1
|
Qin WQ, Liu YF, Zhou L, Liu JF, Fei D, Xiang KH, Yang SZ, Gu JD, Mu BZ. Genome mining, structural elucidation and surface-active property of a new lipopeptide from Bacillus subtilis. Microb Cell Fact 2025; 24:106. [PMID: 40369563 PMCID: PMC12076922 DOI: 10.1186/s12934-025-02723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The Bacillus genus is well known for producing structurally diverse lipopeptides, many of which exhibit remarkable surface-active and bioactive properties, such as surfactin and daptomycin. In recent years, genome mining has emerged as an effective tool for the discovery of novel natural products by predicting biosynthetic gene clusters and linking them to secondary metabolite production. However, the full biosynthetic potential of many Bacillus subtilis strains remains unexplored. Therefore, this study aimed to investigate the biosynthetic potential of an oilfield-isolated Bacillus subtilis strain through genome mining, with the goal of identifying novel lipopeptides with enhanced surface activity. RESULTS In this study, we identified 14 biosynthetic gene clusters, four of which were related to lipopeptide biosynthesis. In addition, a lipopeptide was characterized as a new member of the surfactin family, namely surfactin-C18. The primary structure of surfactin-C18 was determined to be a heptapeptide ring of N-Glu-Leu-Leu-Val-Asp-Leu-Leu-C linked to the longest β-hydroxy fatty acid in the surfactin family, containing 18 carbon atoms. Moreover, we investigated the surface activity of surfactin-C18, measuring its critical micelle concentration and the surface tension to be 1.99 µmol/L and 28.63 mN/m, respectively. The obtained adsorption parameters of surfactin-C18 at the air/liquid interface further explained its enhanced surface activity in comparison with other surfactin homologs and commercial surfactants. CONCLUSIONS To the best of our knowledge, this is the first report on the structural characterization and surface activity of surfactin-C18. In addition, our findings not only demonstrate the biosynthetic potential of B. subtilis but also highlight the power of the genome mining strategy for discovering novel lipopeptides with industrial applications.
Collapse
Affiliation(s)
- Wan-Qi Qin
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237, P.R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Jin-Feng Liu
- Daqing Huali Biotechnology Co., Ltd, Daqing, Heilongjiang, 163511, P. R. China
| | - Dan Fei
- Institute of Quality Safety and Standards of Agricultural Products, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, P. R. China
| | - Ke-Heng Xiang
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237, P.R. China.
| |
Collapse
|
2
|
Rathakrishnan B, Dhanalakshmi V, Rajendhran J. Comparative Genomic Analysis of Three Paenibacillus polymyxa Strains Isolated from Termitarium and Identification of Novel Biosynthetic Gene Clusters. Curr Microbiol 2025; 82:180. [PMID: 40057921 DOI: 10.1007/s00284-025-04164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
The emergence of multidrug-resistant (MDR) pathogens poses a significant global threat in healthcare settings, emphasizing the critical need for novel antibiotic discovery. Consequently, international efforts are continuously directed towards identifying new antibiotics from diverse microbial sources. We investigated the biosynthetic potential of three Paenibacillus polymyxa strains isolated from a termitarium, WGTm-28, WGTm-93, and WGTm-147. These strains exhibited a broad-spectrum of antimicrobial activity against clinical and plant pathogens. Whole-genome sequencing using the Illumina platform and subsequent annotation revealed 112 biosynthetic gene clusters (BGCs) responsible for synthesizing diverse secondary metabolites. Notably, BGCs encoding polymyxin, fusaricidin B, and tridecaptin were identified in all three strains. Anabaenopeptin NZ857/nostamide A was found in WGTm-28 and WGTm-93, while paenibacillin and paenilan were found only in WGTm-93. A BGC coding for rhizomideA/B/C was exclusively present in WGTm-147. BGCs encoding marthiapeptide A, aurantinin B/C/D, cerecidin, paenibacterin, paenicidin B, and calyculin A were identified with lower identity (from 28 to 60%) with previously reported organisms. Interestingly, 33 putative NRPS BGCs, hybrid clusters, and PKSs BGC were discovered with ≤ 25% or no identity to known antibiotics, suggesting the potential of synthesizing novel antimicrobial agents by these strains.
Collapse
Affiliation(s)
- Boomiga Rathakrishnan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Venkatesan Dhanalakshmi
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
3
|
Almirón C, Petitti TD, Ponso MA, Romero AM, Areco VA, Bianco MI, Espariz M, Yaryura PM. Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere. Sci Rep 2025; 15:3498. [PMID: 39875501 PMCID: PMC11775226 DOI: 10.1038/s41598-025-87390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo. Both possess genes associated with the production of siderophores, indole acetic acid (IAA) and cytokinins (CKs), all of which have been shown to promote plant growth. The two strains were able to produce these compounds in vitro. Although both genomes harbor genes for phosphorus solubilization, only VMY10 demonstrated this ability in vitro. Genes linked to flagellar assembly and chemotaxis were identified in the two cases. Both strains were able to colonize plant roots, even though VMYP6 lacked motility and no flagella were observed microscopically. In the greenhouse, tomato plants inoculated with the strains showed increased biomass, leaf area, and root length. These findings underscore the importance of integrating in vitro assays, genomic analyses, and plant trials to gain a comprehensive insight into the PGP mechanisms of rhizobacteria like VMYP6 and VMY10. Such insight may contribute to improving the selection of strains used as biofertilizers in tomato, a major crop worldwide.
Collapse
Affiliation(s)
- Carolina Almirón
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina
| | - Tomás Denis Petitti
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Mitre 1998, S2000FWF, Rosario, Argentina
- Área Bioinformática, Departamento de Matemática Y Estadística, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Agustina Ponso
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina
| | - Ana María Romero
- Cátedra de Fitopatología, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanessa Andrea Areco
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina
- Cátedra de Bioquímica y Biología Molecular, FCM (UNC), Córdoba, Argentina
| | - María Isabel Bianco
- Instituto de Ciencia y Tecnología Dr. César Milstein - Fundación Pablo Cassará - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación en Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad del Salvador, Buenos Aires, Argentina
| | - Martín Espariz
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Facultad de Ciencias, Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), CONICET, Mitre 1998, S2000FWF, Rosario, Argentina.
- Área Bioinformática, Departamento de Matemática Y Estadística, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Pablo Marcelo Yaryura
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina.
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Argentina.
| |
Collapse
|
4
|
Rojas-Villalta D, Núñez-Montero K, Chavarría-Pizarro L. Social wasp-associated Tsukamurella sp. strains showed promising biosynthetic and bioactive potential for discovery of novel compounds. Sci Rep 2024; 14:21118. [PMID: 39256493 PMCID: PMC11387468 DOI: 10.1038/s41598-024-71969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
In the face of escalating antibiotic resistance, the quest for novel antimicrobial compounds is critical. Actinobacteria is known for producing a substantial fraction of bioactive molecules from microorganisms, nonetheless there is the challenge of metabolic redundancy in bioprospecting. New sources of natural products are needed to overcome these current challenges. Our present work proposes an unexplored potential of Neotropical social wasp-associated microbes as reservoirs of novel bioactive compounds. Using social wasp-associated Tsukamurella sp. strains 8F and 8J, we aimed to determine their biosynthetic potential for producing novel antibiotics and evaluated phylogenetic and genomic traits related to environmental and ecological factors that might be associated with promising bioactivity and evolutionary specialization. These strains were isolated from the cuticle of social wasps and subjected to comprehensive genome sequencing. Our genome mining efforts, employing antiSMASH and ARTS, highlight the presence of BGCs with minimal similarity to known compounds, suggesting the novelty of the molecules they may produce. Previous, bioactivity assays of these strains against bacterial species which harbor known human pathogens, revealed inhibitory potential. Further, our study focuses into the phylogenetic and functional landscape of the Tsukamurella genus, employing a throughout phylogenetic analysis that situates strains 8F and 8J within a distinct evolutionary pathway, matching with the environmental and ecological context of the strains reported for this genus. Our findings emphasize the importance of bioprospecting in uncharted biological territories, such as insect-associated microbes as reservoirs of novel bioactive compounds. As such, we posit that Tsukamurella sp. strains 8F and 8J represent promising candidates for the development of new antimicrobials.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Department of Biology, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco, Chile.
| | - Laura Chavarría-Pizarro
- Department of Biology, Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.
