroxidation and the buildup of reactive oxygen species (ROS). Collectively, our present study was to decipher whether SS-31 inhibits ferroptosis via the p38 MAPK signaling pathway in the rat epilepsy model induced by pilocarpine (PILO).Adult male Wistar rats were randomly divided into four groups: control group (CON group), epilepsy group (EP group), SS-31 treatment group (SS group), and p38 MAPK inhibitor (SB203580) treatment group (SB group). Our results demonstrated that the rat hippocampal neurons after epilepsy were followed by accumulated iron and malondialdehyde (MDA) content, upregulated phosphorylated p38 MAPK protein (P-p38) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels, reduced glutathione peroxidase 4 (Gpx4) content, and depleted glutathione (GSH) activity. Morphologically, mitochondrial ultrastructural damage under electron microscopy was manifested by a partial increase in outer membrane density, disappearance of mitochondrial cristae, and mitochondrial shrinkage. SS-31 and SB203580 treatment blocked the initiation and progression of ferroptosis in the hippocampus of epileptic rats via reducing the severity of epileptic seizures, reversing the expression of Gpx4, P-p38 , decreasing the levels of iron and MDA, as well as increasing the activity of GSH and Nrf2. To summarize, our findings proved that ferroptosis was coupled with the pathology of epilepsy, and SS-31 can inhibit PILO-induced seizures by preventing ferroptosis, which may be connected to the inhibition of p38 MAPK phosphorylation, highlighting the potential therapeutic value for targeting ferroptosis process in individuals with seizure-related diseases.
Collapse
Affiliation(s)
- Xue Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fei-Yu Wang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hai-Lin Yang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ru-Jie Zhong
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiao-Yu Li
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|