| |
Collapse
|
5
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Kim MS, Jeong DE, Jang JP, Jang JH, Choi SK. Mining biosynthetic gene clusters in Paenibacillus genomes to discover novel antibiotics. BMC Microbiol 2024; 24:226. [PMID: 38937695 PMCID: PMC11210098 DOI: 10.1186/s12866-024-03375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Bacterial antimicrobial resistance poses a severe threat to humanity, necessitating the urgent development of new antibiotics. Recent advances in genome sequencing offer new avenues for antibiotic discovery. Paenibacillus genomes encompass a considerable array of antibiotic biosynthetic gene clusters (BGCs), rendering these species as good candidates for genome-driven novel antibiotic exploration. Nevertheless, BGCs within Paenibacillus genomes have not been extensively studied. RESULTS We conducted an analysis of 554 Paenibacillus genome sequences, sourced from the National Center for Biotechnology Information database, with a focused investigation involving 89 of these genomes via antiSMASH. Our analysis unearthed a total of 848 BGCs, of which 716 (84.4%) were classified as unknown. From the initial pool of 554 Paenibacillus strains, we selected 26 available in culture collections for an in-depth evaluation. Genomic scrutiny of these selected strains unveiled 255 BGCs, encoding non-ribosomal peptide synthetases, polyketide synthases, and bacteriocins, with 221 (86.7%) classified as unknown. Among these strains, 20 exhibited antimicrobial activity against the gram-positive bacterium Micrococcus luteus, yet only six strains displayed activity against the gram-negative bacterium Escherichia coli. We proceeded to focus on Paenibacillus brasilensis, which featured five new BGCs for further investigation. To facilitate detailed characterization, we constructed a mutant in which a single BGC encoding a novel antibiotic was activated while simultaneously inactivating multiple BGCs using a cytosine base editor (CBE). The novel antibiotic was found to be localized to the cell wall and demonstrated activity against both gram-positive bacteria and fungi. The chemical structure of the new antibiotic was elucidated on the basis of ESIMS, 1D and 2D NMR spectroscopic data. The novel compound, with a molecular weight of 926, was named bracidin. CONCLUSIONS This study outcome highlights the potential of Paenibacillus species as valuable sources for novel antibiotics. In addition, CBE-mediated dereplication of antibiotics proved to be a rapid and efficient method for characterizing novel antibiotics from Paenibacillus species, suggesting that it will greatly accelerate the genome-based development of new antibiotics.
Collapse
Grants
- NRF-2018M3A9F3079565 National Research Foundation of Korea
- NRF-2018M3A9F3079565 National Research Foundation of Korea
- NRF-2018M3A9F3079565 National Research Foundation of Korea
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
- KGM9942421, KGM5292423, and KGM1222413 Korea Research Institute of Bioscience and Biotechnology
Collapse
Affiliation(s)
- Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Li B, He X, Guo S, Li D, Wang Y, Meng X, Dai P, Hu T, Cao K, Wang S. Characterization of Bacillus amyloliquefaciens BA-4 and its biocontrol potential against Fusarium-related apple replant disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1370440. [PMID: 38708392 PMCID: PMC11067707 DOI: 10.3389/fpls.2024.1370440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Apple replant disease (ARD), caused by Fusarium pathogens, is a formidable threat to the renewal of apple varieties in China, necessitating the development of effective and sustainable control strategies. In this study, the bacterial strain BA-4 was isolated from the rhizosphere soil of healthy apple trees in a replanted orchard, demonstrating a broad-spectrum antifungal activity against five crucial apple fungal pathogens. Based on its morphology, physiological and biochemical traits, utilization of carbon sources, and Gram stain, strain BA-4 was tentatively identified as Bacillus amyloliquefaciens. Phylogenetic analysis using 16S rDNA and gyrB genes conclusively identified BA-4 as B. amyloliquefaciens. In-depth investigations into B. amyloliquefaciens BA-4 revealed that the strain possesses the capacity to could secrete cell wall degrading enzymes (protease and cellulase), produce molecules analogous to indole-3-acetic acid (IAA) and siderophores, and solubilize phosphorus and potassium. The diverse attributes observed in B. amyloliquefaciens BA-4 underscore its potential as a versatile microorganism with multifaceted benefits for both plant well-being and soil fertility. The extracellular metabolites produced by BA-4 displayed a robust inhibitory effect on Fusarium hyphal growth and spore germination, inducing irregular swelling, atrophy, and abnormal branching of fungal hyphae. In greenhouse experiments, BA-4 markedly reduced the disease index of Fusarium-related ARD, exhibiting protective and therapeutic efficiencies exceeding 80% and 50%, respectively. Moreover, BA-4 demonstrated plant-promoting abilities on both bean and Malus robusta Rehd. (MR) seedlings, leading to increased plant height and primary root length. Field experiments further validated the biocontrol effectiveness of BA-4, demonstrating its ability to mitigate ARD symptoms in MR seedlings with a notable 33.34% reduction in mortality rate and improved biomass. Additionally, BA-4 demonstrates robust and stable colonization capabilities in apple rhizosphere soil, particularly within the 10-20 cm soil layer, which indicates that it has long-term effectiveness potential in field conditions. Overall, B. amyloliquefaciens BA-4 emerges as a promising biocontrol agent with broad-spectrum antagonistic capabilities, positive effects on plant growth, and strong colonization abilities for the sustainable management of ARD in apple cultivation.
Collapse
Affiliation(s)
- Bo Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoxing He
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Saiya Guo
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Dongxu Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Luna-Bulbarela A, Romero-Gutiérrez MT, Tinoco-Valencia R, Ortiz E, Martínez-Romero ME, Galindo E, Serrano-Carreón L. Response of Bacillus velezensis 83 to interaction with Colletotrichum gloeosporioides resembles a Greek phalanx-style formation: A stress resistant phenotype with antibiosis capacity. Microbiol Res 2024; 280:127592. [PMID: 38199003 DOI: 10.1016/j.micres.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Plant growth-promoting rhizobacteria, such as Bacillus spp., establish beneficial associations with plants and may inhibit the growth of phytopathogenic fungi. However, these bacteria are subject to multiple biotic stimuli from their competitors, causing stress and modifying their development. This work is a study of an in vitro interaction between two model microorganisms of socioeconomic relevance, using population dynamics and transcriptomic approaches. Co-cultures of Bacillus velezensis 83 with the phytopathogenic fungus Colletotrichum gloeosporioides 09 were performed to evaluate the metabolic response of the bacteria under conditions of non-nutritional limitation. The bacterial response was associated with the induction of a stress-resistant phenotype, characterized by a lower specific growth rate, but with antimicrobial production capacity. About 12% of co-cultured B. velezensis 83 coding sequences were differentially expressed, including the up-regulation of the general stress response (sigB regulon), and the down-regulation of alternative carbon sources catabolism (glucose preference). Defense strategies in B. velezensis are a determining factor in order to preserve the long-term viability of its population. Mostly, the presence of the fungus does not affect the expression of antibiosis genes, except for those corresponding to surfactin/bacillomycin D production. Indeed, the up-regulation of antibiosis genes expression is associated with bacterial growth, regardless of the presence of the fungus. This behavior in B. velezensis 83 resembles the strategy used by the classical Greek phalanx formation: by sacrificing growth rate and metabolic versatility, resources can be redistributed to defense (stress resistant phenotype) while maintaining the attack (antibiosis capacity). The presented results are the first characterization of the molecular phenotype at the transcriptome level of a biological control agent under biotic stress caused by a phytopathogen without nutrient limitation.
Collapse
Affiliation(s)
- Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - María Teresa Romero-Gutiérrez
- Technological Innovation Department, Tlajomulco University Center, University of Guadalajara, 45641 Tlajomulco de Zúñiga, Jalisco, Mexico; Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430 Guadalajara, Jalisco, Mexico
| | - Raunel Tinoco-Valencia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - María Esperanza Martínez-Romero
- Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Kim H, Han CY, Eun SH, Kim MG, Im AR, Lee B. Inhibitory effects of Bacillus velezensis ID-A01 supernatant against Streptococcus mutans. BMC Microbiol 2023; 23:362. [PMID: 37996837 PMCID: PMC10668352 DOI: 10.1186/s12866-023-03114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Dental caries is a chronic oral disease caused by microbial infections, which result in erosion of the dental enamel and cause irreversible damage. Therefore, proper disease management techniques and the creation of an environment that prevents intraoral growth and biofilm formation of Streptococcus mutans in the early stages, are crucial to prevent the potential progression of dental plaque to disease. Here, we aimed to investigate antimicrobial and antibiofilm effects of the Bacillus velezensis ID-A01 supernatant (ID23029) against S. mutans, and its inhibitory effects on acidogenesis. RESULTS A killing kinetics assay showed a peak lethality percentage of 94.5% after 6 h of exposure to ID23029. In sucrose-exposed conditions, ID23029 inhibited lactic acid formation, preventing the pH from falling below the threshold for enamel demineralization, and inhibited up to 96.6% of biofilm formation. This effect was maintained in the presence of lysozyme. Furthermore, ID23029 retained up to 92% lethality, even at an intraoral concentration at which lysozyme is ineffective against S. mutans. CONCLUSIONS This study demonstrates the potential of the B. velezensis ID-A01 supernatant for the prevention and treatment of dental caries. Its eventual use in dental practice is encouraged, although further studies are required to confirm its beneficial effects.
Collapse
Affiliation(s)
- Hyeoungeun Kim
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, 20, Samsung 1-ro 1-gil, Hwaseong-si 18449, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Chi-Young Han
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, 20, Samsung 1-ro 1-gil, Hwaseong-si 18449, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Su-Hyeon Eun
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, 20, Samsung 1-ro 1-gil, Hwaseong-si 18449, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Min-Goo Kim
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, 20, Samsung 1-ro 1-gil, Hwaseong-si 18449, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - A-Rang Im
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, 20, Samsung 1-ro 1-gil, Hwaseong-si 18449, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Byeonghun Lee
- Research Laboratories, Ildong Pharmaceutical Co., Ltd, 20, Samsung 1-ro 1-gil, Hwaseong-si 18449, Hwaseong-si, Gyeonggi-do, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbum-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
11
|
Qiu H, Xiao Y, Shen L, Han T, He Q, Li A, Zhang P, Cai X. Genome-driven discovery of new serrawettin W2 analogues from Serratia fonticola DSM 4576. Org Biomol Chem 2023; 21:9029-9036. [PMID: 37930431 DOI: 10.1039/d3ob01642k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
By expressing a multimodular NRPS gene sefA from Serratia fonticola DSM 4576 in E. coli, four new serrawettin W2 analogues, namely sefopeptides A-D (1-4), were isolated and structurally characterized and their biosynthesis was proposed. A bioactivity assay showed that sefopeptide C (3) exhibits moderate cytotoxic activity against acute promyelocytic leukemia NB4 cells.
Collapse
Affiliation(s)
- Haolin Qiu
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Yang Xiao
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Ling Shen
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Tao Han
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Qiang He
- Xianning Public Inspection Center of Hubei Province, Xianning 437000, P. R. China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Peng Zhang
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Xiaofeng Cai
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
- State Key Laboratory of Dao-di Herbs, Beijing 100700, P. R. China
| |
Collapse
|
12
|
Chukwudulue UM, Barger N, Dubovis M, Luzzatto Knaan T. Natural Products and Pharmacological Properties of Symbiotic Bacillota (Firmicutes) of Marine Macroalgae. Mar Drugs 2023; 21:569. [PMID: 37999393 PMCID: PMC10672036 DOI: 10.3390/md21110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The shift from the terrestrial to the marine environment to discover natural products has given rise to novel bioactive compounds, some of which have been approved for human medicine. However, the ocean, which makes up nearly three-quarters of the Earth's surface, contains macro- and microorganisms whose natural products are yet to be explored. Among these underexplored marine organisms are macroalgae and their symbiotic microbes, such as Bacillota, a phylum of mostly Gram-positive bacteria previously known as Firmicutes. Macroalgae-associated Bacillota often produce chemical compounds that protect them and their hosts from competitive and harmful rivals. Here, we summarised the natural products made by macroalgae-associated Bacillota and their pharmacological properties. We discovered that these Bacillota are efficient producers of novel biologically active molecules. However, only a few macroalgae had been investigated for chemical constituents of their Bacillota: nine brown, five red and one green algae. Thus, Bacillota, especially from the marine habitat, should be investigated for potential pharmaceutical leads. Moreover, additional diverse biological assays for the isolated molecules of macroalgae Bacillota should be implemented to expand their bioactivity profiles, as only antibacterial properties were tested for most compounds.
Collapse
Affiliation(s)
| | | | | | - Tal Luzzatto Knaan
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 103301, Israel; (U.M.C.); (N.B.); (M.D.)
| |
Collapse
|
13
|
Liu SX, Ou-Yang SY, Lu YF, Guo CL, Dai SY, Li C, Yu TY, Pei YH. Recent advances on cyclodepsipeptides: biologically active compounds for drug research. Front Microbiol 2023; 14:1276928. [PMID: 37849925 PMCID: PMC10577210 DOI: 10.3389/fmicb.2023.1276928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Cyclodepsipeptides are a large family of peptide-related natural products consisting of hydroxy and amino acids linked by amide and ester bonds. A number of cyclodepsipeptides have been isolated and characterized from fungi and bacteria. Most of them showed antitumor, antifungal, antiviral, antimalarial, and antitrypanosomal properties. Herein, this review summarizes the recent literatures (2010-2022) on the progress of cyclodepsipeptides from fungi and bacteria except for those of marine origin, in order to enrich our knowledge about their structural features and biological sources.
Collapse
Affiliation(s)
- Si-Xuan Liu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Si-Yi Ou-Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yong-Fu Lu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chun-Lin Guo
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tian-Yi Yu
- The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Puan SL, Erriah P, Baharudin MMAA, Yahaya NM, Kamil WNIWA, Ali MSM, Ahmad SA, Oslan SN, Lim S, Sabri S. Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Appl Microbiol Biotechnol 2023; 107:5569-5593. [PMID: 37450018 DOI: 10.1007/s00253-023-12651-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
Collapse
Affiliation(s)
- Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohamad Malik Al-Adil Baharudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, 31499, Asan-Si, Chungnam, Republic of Korea
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
De la Cruz-Rodríguez Y, Adrián-López J, Martínez-López J, Neri-Márquez BI, García-Pineda E, Alvarado-Gutiérrez A, Fraire-Velázquez S. Biosynthetic Gene Clusters in Sequenced Genomes of Four Contrasting Rhizobacteria in Phytopathogen Inhibition and Interaction with Capsicum annuum Roots. Microbiol Spectr 2023; 11:e0307222. [PMID: 37222590 PMCID: PMC10269915 DOI: 10.1128/spectrum.03072-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Through screening of rhizobacteria, species that effectively suppress phytopathogens and/or promote plant growth are found. Genome sequencing is a crucial step in obtaining a complete characterization of microorganisms for biotechnological applications. This study aimed to sequence the genomes of four rhizobacteria that differ in their inhibition of four root pathogens and in their interaction with chili pepper roots to identify the species and analyze differences in the biosynthetic gene clusters (BGCs) for antibiotic metabolites and to determine possible phenotype-genotype correlations. Results from sequencing and genome alignment identified two bacteria as Paenibacillus polymyxa, one as Kocuria polaris, and one that was previously sequenced as Bacillus velezensis. Analysis with antiSMASH and PRISM tools showed that B. velezensis 2A-2B, the strain with the best performance of referred characteristics, had 13 BGCs, including those related to surfactin, fengycin, and macrolactin, not shared with the other bacteria, whereas P. polymyxa 2A-2A and 3A-25AI, with up to 31 BGCs, showed lower pathogen inhibition and plant hostility; K. polaris showed the least antifungal capacity. P. polymyxa and B. velezensis had the highest number of BGCs for nonribosomal peptides and polyketides. In conclusion, the 13 BGCs in the genome of B. velezensis 2A-2B that were not present in the other bacteria could explain its effective antifungal capacity and could also contribute to its friendly interaction with chili pepper roots. The high number of other BGCs for nonribosomal peptides and polyketide shared by the four bacteria contributed much less to phenotypic differences. IMPORTANCE To advance the characterization of a microorganism as a biocontrol agent against phytopathogens, it is highly recommended to analyze the potential of the profile of secondary metabolites as antibiotics that it produces to counteract pathogens. Some specific metabolites have positive impacts in plants. By analyzing sequenced genomes with bioinformatic tools, such as antiSMASH and PRISM, outstanding bacterial strains with high potential to inhibit phytopathogens and/or promote plant growth can be quickly selected to confirm and expand our knowledge of BGCs of great value in phytopathology.
Collapse
Affiliation(s)
- Yumiko De la Cruz-Rodríguez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jesús Adrián-López
- Lab. MicroRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jazmín Martínez-López
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Bibiana Itzel Neri-Márquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | | | - Alejandro Alvarado-Gutiérrez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Saúl Fraire-Velázquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
16
|
Martín-González D, Bordel S, Solis S, Gutierrez-Merino J, Santos-Beneit F. Characterization of Bacillus Strains from Natural Honeybee Products with High Keratinolytic Activity and Antimicrobial Potential. Microorganisms 2023; 11:microorganisms11020456. [PMID: 36838421 PMCID: PMC9959047 DOI: 10.3390/microorganisms11020456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Two efficient feather-degrading bacteria were isolated from honeybee samples and identified as Bacillus sonorensis and Bacillus licheniformis based on 16S rRNA and genome sequencing. The strains were able to grow on chicken feathers as the sole carbon and nitrogen sources and degraded the feathers in a few days. The highest keratinase activity was detected by the B. licheniformis CG1 strain (3800 U × mL-1), followed by B. sonorensis AB7 (1450 U × mL-1). Keratinase from B. licheniformis CG1 was shown to be active across a wide range of pH, potentially making this strain advantageous for further industrial applications. All isolates displayed antimicrobial activity against Micrococcus luteus; however, only B. licheniformis CG1 was able to inhibit the growth of Mycobacterium smegmatis. In silico analysis using BAGEL and antiSMASH identified gene clusters associated with the synthesis of non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKSs) and/or ribosomally synthesized and post-translationally modified peptides (RiPPs) in most of the Bacillus isolates. B. licheniformis CG1, the only strain that inhibited the growth of the mycobacterial strain, contained sequences with 100% similarity to lichenysin (also present in the other isolates) and lichenicidin (only present in the CG1 strain). Both compounds have been described to display antimicrobial activity against distinct bacteria. In summary, in this work, we have isolated a strain (B. licheniformis CG1) with promising potential for use in different industrial applications, including animal nutrition, leather processing, detergent formulation and feather degradation.
Collapse
Affiliation(s)
- Diego Martín-González
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Sergio Bordel
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Selvin Solis
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | | | - Fernando Santos-Beneit
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence:
| |
Collapse
|
17
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
18
|
Secretome of Paenibacillus sp. S-12 provides an insight about its survival and possible pathogenicity. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01032-4. [PMID: 36642775 DOI: 10.1007/s12223-023-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/01/2023] [Indexed: 01/17/2023]
Abstract
Our aim in this study was to characterize and investigate the secretome of Paenibacillus sp. S-12 by nanoLC-MS/MS tool-based analysis of trypsin digested culture supernatant proteins. Using a bioinformatics and combined approach of mass spectrometry, we identified 657 proteins in the secretome. Bioinformatic tools such as PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb were used for the subcellular localization and categorization of secretome on basis of signal peptides. Among the identified proteins, more than 25% of the secretome proteins were associated with virulence proteins including flagellar, adherence, and immune modulators. Gene ontology analysis using Blast2GO tools categorized 60 proteins of the secretome into biological processes, cellular components, and molecular functions. KEGG pathway analysis identified the enzymes or proteins involved in various biosynthesis and degradation pathways. Functional analysis of secretomes reveals a large number of proteins involved in the uptake and exchange of nutrients, colonization, and chemotaxis. A good number of proteins were involved in survival and defense mechanism against oxidative stress, the production of toxins and antimicrobial compounds. The present study is the first report of the in-depth protein profiling of Paenibacillus bacterium. In summary, the current findings of Paenibacillus sp. S-12 secretome provide basic information to understand its survival and the possible pathogenic mechanism.
Collapse
|
19
|
Sverchkova NV, Akhremchuk AE, Valentovich LN, Kolomiets EI. A Molecular Genetic Analysis of the Bacterial Genome of Bacillus velezensis BIM B‑454 D: The Basis of a Probiotic Preparation for Veterinary Practice. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
20
|
Clements-Decker T, Kode M, Khan S, Khan W. Underexplored bacteria as reservoirs of novel antimicrobial lipopeptides. Front Chem 2022; 10:1025979. [PMID: 36277345 PMCID: PMC9581180 DOI: 10.3389/fchem.2022.1025979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.
Collapse
Affiliation(s)
| | - Megan Kode
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Wesaal Khan,
| |
Collapse
|
21
|
Secondary Metabolites from Marine-Derived Bacillus: A Comprehensive Review of Origins, Structures, and Bioactivities. Mar Drugs 2022; 20:md20090567. [PMID: 36135756 PMCID: PMC9501603 DOI: 10.3390/md20090567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The marine is a highly complex ecosystem including various microorganisms. Bacillus species is a predominant microbialflora widely distributed in marine ecosystems. This review aims to provide a systematic summary of the newly reported metabolites produced by marine-derived Bacillus species over recent years covering the literature from 2014 to 2021. It describes the structural diversity and biological activities of the reported compounds. Herein, a total of 87 newly reported metabolites are included in this article, among which 49 compounds originated from marine sediments, indicating that marine sediments are majority sources of productive strains of Bacillus species Therefore, marine-derived Bacillus species are a potentially promising source for the discovery of new metabolites.
Collapse
|
22
|
Mining Biosynthetic Gene Clusters in Carnobacterium maltaromaticum by Interference Competition Network and Genome Analysis. Microorganisms 2022; 10:microorganisms10091794. [PMID: 36144396 PMCID: PMC9504619 DOI: 10.3390/microorganisms10091794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Carnobacterium maltaromaticum is a non-starter lactic acid bacterium (LAB) of interest in the dairy industry for biopreservation. This study investigated the interference competition network and the specialized metabolites biosynthetic gene clusters (BGCs) content in this LAB in order to explore the relationship between the antimicrobial properties and the genome content. Network analysis revealed that the potency of inhibition tended to increase when the inhibition spectrum broadened, but also that several strains exhibited a high potency and narrow spectrum of inhibition. The C. maltaromaticum strains with potent anti-L. monocytogenes were characterized by high potency and a wide intraspecific spectrum. Genome mining of 29 strains revealed the presence of 12 bacteriocin BGCs: four of class I and eight of class II, among which seven belong to class IIa and one to class IIc. Overall, eight bacteriocins and one nonribosomal peptide synthetase and polyketide synthase (NRPS-PKS) BGCs were newly described. The comparison of the antimicrobial properties resulting from the analysis of the network and the BGC genome content allowed us to delineate candidate BGCs responsible for anti-L. monocytogenes and anti-C. maltaromaticum activity. However, it also highlighted that genome analysis is not suitable in the current state of the databases for the prediction of genes involved in the antimicrobial activity of strains with a narrow anti-C. maltaromaticum activity.
Collapse
|
23
|
Jeong DE, Kim MS, Kim HR, Choi SK. Cell Factory Engineering of Undomesticated Bacillus Strains Using a Modified Integrative and Conjugative Element for Efficient Plasmid Delivery. Front Microbiol 2022; 13:802040. [PMID: 35558120 PMCID: PMC9086855 DOI: 10.3389/fmicb.2022.802040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
A large number of Bacillus strains have been isolated from various environments and many of them have great potential as cell factories. However, they have been rarely developed as cell factories due to their poor transformation efficiency. In this study, we developed a highly efficient plasmid delivery system for undomesticated Bacillus strains using a modified integrative and conjugative element (MICE), which was designed to be activated by an inducer, prevent self-transfer, and deliver desired plasmids to the recipient cells. The MICE system was demonstrated to successfully introduce a gfp-containing plasmid into all 41 undomesticated Bacillus subtilis strains tested and eight other Bacillus species. The MICE was used to deliver a cytosine base editor (CBE)-based multiplex genome-editing tool for the cell factory engineering of the Bacillus species. The introduced CBE enabled one-step inactivation of the major extracellular protease genes of the tested strains. The engineered strains were used as hosts for heterologous expression of nattokinase, which resulted in various enzyme expression levels. The results suggested that the MICE and CBE systems can be powerful tools for genetic engineering of undomesticated Bacillus strains, and greatly contribute to the expansion of the Bacillus cell factory.
Collapse
Affiliation(s)
- Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ha-Rim Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
24
|
Yasmin A, Aslam F, Fariq A. Genetic Evidences of Biosurfactant Production in Two Bacillus subtilis Strains MB415 and MB418 Isolated From Oil Contaminated Soil. Front Bioeng Biotechnol 2022; 10:855762. [PMID: 35557861 PMCID: PMC9086163 DOI: 10.3389/fbioe.2022.855762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Biosurfactants are a diverse group of amphiphilic compounds obtained from microbes. In the present study, the genomic analysis of biosurfactant-producing Bacillus subtilis MB415 and MB418 obtained from oil-contaminated soil was performed. Initially, the strains were screened for biosurfactant production by hemolytic assay, emulsification index, and oil displacement. Further FTIR analysis of extracted biosurfactants revealed the presence of lipopeptides. The sequenced genomes of MB415 and MB418 were of 4.2 Mbps with 43% GC content. Among more than 4,500 protein-coding genes, many were involved in virulence, metal/multidrug resistances, flagella assembly, chemotactic response, and aromatic ring hydroxylating dioxygenases. An annotation analysis revealed that both genomes possessed non-ribosomal synthetase gene clusters for the lipopeptide synthetases srf and fen responsible for surfactin and fengycin production. Comparative studies of both genomes highlighted variability in gene operons mainly for surfactin biosynthesis.
Collapse
Affiliation(s)
- Azra Yasmin
- Microbiology and Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Fozia Aslam
- Microbiology and Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Anila Fariq
- Microbiology and Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
- Department of Biotechnology, University of Kotli Azad Jammu and Kashmir, Kotli, Pakistan
| |
Collapse
|
25
|
Choi Y, Kim YH. Regulatory role of cysteines in (2R, 3R)-butanediol dehydrogenase BdhA of Bacillus velezensis strain GH1-13. J Microbiol 2022; 60:411-418. [DOI: 10.1007/s12275-022-2018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
|
26
|
Bacterial hitchhikers derive benefits from fungal housing. Curr Biol 2022; 32:1523-1533.e6. [PMID: 35235767 PMCID: PMC9009100 DOI: 10.1016/j.cub.2022.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.
Collapse
|
27
|
Antibiotic-active heterotrophic Firmicutes sheltered in seaweeds: can they add new dimensions to future antimicrobial agents? Arch Microbiol 2022; 204:183. [PMID: 35179656 DOI: 10.1007/s00203-022-02784-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Appearance of drug-resistant microorganisms prompted researchers to unravel new environments for development of novel antimicrobial agents. Culture-supported analysis of heterotrophic bacteria associated with seaweeds yielded 152 strains, in that larger share of the isolates was embodied by Bacillus atrophaeus SHB2097 (54%), B. velezensis SHB2098 (24%), B. subtilis SHB2099 (12%), and B. amyloliquefaciens SHB20910 (10%). One of the most active strains characterized as B. atrophaeus SHB2097 (MW821482) with an inhibition zone more than 30 mm on spot-over-lawn experiment, was isolated from a seaweed Sargassum wightii, was selected for bioprospecting studies. Significant antibacterial potential was displayed by bacterial organic extract against vancomycin-resistant Enterococcus faecalis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Klebsiella pneumonia with minimum inhibitory concentration 6.25 µg/mL and comparable to the antibiotics ampicillin and chloramphenicol. The genes of type 1 pks (MZ222383, 700 bp) and hybrid nrps/pks (MZ222389, 1000-1400 bp) of B. atrophaeus MW821482 could be amplified. The bacterium displayed susceptibility to the commercially available antibiotic agents, and was negative for the pore-forming non-hemolytic hemolysin BL (hbl) and enterotoxin (nhe) genes, and therefore, was not pathogenic. The bacterium was found to possess genes (1000-1400 bp) involved in the biosynthesis of siderophore-class of compounds (MZ222387 and MZ222388) that showed 99% of similarity in BLAST search, and showed production of siderophore. Noteworthy antibacterial activities against clinically important pathogenic bacteria in conjunction with occurrence of genes coding for antimicrobial metabolites inferred that the marine heterotrophic bacterium B. atrophaeus SHB2097 could be used for the development of antibacterial agents against the emerging antibiotic resistance.
Collapse
|
28
|
Costa A, Corallo B, Amarelle V, Stewart S, Pan D, Tiscornia S, Fabiano E. Paenibacillus sp. Strain UY79, Isolated from a Root Nodule of Arachis villosa, Displays a Broad Spectrum of Antifungal Activity. Appl Environ Microbiol 2022; 88:e0164521. [PMID: 34757818 PMCID: PMC8788682 DOI: 10.1128/aem.01645-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
A nodule-inhabiting Paenibacillus sp. strain (UY79) isolated from wild peanut (Arachis villosa) was screened for its antagonistic activity against diverse fungi and oomycetes (Botrytis cinerea, Fusarium verticillioides, Fusarium oxysporum, Fusarium graminearum, Fusarium semitectum, Macrophomina phaseolina, Phomopsis longicolla, Pythium ultimum, Phytophthora sojae, Rhizoctonia solani, Sclerotium rolfsii, and Trichoderma atroviride). The results obtained show that Paenibacillus sp. UY79 was able to antagonize these fungi/oomycetes and that agar-diffusible compounds and volatile compounds (different from HCN) participate in the antagonism exerted. Acetoin, 2,3-butanediol, and 2-methyl-1-butanol were identified among the volatile compounds produced by strain UY79 with possible antagonistic activity against fungi/oomycetes. Paenibacillus sp. strain UY79 did not affect symbiotic association or growth promotion of alfalfa plants when coinoculated with rhizobia. By whole-genome sequence analysis, we determined that strain UY79 is a new species of Paenibacillus within the Paenibacillus polymyxa complex. Diverse genes putatively involved in biocontrol activity were identified in the UY79 genome. Furthermore, according to genome mining and antibiosis assays, strain UY79 would have the capability to modulate the growth of bacteria commonly found in soil/plant communities. IMPORTANCE Phytopathogenic fungi and oomycetes are responsible for causing devastating losses in agricultural crops. Therefore, there is enormous interest in the development of effective and complementary strategies that allow the control of the phytopathogens, reducing the input of agrochemicals in croplands. The discovery of new strains with expanded antifungal activities and with a broad spectrum of action is challenging and of great future impact. Diverse strains belonging to the P. polymyxa complex have been reported to be effective biocontrol agents. Results presented here show that the novel discovered strain of Paenibacillus sp. presents diverse traits involved in antagonistic activity against a broad spectrum of pathogens and is a potential and valuable strain to be further assessed for the development of biofungicides.
Collapse
Affiliation(s)
- Andrés Costa
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Belén Corallo
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Vanesa Amarelle
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano. Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Dinorah Pan
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Susana Tiscornia
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Elena Fabiano
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
29
|
Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots. Microorganisms 2022; 10:microorganisms10020209. [PMID: 35208667 PMCID: PMC8876289 DOI: 10.3390/microorganisms10020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species.
Collapse
|
30
|
Chowdhury N, Hazarika DJ, Goswami G, Sarmah U, Borah S, Boro RC, Barooah M. Acid tolerant bacterium Bacillus amyloliquefaciens MBNC retains biocontrol efficiency against fungal phytopathogens in low pH. Arch Microbiol 2022; 204:124. [PMID: 34997335 DOI: 10.1007/s00203-021-02741-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Soil pH conditions have important consequences for microbial community structure, their dynamics, ecosystem processes, and interactions with plants. Low soil pH affects the growth and functional activity of bacterial biocontrol agents which may experience a paradigm shift in their ability to act antagonistically against fungal phytopathogens. In this study, the antifungal activity of an acid-tolerant soil bacterium Bacillus amyloliquefaciens MBNC was evaluated under low pH and compared to its activity in neutral pH conditions. Bacterial supernatant from 3-day-old culture (approximately 11.2 × 108 cells/mL) grown in low pH conditions was found more effective against fungal pathogens. B. amyloliquefaciens MBNC harboured genes involved in the synthesis of secondary metabolites of which surfactin homologues, with varying chain length (C11-C15), were identified through High-Resolution Mass Spectroscopy. The pH of the medium influenced the production of these metabolites. Surfactin C15 was exclusive to the extract of pH 4.5; production of iturinA and surfactin C11 was detected only in pH 7.0, while surfactin C12, C13 and C14 were detected in extracts of both the pH conditions. The secretion of phytohormones viz. indole acetic acid and gibberellic acid by B. amyloliquefaciens MBNC was detected in higher amounts in neutral condition compared to acidic condition. Although, secretion of metabolites and phytohormones in B. amyloliquefaciens MBNC was influenced by the pH condition of the medium, the isolate retained its antagonistic efficiency against several fungal phyto-pathogens under acidic condition.
Collapse
Affiliation(s)
- Naimisha Chowdhury
- DBT-North East Centre for Agricultural Biotechnology, Jorhat, Assam, 785013, India.,Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT-North East Centre for Agricultural Biotechnology, Jorhat, Assam, 785013, India.,Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Gunajit Goswami
- DBT-North East Centre for Agricultural Biotechnology, Jorhat, Assam, 785013, India
| | - Unmona Sarmah
- DBT-North East Centre for Agricultural Biotechnology, Jorhat, Assam, 785013, India
| | - Shrutirupa Borah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- DBT-North East Centre for Agricultural Biotechnology, Jorhat, Assam, 785013, India. .,Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
31
|
Antifungal Compounds of Plant Growth-Promoting Bacillus Species. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
32
|
Rungsirivanich P, Parlindungan E, O'Connor PM, Field D, Mahony J, Thongwai N, van Sinderen D. Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [ Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Front Microbiol 2021; 12:789362. [PMID: 34899671 PMCID: PMC8653701 DOI: 10.3389/fmicb.2021.789362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bacillus velezensis ML122-2 is an antimicrobial-producing strain isolated from the leaf of Assam tea or Miang [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. The cell-free supernatant (CFS) of strain ML122-2 exhibits a broad-spectrum antimicrobial activity against various Gram-positive and Gram-negative bacteria as well as the mold Penicillium expansum. The genome of B. velezensis ML122-2 was sequenced and in silico analysis identified three potential bacteriocin-associated gene clusters, that is, those involved in the production of mersacidin, amylocyclicin, and LCI. Furthermore, six gene clusters exhibiting homology (75–100% DNA sequence identity) to those associated with the secondary metabolites bacilysin, bacillibactin, surfactin, macrolactin H, bacillaene, and plipastatin were identified. Individual antimicrobial activities produced by B. velezensis ML122-2 were purified and characterized by Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis, revealing three antimicrobial peptides with molecular masses corresponding to surfactin, plipastatin, and amylocyclicin. Transcriptional analysis of specific genes associated with mersacidin (mrsA), amylocyclicin (acnA), plipastatin (ppsA), and surfactin (srfAA) production by B. velezensis ML122-2 showed that the first was not transcribed under the conditions tested, while the latter three were consistent with the presence of the associated peptides as determined by mass spectrometry analysis. These findings demonstrate that B. velezensis ML122-2 has the genetic capacity to produce a wide range of antimicrobial activities that may support a specific community structure and highlight the biotechnological properties of Assam tea.
Collapse
Affiliation(s)
- Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Elvina Parlindungan
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021; 11:biom11121860. [PMID: 34944505 PMCID: PMC8699383 DOI: 10.3390/biom11121860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, India;
| | - Sanjeet Mehariya
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Neeta Sharma
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Trisaia, SS Jonica 106, km 419 + 500, 75026 Rotondella, Italy;
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
34
|
Mülner P, Schwarz E, Dietel K, Herfort S, Jähne J, Lasch P, Cernava T, Berg G, Vater J. Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1. Pathogens 2021; 10:1485. [PMID: 34832640 PMCID: PMC8621861 DOI: 10.3390/pathogens10111485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Paenibacilli are efficient producers of potent agents against bacterial and fungal pathogens, which are of great interest both for therapeutic applications in medicine as well as in agrobiotechnology. Lipopeptides produced by such organisms play a major role in their potential to inactivate pathogens. In this work we investigated two lipopeptide complexes, the fusaricidins and the polymyxins, produced by Paenibacillus polymyxa strains DSM 32871 and M1 by MALDI-TOF mass spectrometry. The fusaricidins show potent antifungal activities and are distinguished by an unusual variability. For strain DSM 32871 we identified numerous yet unknown variants mass spectrometrically. DSM 32871 produces polymyxins of type E (colistins), while M1 forms polymyxins P. For both strains, novel but not yet completely characterized polymyxin species were detected, which possibly are glycosylated. These compounds may be of interest therapeutically, because polymyxins have gained increasing attention as last-resort antibiotics against multiresistant pathogenic Gram-negative bacteria. In addition, the volatilomes of DSM 32781 and M1 were investigated with a GC-MS approach using different cultivation media. Production of volatile organic compounds (VOCs) was strain and medium dependent. In particular, strain M1 manifested as an efficient VOC-producer that exhibited formation of 25 volatiles in total. A characteristic feature of Paenibacilli is the formation of volatile pyrazine derivatives.
Collapse
Affiliation(s)
- Pascal Mülner
- ABITEP GmbH, Glienicker Weg 185, 12489 Berlin, Germany; (P.M.); (E.S.); (K.D.)
- Institute of Environmental Biotechnology, Graz University of Technology, Petergasse 12, 8010 Graz, Austria; (T.C.); (G.B.)
| | - Elisa Schwarz
- ABITEP GmbH, Glienicker Weg 185, 12489 Berlin, Germany; (P.M.); (E.S.); (K.D.)
| | - Kristin Dietel
- ABITEP GmbH, Glienicker Weg 185, 12489 Berlin, Germany; (P.M.); (E.S.); (K.D.)
| | - Stefanie Herfort
- Robert Koch-Institut, ZBS6, Proteomics and Spectroscopy, Seestr 10, 13353 Berlin, Germany; (S.H.); (J.J.); (P.L.)
| | - Jennifer Jähne
- Robert Koch-Institut, ZBS6, Proteomics and Spectroscopy, Seestr 10, 13353 Berlin, Germany; (S.H.); (J.J.); (P.L.)
| | - Peter Lasch
- Robert Koch-Institut, ZBS6, Proteomics and Spectroscopy, Seestr 10, 13353 Berlin, Germany; (S.H.); (J.J.); (P.L.)
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petergasse 12, 8010 Graz, Austria; (T.C.); (G.B.)
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petergasse 12, 8010 Graz, Austria; (T.C.); (G.B.)
| | - Joachim Vater
- Robert Koch-Institut, ZBS6, Proteomics and Spectroscopy, Seestr 10, 13353 Berlin, Germany; (S.H.); (J.J.); (P.L.)
| |
Collapse
|
35
|
Marine macroalga-associated heterotrophic Bacillus velezensis: a novel antimicrobial agent with siderophore mode of action against drug-resistant nosocomial pathogens. Arch Microbiol 2021; 203:5561-5575. [PMID: 34436634 DOI: 10.1007/s00203-021-02513-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Increased prevalence of microbial resistance and development of drug-resistant pathogens have triggered an urge among researchers to discover potential antimicrobial compounds, particularly from the marine habitat. The present study highlights the cultivable diversity and bioactivities of heterotrophic bacteria associated with marine macroalgae of southeast Indian coastal region. Culture-dependent isolation method resulted in 40 isolates, in which greater part of the isolates represented Gammaproteobacteria (62%) followed by that comprised of the phylum Firmicutes. One of the most active strains isolated from a macroalga, Laurencia papillosa, was characterized based on the integrated phenotypic and genotypic analysis as Bacillus velezensis MBTDLP1 MTCC 13048, with an inhibition zone of about 35 mm against methicillin-resistant Staphylococcus aureus (MRSA), was selected for bioprospecting studies. Type-I pks gene (MT394492) of 700 bp could be amplified from the heterotrophic B. velezensis. The bacterium exhibited siderophore production and possessed genes implicated in the biosynthesis of siderophore type of metabolites exhibiting 99% similarity with other GenBank sequences in BLAST search. B. velezensis exhibited promising anti-infective properties against methicillin-resistant Staphylococcus aureus (minimum inhibitory concentration 15 µg/mL), and the activities were positively correlated (r2 > 0.9) with iron-chelating activities. Chemical investigation of the organic extract of B. velezensis MBTDLP1 characterized a macrocyclic polyketide exhibiting prospective antibacterial potential against methicillin-resistant S. aureus (MIC 0.38 µg/mL), than that exhibited by positive control chloramphenicol (6.25 µg/mL). Significant antibacterial activity against drug-resistant bacteria combined with the presence of genes coding for bioactive secondary metabolites revealed that this marine symbiotic bacterium could be used against emerging antibiotic resistance.
Collapse
|
36
|
Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD. A Leap Forward Towards Unraveling Newer Anti-infective Agents from an Unconventional Source: a Draft Genome Sequence Illuminating the Future Promise of Marine Heterotrophic Bacillus sp. Against Drug-Resistant Pathogens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:790-808. [PMID: 34523054 DOI: 10.1007/s10126-021-10064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
During the previous decade, genome-built researches on marine heterotrophic microorganisms displayed the chemical heterogeneity of natural product resources coupled with the efficacies of harnessing the genetic divergence in various strains. Herein, we describe the whole genome data of heterotrophic Bacillus amyloliquefaciens MB6 (MTCC 12,716), isolated from a marine macroalga Hypnea valentiae, a 4,107,511-bp circular chromosome comprising 186 contigs, with 4154 protein-coding DNA sequences and a coding ratio of 86%. Simultaneously, bioactivity-guided purification of the bacterial extract resulted in six polyketide classes of compounds with promising antibacterial activity. Draft genome sequence of B. amyloliquefaciens MB6 unveiled biosynthetic gene clusters (BGCs) engaged in the biosynthesis of polyketide-originated macrolactones with prospective antagonistic activity (MIC ≤ 5 µg/mL) against nosocomial pathogens. Genome analysis manifested 34 putative BGCs necessitated to synthesize biologically active polyketide-originated frameworks or their derivatives. These results provide insights into the genetic basis of heterotrophic B. amyloliquefaciens MTCC 12,716 as a prospective lead for biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, 682018, Kerala, India.
| | - Vinaya Kizhakkepatt Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, 682018, Kerala, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Kerala State, Cochin, India
| | - Minju Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, 682018, Kerala, India
| | - Rekha Devi Chakraborty
- Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
37
|
Xun W, Shao J, Shen Q, Zhang R. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Comput Struct Biotechnol J 2021; 19:5487-5493. [PMID: 34712394 PMCID: PMC8515068 DOI: 10.1016/j.csbj.2021.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Environmental pressure to reduce our reliance on agrochemicals and the necessity to increase crop production in a sustainable way have made the rhizosphere microbiome an untapped resource for combating challenges to agricultural sustainability. In recent years, substantial efforts to characterize the structural and functional diversity of rhizosphere microbiomes of the model plant Arabidopsis thaliana and various crops have demonstrated their importance for plant fitness. However, the plant benefiting mechanisms of the rhizosphere microbiome as a whole community rather than as an individual rhizobacterium have only been revealed in recent years. The underlying principle dominating the assembly of the rhizosphere microbiome remains to be elucidated, and we are still struggling to harness the rhizosphere microbiome for agricultural sustainability. In this review, we summarize the recent progress of the driving factors shaping the rhizosphere microbiome and provide community-level mechanistic insights into the benefits that the rhizosphere microbiome has for plant fitness. We then propose the functional compensatory principle underlying rhizosphere microbiome assembly. Finally, we suggest future research efforts to explore the rhizosphere microbiome for agricultural sustainability.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
38
|
Luo C, Liu J, Bilal M, Liu X, Wang X, Dong F, Liu Y, Zang S, Yin X, Yang X, Zhu T, Zhang S, Zhang W, Li B. Extracellular lipopeptide bacillomycin L regulates serial expression of genes for modulating multicellular behavior in Bacillus velezensis Bs916. Appl Microbiol Biotechnol 2021; 105:6853-6870. [PMID: 34477941 DOI: 10.1007/s00253-021-11524-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
In wild strains of Bacillus, a handful of extracellular natural products act as signals that can regulate multicellular behavior, but relatively little is known about molecular mechanisms' detail. We proposed a previously unreported molecular mechanism for triggering multicellularity in B. velezensis Bs916 by an endogenous cyclic lipopeptide, bacillomycin L. The genome-wide effect on gene expression was caused by the disruption of bacillomycin L gene cluster, and 100 µg/mL bacillomycin L was revealed by quantitative transcriptomics. A total of 878 differentially expressed genes among Bs916, Δbl, and Δbl + 100BL were identified and grouped into 9 functional categories. The transcription levels of 40 candidate genes were further evaluated by RT-qPCR analysis. The expression of eight candidate genes regulated by bacillomycin L in a dose-dependent manner was revealed by LacZ fusion experiment. Although the addition of bacillomycin L could not completely restore the expression levels of the differentially regulated genes in △bl, our results strongly suggest that bacillomycin L acts as a tuning signal of swarming motility and complex biofilm formation by indirectly regulating the expression levels of some two-component systems (TCSs) connector genes, particularly including several Raps that potentially regulate the phosphorylation levels of three major regulators ComA, DegU, and Spo0A.Key points• Proposed model for bacillomycin L regulation in B. velezensis Bs916.• Bacillomycin L can act as an extracellular signal to regulate the phosphorylation levels of three major regulators, ComA, DegU, and Spo0A and control the multicellular processes of vegetative growth, competent, motility, matrix production, sporulation, and autolysis.
Collapse
Affiliation(s)
- Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China. .,Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Jiachen Liu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Muhammad Bilal
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Fei Dong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Yuan Liu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China.,Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shanshan Zang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiulian Yin
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xueting Yang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Tao Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Shuangyu Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Weifeng Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Bin Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China. .,Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
39
|
Maan H, Gilhar O, Porat Z, Kolodkin-Gal I. Bacillus subtilis Colonization of Arabidopsis thaliana Roots Induces Multiple Biosynthetic Clusters for Antibiotic Production. Front Cell Infect Microbiol 2021; 11:722778. [PMID: 34557426 PMCID: PMC8454505 DOI: 10.3389/fcimb.2021.722778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022] Open
Abstract
Beneficial and probiotic bacteria play an important role in conferring immunity of their hosts to a wide range of bacterial, viral, and fungal diseases. Bacillus subtilis is a Gram-positive bacterium that protects the plant from various pathogens due to its capacity to produce an extensive repertoire of antibiotics. At the same time, the plant microbiome is a highly competitive niche, with multiple microbial species competing for space and resources, a competition that can be determined by the antagonistic potential of each microbiome member. Therefore, regulating antibiotic production in the rhizosphere is of great importance for the elimination of pathogens and establishing beneficial host-associated communities. In this work, we used B. subtilis as a model to investigate the role of plant colonization in antibiotic production. Flow cytometry and imaging flow cytometry (IFC) analysis supported the notion that Arabidopsis thaliana specifically induced the transcription of the biosynthetic clusters for the non-ribosomal peptides surfactin, bacilysin, plipastatin, and the polyketide bacillaene. IFC was more robust in quantifying the inducing effects of A. thaliana, considering the overall heterogeneity of the population. Our results highlight IFC as a useful tool to study the effect of association with a plant host on bacterial gene expression. Furthermore, the common regulation of multiple biosynthetic clusters for antibiotic production by the plant can be translated to improve the performance and competitiveness of beneficial members of the plant microbiome.
Collapse
Affiliation(s)
- Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Omri Gilhar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Gene Cluster Analysis of Marine Bacteria Seeking for Natural Anticancer Products. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.104665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: In the past decade, metabolites of marine microorganisms have been increasingly used for their various biological activities. An intense effort has been dedicated to assessing the therapeutic efficacy of the marine natural products and metabolites obtained from marine bacteria in cancer therapy. Fast and reliable analytical bacterial genome sequencing provides specialized bioinformatic tools to identify potential gene clusters in bacteria for obtaining secondary metabolites. Objectives: This study aimed to analyze the genome sequences of marine bacteria to recognize bioactive compounds with anti-cancer properties. Methods: Marine bacteria with the genomic sequences registered in the National Center for Biotechnology Information (NCBI) genome database were used in this study. The genome was analyzed for proteins, tRNAs, and rRNAs from GenBank entries by Feature Extract 1.2L Server. The Anti-SMASH webserver was used for the analysis of unique marine bacterial metabolites of the marine bacterial genome, available from the NCBI database. Results: A number of marine bacterial species, including Salinispora arenicola, Salinispora tropica, Crocosphaera watsonii, and Blastopirellula marina encoded metabolites belonging to the polyketide and nonribosomal peptide (NRP) families, showing anti-cancer properties. Among the marine species described, S. tropica and S. arenicola are richer in the genes encoding polyketide and NRP with potential antitumor activities. Conclusions: Marine bacteria are an excellent and exceptional source of anti-cancer compounds. In silico genome analysis of marine bacteria provided an opportunity to evaluate gene clusters for known natural products. Like this chemical engineering approaches for pharmaceutical application are useful in clinical evaluation of cancer treatment.
Collapse
|
41
|
Engelbrecht G, Claassens S, Mienie CMS, Fourie H. Screening of Rhizosphere Bacteria and Nematode Populations Associated with Soybean Roots in the Mpumalanga Highveld of South Africa. Microorganisms 2021; 9:microorganisms9091813. [PMID: 34576709 PMCID: PMC8469482 DOI: 10.3390/microorganisms9091813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Soybean is among South Africa’s top crops in terms of production figures. Over the past few years there has been increasingly more damage caused to local soybean by plant-parasitic nematode infections. The presence of Meloidogyne (root-knot nematodes) and Pratylenchus spp. (root lesion nematodes) in soybean fields can cripple the country’s production, however, little is known about the soil microbial communities associated with soybean in relation to different levels of Meloidogyne and Pratylenchus infestations, as well as the interaction(s) between them. Therefore, this study aimed to identify the nematode population assemblages and endemic rhizosphere bacteria associated with soybean using Next Generation Sequencing (NGS). The abundance of bacterial genera that were then identified as being significant using linear discriminant analysis (LDA) Effect Size (LEfSe) was compared to the abundance of the most prevalent plant-parasitic nematode genera found across all sampled sites, viz. Meloidogyne and Pratylenchus. While several bacterial genera were identified as significant using LEfSe, only two with increased abundance were associated with decreased abundance of Meloidogyne and Pratylenchus. However, six bacterial genera were associated with decreased Pratylenchus abundance. It is therefore possible that endemic bacterial strains can serve as an alternative method for reducing densities of plant-parasitic nematode genera and in this way reduce the damages caused to this economically important crop.
Collapse
|
42
|
Chakraborty K, Kizhakkekalam VK, Joy M, Dhara S. Difficidin class of polyketide antibiotics from marine macroalga-associated Bacillus as promising antibacterial agents. Appl Microbiol Biotechnol 2021; 105:6395-6408. [PMID: 34415389 DOI: 10.1007/s00253-021-11390-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
A heterotrophoic Bacillus amyloliquefaciens MTCC12713 isolated from an intertidal macroalga Kappaphycus alverezii displayed promising antibacterial activities against multidrug-resistant bacteria. Genome mining of the bacterium predicted biosynthetic gene clusters coding for antibacterial secondary metabolites. Twenty-one membered macrocyclic lactones, identified as difficidin analogues bearing 6-hydroxy-8-propyl carboxylate, 9-methyl-19-propyl dicarboxylate, 6-methyl-9-propyl dicarboxylate-19-propanone, and (20-acetyl)-6-methyl-9-isopentyl dicarboxylate (compounds 1 through 4) functionalities were purified through bioassay-guided fractionation. The difficidin analogues exhibited bactericidal activities against vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and other drug-resistant strains, such of Klebsiella pneumonia and Pseudomonas aeruginosa with the minimum inhibitory concentration of about 2-9 × 10-3 μM. A plausible enzyme-catalyzed biosynthetic pathway that is generated through addition of acrylyl initiator unit by repetitive decarboxylative Claisen condensation modules with malonate units was recognized, and their structures were corroborated with gene organization of the dif operon, which could comprehend dif A-O (~ 70 kb). Drug-likeness score for 5-ethoxy-28-methyl-(9-methyl-19-propyl dicarboxylate) difficidin (compound 2, 0.35) was greater than those of other difficidin analogues, which corroborated the potential in vitro antibacterial properties of the former. The present study demonstrated the potential of difficidin analogues for pharmaceutical and biotechnological uses against the bottleneck of emergent drug-resistant pathogens. KEY POINTS: • Difficidins were isolated from marine alga associated Bacillus amyloliquefaciens. • Whole-genome mining of bacterial genome predicted biosynthetic gene clusters. • Greater drug-likeness for difficidin 2 confirmed its potent antibacterial activity.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala, India.
| | - Vinaya Kizhakkepatt Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Minju Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala, India
| | - Shubhajit Dhara
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala, India
| |
Collapse
|
43
|
Torres-Sánchez A, Pardo-Cacho J, López-Moreno A, Ruiz-Moreno Á, Cerk K, Aguilera M. Antimicrobial Effects of Potential Probiotics of Bacillus spp. Isolated from Human Microbiota: In Vitro and In Silico Methods. Microorganisms 2021; 9:1615. [PMID: 34442694 PMCID: PMC8399655 DOI: 10.3390/microorganisms9081615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
The variable taxa components of human gut microbiota seem to have an enormous biotechnological potential that is not yet well explored. To investigate the usefulness and applications of its biocompounds and/or bioactive substances would have a dual impact, allowing us to better understand the ecology of these microbiota consortia and to obtain resources for extended uses. Our research team has obtained a catalogue of isolated and typified strains from microbiota showing resistance to dietary contaminants and obesogens. Special attention was paid to cultivable Bacillus species as potential next-generation probiotics (NGP) together with their antimicrobial production and ecological impacts. The objective of the present work focused on bioinformatic genome data mining and phenotypic analyses for antimicrobial production. In silico methods were applied over the phylogenetically closest type strain genomes of the microbiota Bacillus spp. isolates and standardized antimicrobial production procedures were used. The main results showed partial and complete gene identification and presence of polyketide (PK) clusters on the whole genome sequences (WGS) analysed. Moreover, specific antimicrobial effects against B. cereus, B. circulans, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Serratia marcescens, Klebsiella spp., Pseudomonas spp., and Salmonella spp. confirmed their capacity of antimicrobial production. In conclusion, Bacillus strains isolated from human gut microbiota and taxonomic group, resistant to Bisphenols as xenobiotics type endocrine disruptors, showed parallel PKS biosynthesis and a phenotypic antimicrobial effect. This could modulate the composition of human gut microbiota and therefore its functionalities, becoming a predominant group when high contaminant exposure conditions are present.
Collapse
Affiliation(s)
- Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
| | - Jesús Pardo-Cacho
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs (IBS), 18012 Granada, Spain
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (A.T.-S.); (J.P.-C.); (Á.R.-M.); (K.C.)
- Institute of Nutrition and Food Technology “José Mataix”, CIBM, University of Granada, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs (IBS), 18012 Granada, Spain
| |
Collapse
|
44
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
Kim MS, Kim HR, Jeong DE, Choi SK. Cytosine Base Editor-Mediated Multiplex Genome Editing to Accelerate Discovery of Novel Antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Front Microbiol 2021; 12:691839. [PMID: 34122396 PMCID: PMC8193733 DOI: 10.3389/fmicb.2021.691839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Genome-based identification of new antibiotics is emerging as an alternative to traditional methods. However, uncovering hidden antibiotics under the background of known antibiotics remains a challenge. To over this problem using a quick and effective genetic approach, we developed a multiplex genome editing system using a cytosine base editor (CBE). The CBE system achieved simultaneous double, triple, quadruple, and quintuple gene editing with efficiencies of 100, 100, 83, and 75%, respectively, as well as the 100% editing efficiency of single targets in Bacillus subtilis. Whole-genome sequencing of the edited strains showed that they had an average of 8.5 off-target single-nucleotide variants at gRNA-independent positions. The CBE system was used to simultaneously knockout five known antibiotic biosynthetic gene clusters to leave only an uncharacterized polyketide biosynthetic gene cluster in Paenibacillus polymyxa E681. The polyketide showed antimicrobial activities against gram-positive bacteria, but not gram-negative bacteria and fungi. Therefore, our findings suggested that the CBE system might serve as a powerful tool for multiplex genome editing and greatly accelerating the unraveling of hidden antibiotics in Bacillus and Paenibacillus species.
Collapse
Affiliation(s)
- Man Su Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ha-Rim Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Da-Eun Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo-Keun Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
46
|
Bacillaene Mediates the Inhibitory Effect of Bacillus subtilis on Campylobacter jejuni Biofilms. Appl Environ Microbiol 2021; 87:e0295520. [PMID: 33837012 DOI: 10.1128/aem.02955-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biofilms are the predominant bacterial lifestyle and can protect microorganisms from environmental stresses. Multispecies biofilms can affect the survival of enteric pathogens that contaminate food products, and thus, investigating the underlying mechanisms of multispecies biofilms is essential for food safety and human health. In this study, we investigated the ability of the natural isolate Bacillus subtilis PS-216 to restrain Campylobacter jejuni biofilm formation and adhesion to abiotic surfaces as well as to disrupt preestablished C. jejuni biofilms. Using confocal laser scanning microscopy and colony counts, we demonstrate that the presence of B. subtilis PS-216 prevents C. jejuni biofilm formation, decreases growth of the pathogen by 4.2 log10, and disperses 26-h-old preestablished C. jejuni biofilms. Furthermore, the coinoculation of B. subtilis and C. jejuni interferes with the adhesion of C. jejuni to abiotic surfaces, reducing it by 2.4 log10. We also show that contact-independent mechanisms contribute to the inhibitory effect of B. subtilis PS-216 on C. jejuni biofilm. Using B. subtilis mutants in genes coding for nonribosomal peptides and polyketides revealed that bacillaene significantly contributes to the inhibitory effect of B. subtilis PS-216. In summary, we show a strong potential for the use of B. subtilis PS-216 against C. jejuni biofilm formation and adhesion to abiotic surfaces. Our research could bring forward novel applications of B. subtilis in animal production and thus contribute to food safety. IMPORTANCE Campylobacter jejuni is an intestinal commensal in animals (including broiler chickens) but also the most frequent cause of bacterial foodborne infection in humans. This pathogen forms biofilms which enhance survival of C. jejuni in food processing and thus threaten human health. Probiotic bacteria represent a potential alternative in the prevention and control of foodborne infections. The beneficial bacterium Bacillus subtilis has an excellent probiotic potential to reduce C. jejuni in the animal gastrointestinal tract. However, data on the effect of B. subtilis on C. jejuni biofilms are scarce. Our study shows that the B. subtilis natural isolate PS-216 prevents adhesion to the abiotic surfaces and the development of submerged C. jejuni biofilm during coculture and destroys the preestablished C. jejuni biofilm. These insights are important for development of novel applications of B. subtilis that will reduce the use of antibiotics in human and animal health and increase productivity in animal breeding.
Collapse
|
47
|
A native conjugative plasmid confers potential selective advantages to plant growth-promoting Bacillus velezensis strain GH1-13. Commun Biol 2021; 4:582. [PMID: 33990691 PMCID: PMC8121941 DOI: 10.1038/s42003-021-02107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
The conjugative plasmid (pBV71) possibly confers a selective advantage to Bacillus velezensis strain GH1-13, although a selective marker gene is yet to be identified. Here we show that few non-mucoid wild-type GH1-13 cells are spontaneously converted to mucoid variants with or without the loss of pBV71. Mucoid phenotypes, which contain or lack the plasmid, become sensitive to bacitracin, gramicidin, selenite, and tellurite. Using the differences in antibiotic resistance and phenotype, we isolated a reverse complement (COM) and a transconjugant of strain FZB42 with the native pBV71. Transformed COM and FZB42p cells were similar to the wild-type strain GH1-13 with high antibiotic resistance and slow growth rates on lactose compared to those of mucoid phenotypes. RT-PCR analysis revealed that the expression of plasmid-encoded orphan aspartate phosphatase (pRapD) was coordinated with a new quorum-sensing (QS) cassette of RapF2-PhrF2 present in the chromosome of strain GH1-13, but not in strain FZB42. Multi-omics analysis on wild-type and plasmid-cured cells of strain GH1-13 suggested that the conjugative plasmid expression has a crucial role in induction of early envelope stress response that promotes cell morphogenesis, biofilm formation, catabolite repression, and biosynthesis of extracellular-matrix components and antibiotics for protection of host cell during exponential phase.
Collapse
|
48
|
Ribeiro IDA, Bach E, da Silva Moreira F, Müller AR, Rangel CP, Wilhelm CM, Barth AL, Passaglia LMP. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots. Microbiol Res 2021; 248:126754. [PMID: 33848783 DOI: 10.1016/j.micres.2021.126754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/28/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Endophytic bacteria show important abilities in promoting plant growth and suppressing phytopathogens, being largely explored in agriculture as biofertilizers or biocontrol agents. Bacteria from canola roots were isolated and screened for different plant growth promotion (PGP) traits and biocontrol of Sclerotinia sclerotiorum. Thirty isolates belonging to Bacillus, Paenibacillus, Lysinibacillus, and Microbacterium genera were obtained. Several isolates produced auxin, siderophores, hydrolytic enzymes, fixed nitrogen and solubilized phosphate. Five isolates presented antifungal activity against S. sclerotiorum by the dual culture assay and four of them also inhibited fungal growth by volatile organic compounds production. All antagonistic isolates belonged to the Bacillus genus, and had their genomes sequenced for the search of biosynthetic gene clusters (BGC) related to antimicrobial metabolites. These isolates were identified as Bacillus safensis (3), Bacillus pumilus (1), and Bacillus megaterium (1), using the genomic metrics ANI and dDDH. Most strains showed several common BGCs, including bacteriocin, polyketide synthase (PKS), and non-ribosomal peptide synthetase (NRPS), related to pumilacidin, bacillibactin, bacilysin, and other antimicrobial compounds. Pumilacidin-related mass peaks were detected in acid precipitation extracts through MALDI-TOF analysis. The genomic features demonstrated the potential of these isolates in the suppression of plant pathogens; however, some aspects of plant-bacterial interactions remain to be elucidated.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Fernanda da Silva Moreira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Aline Reis Müller
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Caroline Pinto Rangel
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil
| | - Camila Mörschbächer Wilhelm
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Afonso Luis Barth
- LABRESIS - Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90.035-903, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
49
|
Steinke K, Mohite OS, Weber T, Kovács ÁT. Phylogenetic Distribution of Secondary Metabolites in the Bacillus subtilis Species Complex. mSystems 2021; 6:e00057-21. [PMID: 33688015 PMCID: PMC8546965 DOI: 10.1128/msystems.00057-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Microbes produce a plethora of secondary (or specialized) metabolites that, although not essential for primary metabolism, benefit them to survive in the environment, communicate, and influence cell differentiation. Biosynthetic gene clusters (BGCs), responsible for the production of these secondary metabolites, are readily identifiable on bacterial genome sequences. Understanding the phylogeny and distribution of BGCs helps us to predict the natural product synthesis ability of new isolates. Here, we examined 310 genomes from the Bacillus subtilis group, determined the inter- and intraspecies patterns of absence/presence for all BGCs, and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in the distribution of both known and unknown products. Further, we analyzed variations in the BGC structures of particular families encoding natural products, such as plipastatin, fengycin, iturin, mycosubtilin, and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and a few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Surprisingly, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed genomic analysis of BGCs and the remarkable phylogenetically conserved erosion of secondary metabolite biosynthetic potential in the B. subtilis group.IMPORTANCE Members of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those, the production of antifungals, which makes them promising biocontrol strains. While there are studies examining the distribution of well-known secondary metabolites in Bacilli, intraspecies clade-specific distribution has not been systematically reported for the B. subtilis group. Here, we report the complete biosynthetic potential within the B. subtilis group to explore the distribution of the biosynthetic gene clusters and to reveal an exhaustive phylogenetic conservation of secondary metabolite production within Bacillus that supports the chemodiversity within this species complex. We identify that certain gene clusters acquired deletions of genes and particular frameshift mutations, rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview guides the assignment of the secondary metabolite production potential of newly isolated Bacillus strains based on genome sequence and phylogenetic relatedness.
Collapse
Affiliation(s)
- Kat Steinke
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
50
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|